Using X-Y Displays APPLICATION BRIEF LAB WM312. May 29, Introduction. Summary

Size: px
Start display at page:

Download "Using X-Y Displays APPLICATION BRIEF LAB WM312. May 29, Introduction. Summary"

Transcription

1 Using X-Y Displays APPLICATION BRIEF LAB WM312 May 29, 2012 Summary X-Y Displays or cross plots provide a means of plotting one trace against another. This display mode finds many classical and current applications. Introduction From the classic Lissajous pattern to state transition diagrams for modern quadrature communications systems X-Y plots provide a view of functional relationships between to waveforms. X-Y plots can be displayed alone or in conjunction with the X-T and Y-T components. Combined with X-Y cursors it is possible to make measurements using both Cartesian and polar coordinates. In this application brief we will look at some commonly used X-Y measurements. Lissajous Patterns For most engineers introduction to X-Y displays is via the classic Lissajous pattern where two sine waves are plotted, one against the other. This display can show the relative phase of the sine waves. In the case where the sine waves are at different frequencies, we can determine the ratio of the two frequencies as shown in Figure 1 where a 10 and 25 MHz sine waves are used as inputs to the Lissajous pattern. Note that X-Y displays are set up using the Display dialog box as shown in Figure 1. Figure 1: A Lissajous pattern with 10 Mhz and a 25 MHz sinewavess plotted against each other LeCroy Corporation Using X-Y Displays page 1 of 5

2 The user can select which waveform is connected to the vertical axis and which is associated with the horizontal axis. The number of vertical peaks (5 in this case) and horizontal peaks (2) indicate the frequency ratio of the vertical (Y) axis to horizontal (X) axis. In this case 5/2 (25/10 MHz). Amplitude Modulation Measurement A slightly more sophisticated version of the Lissajous pattern is the trapezoidal diagram of Figure 2. Figure 2: A trapezoidal diagram for measuring the modulation index of an amplitude modulated waveform In this X-Y plot the Y axis is the amplitude modulated carrier (C2). The X axis is the modulation signal (C1). The modulation index of the amplitude modulated signal can be determined by measuring the lengths of the vertical sides of the trapezoid. If the length of the left hand side is called Q and that of the right hand segment called P then the modulation index, m, can be computed as; m = (P-Q)/(P+Q) In our example P=4 and Q=1 division respectively. The value of m is 0.6 which represents 60 % modulation. LeCroy Corporation Using X-Y Displays page 2 of 5

3 Moving into the domain of power measurements we can plot the current through a power field effect transistor (FEt) as a function of the drain to source voltage in a switched mode power supply. The resultant plot is known as a safe operating area (SOA) plot. An example is shown in Figure 3. In this screen image channel 1 is the current waveform and channel 2 is the voltage waveform. When the FET is on the drain-source voltage is close Figure 3: The safe operating area (SOA) plot for a switching mode power supply to zero and the current ramps up from zero to a maximum value. This forms the vertical segment on the left of the SOA plot. When the current is zero the voltage waveform plots as the horizontal segment on the bottom of the SOA plot. When the FET is changing state we get simultaneous non-zero current and voltage values which show as the curved sections joining the linear elements previously discussed. These are regions of finite power dissipation. Higher power levels are indicated by moving upward and to the right on the SOA plot. Another common power measurement is the hysteresis or B/H curve for an electromagnetic component like an inductor of transformer. Magnetic materials are characterized by plotting magnetic flux density (B) as a function of magnetic field intensity (H). Figure 4 shows how an inductor is connected to generate a B/H curve. LeCroy Corporation Using X-Y Displays page 3 of 5

4 TO Y CHANNEL DEVICE UNDER TEST db VL na dt 1 B VLdt na CURRENT SHUNT n( 0.4 ) I H l L TO X CHANNEL H- Magnetic Field in Oersteds B - Flux Density in Gauss A- Cross sectional area in cm 2 l - mean path length in cm n - Number of turns VL - Voltage across inductor in Volts Figure 4: Setup for measuring a B/H curve In Figure 5 we have a screen image of such a B/H curve. Figure 5: The scope setup for creating a B/H curve LeCroy Corporation Using X-Y Displays page 4 of 5

5 Note that the voltage waveform has to be integrated in order to determine the magnetic flux density. In Figure 5 we have a screen image of such a B/H curve. Trace M3 contains the current waveform which is applied to the X input. The voltage waveform is integrated using the Math function and applied to the Y input. The area within the hysteresis loop is proportional to the energy loss per cycle. This area can also be measured as described in LeCroy Application brief LAB_707A. Our final example of X-Y plots comes from the world of communications. Modern communications systems employ a variety of quadrature modulation schemes. These are phase modulation systems that use baseband in phase (I) and quadrature (Q) components to modulate a carrier. Cross plots of the I and Q components, known as state transition diagrams, provide information on the amplitude and phase of the resultant vectors. In addition to viewing the vector components one can measure the magnitude and phase suing X-Y cursors. Figure 6 is an example of a state transition diagram for a PHP cellular phone system. The I waveform is applied to the horizontal or X axis and the quadrature (Q) component is applied to the vertical or Y input. This type of X-Y plot also employs display persistence to maintain a history of multiple data values on the screen. Figure 6: State Transition Diagram for a PHP cellular phone system utilizes display persistence and X-Y display Summary There are many applications which benefit from X-Y displays. These are a few of the more commonly used applications. LeCroy oscilloscopes incorporate X-Y displays along with persistence and specialized cursors to get the most value from this useful tool. LeCroy Corporation Using X-Y Displays page 5 of 5

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION

ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION Objectives: ME 365 EXPERIMENT 1 FAMILIARIZATION WITH COMMONLY USED INSTRUMENTATION The primary goal of this laboratory is to study the operation and limitations of several commonly used pieces of instrumentation:

More information

Noise Measurements Using a Teledyne LeCroy Oscilloscope

Noise Measurements Using a Teledyne LeCroy Oscilloscope Noise Measurements Using a Teledyne LeCroy Oscilloscope TECHNICAL BRIEF January 9, 2013 Summary Random noise arises from every electronic component comprising your circuits. The analysis of random electrical

More information

Lab 9 Frequency Domain

Lab 9 Frequency Domain Lab 9 Frequency Domain 1 Components Required Resistors Capacitors Function Generator Multimeter Oscilloscope 2 Filter Design Filters are electric components that allow applying different operations to

More information

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis

ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis ET 304A Laboratory Tutorial-Circuitmaker For Transient and Frequency Analysis All circuit simulation packages that use the Pspice engine allow users to do complex analysis that were once impossible to

More information

Power Measurements for Switch-Mode Power Supplies SAVE Verona 2011

Power Measurements for Switch-Mode Power Supplies SAVE Verona 2011 Power Measurements for Switch-Mode Power Supplies SAVE Verona 2011 Agenda Power measurements tools Switch-mode power supplies Automated power measurements Summary Reference information 2 Switch-Mode Power

More information

Measurement and Analysis for Switchmode Power Design

Measurement and Analysis for Switchmode Power Design Measurement and Analysis for Switchmode Power Design Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses

More information

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope

Department of Electrical and Computer Engineering. Laboratory Experiment 1. Function Generator and Oscilloscope Department of Electrical and Computer Engineering Laboratory Experiment 1 Function Generator and Oscilloscope The purpose of this first laboratory assignment is to acquaint you with the function generator

More information

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment:

332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title: Function Generators and Oscilloscopes Suggested Equipment: RUTGERS UNIVERSITY The State University of New Jersey School of Engineering Department Of Electrical and Computer Engineering 332:223 Principles of Electrical Engineering I Laboratory Experiment #2 Title:

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 7 RESONANCE Prepared by: Dr. Mohammed Hawa EXPERIMENT 7 RESONANCE OBJECTIVE This experiment

More information

Transformer Waveforms

Transformer Waveforms OBJECTIVE EXPERIMENT Transformer Waveforms Steady-State Testing and Performance of Single-Phase Transformers Waveforms The voltage regulation and efficiency of a distribution system are affected by the

More information

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17

LABORATORY 4. Palomar College ENGR210 Spring 2017 ASSIGNED: 3/21/17 LABORATORY 4 ASSIGNED: 3/21/17 OBJECTIVE: The purpose of this lab is to evaluate the transient and steady-state circuit response of first order and second order circuits. MINIMUM EQUIPMENT LIST: You will

More information

Models 296 and 295 combine sophisticated

Models 296 and 295 combine sophisticated Established 1981 Advanced Test Equipment Rentals www.atecorp.com 800-404-ATEC (2832) Models 296 and 295 50 MS/s Synthesized Multichannel Arbitrary Waveform Generators Up to 4 Independent Channels 10 Standard

More information

Exercise 2: Demodulation (Quadrature Detector)

Exercise 2: Demodulation (Quadrature Detector) Analog Communications Angle Modulation and Demodulation Exercise 2: Demodulation (Quadrature Detector) EXERCISE OBJECTIVE When you have completed this exercise, you will be able to explain demodulation

More information

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA

Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Direct-Conversion I-Q Modulator Simulation by Andy Howard, Applications Engineer Agilent EEsof EDA Introduction This article covers an Agilent EEsof ADS example that shows the simulation of a directconversion,

More information

Investigation of a Voltage Probe in Microstrip Technology

Investigation of a Voltage Probe in Microstrip Technology Investigation of a Voltage Probe in Microstrip Technology (Specifically in 7-tesla MRI System) By : Mona ParsaMoghadam Supervisor : Prof. Dr. Ing- Klaus Solbach April 2015 Introduction - Thesis work scope

More information

Signal Processing for Digitizers

Signal Processing for Digitizers Signal Processing for Digitizers Modular digitizers allow accurate, high resolution data acquisition that can be quickly transferred to a host computer. Signal processing functions, applied in the digitizer

More information

Efficiently simulating a direct-conversion I-Q modulator

Efficiently simulating a direct-conversion I-Q modulator Efficiently simulating a direct-conversion I-Q modulator Andy Howard Applications Engineer Agilent Eesof EDA Overview An I-Q or vector modulator is a commonly used integrated circuit in communication systems.

More information

ELECTRONIC DEVICES AND CIRCUITS. Faculty: 1.Shaik.Jakeer Hussain 2.P.Sandeep patil 3.P.Ramesh Babu

ELECTRONIC DEVICES AND CIRCUITS. Faculty: 1.Shaik.Jakeer Hussain 2.P.Sandeep patil 3.P.Ramesh Babu ELECTRONIC DEVICES AND CIRCUITS Faculty: 1.Shaik.Jakeer Hussain 2.P.Sandeep patil 3.P.Ramesh Babu UNIT-I ELECTRON DYNAMICS AND CRO: Motion of charged particles in electric and magnetic fields. Simple problems

More information

Lab 5: FET circuits. 5.1 FET Characteristics

Lab 5: FET circuits. 5.1 FET Characteristics Lab 5: FET circuits Reading: The Art of Electronics (TAOE) Section 3.01 3.10, FET s, followers, and current sources. Specifically look at information relevant to today s lab: follower, current source,

More information

ECE 310L : LAB 9. Fall 2012 (Hay)

ECE 310L : LAB 9. Fall 2012 (Hay) ECE 310L : LAB 9 PRELAB ASSIGNMENT: Read the lab assignment in its entirety. 1. For the circuit shown in Figure 3, compute a value for R1 that will result in a 1N5230B zener diode current of approximately

More information

Exercise 1: Inductors

Exercise 1: Inductors Exercise 1: Inductors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect an inductor has on dc and ac circuits by using measured values. You will verify your

More information

Knowledge Integration Module 2 Fall 2016

Knowledge Integration Module 2 Fall 2016 Knowledge Integration Module 2 Fall 2016 1 Basic Information: The knowledge integration module 2 or KI-2 is a vehicle to help you better grasp the commonality and correlations between concepts covered

More information

Introduction to Basic Laboratory Instruments

Introduction to Basic Laboratory Instruments Introduction to Contents: 1. Objectives... 2 2. Laboratory Safety... 2 3.... 2 4. Using a DC Power Supply... 2 5. Using a Function Generator... 3 5.1 Turn on the Instrument... 3 5.2 Setting Signal Type...

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

11. AC-resistances of capacitor and inductors: Reactances.

11. AC-resistances of capacitor and inductors: Reactances. 11. AC-resistances of capacitor and inductors: Reactances. Purpose: To study the behavior of the AC voltage signals across elements in a simple series connection of a resistor with an inductor and with

More information

Sophisticated Power Loss Analysis Using A Digital Phosphor Oscilloscope

Sophisticated Power Loss Analysis Using A Digital Phosphor Oscilloscope Sophisticated Power Loss Analysis Using A Digital Phosphor Oscilloscope Quickly Locate Power Dissipation in Switching Power Supplies With demand for power driving architectural changes to switching power

More information

Field Effect Transistors

Field Effect Transistors Field Effect Transistors Purpose In this experiment we introduce field effect transistors (FETs). We will measure the output characteristics of a FET, and then construct a common-source amplifier stage,

More information

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT

CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT CHAPTER 5 CONCEPTS OF ALTERNATING CURRENT INTRODUCTION Thus far this text has dealt with direct current (DC); that is, current that does not change direction. However, a coil rotating in a magnetic field

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

Pre-Lab. Introduction

Pre-Lab. Introduction Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain

More information

IEEE 802.3aq Task Force Dynamic Channel Model Ad Hoc Task 2 - Time variation & modal noise 10/13/2004 con-call

IEEE 802.3aq Task Force Dynamic Channel Model Ad Hoc Task 2 - Time variation & modal noise 10/13/2004 con-call IEEE 802.3aq Task Force Dynamic Channel Model Ad Hoc Task 2 - Time variation & modal noise 10/13/2004 con-call Time variance in MMF links Further test results Rob Coenen Overview Based on the formulation

More information

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives:

Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Objectives: Advanced Lab LAB 6: Signal Acquisition & Spectrum Analysis Using VirtualBench DSA Equipment: Pentium PC with National Instruments PCI-MIO-16E-4 data-acquisition board (12-bit resolution; software-controlled

More information

Notes on OR Data Math Function

Notes on OR Data Math Function A Notes on OR Data Math Function The ORDATA math function can accept as input either unequalized or already equalized data, and produce: RF (input): just a copy of the input waveform. Equalized: If the

More information

GENERATION OF SIGNALS USING LABVIEW FOR MAGNETIC COILS WITH POWER AMPLIFIERS

GENERATION OF SIGNALS USING LABVIEW FOR MAGNETIC COILS WITH POWER AMPLIFIERS GENERATION OF SIGNALS USING LABVIEW FOR MAGNETIC COILS WITH POWER AMPLIFIERS Ashmi G V 1, Meena M S 2 1 ER&DCI-IT, Centre for Development of Advanced Computing, Thiruvananthapuram(India) 2 LAMP Group,

More information

Switched Mode Power Supply Measurements

Switched Mode Power Supply Measurements Power Analysis 1 Switched Mode Power Supply Measurements AC Input Power measurements Safe operating area Harmonics and compliance Efficiency Switching Transistor Losses Measurement challenges Transformer

More information

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to

Lab 3: RC Circuits. Construct circuit 2 in EveryCircuit. Set values for the capacitor and resistor to match those in figure 2 and set the frequency to Lab 3: RC Circuits Prelab Deriving equations for the output voltage of the voltage dividers you constructed in lab 2 was fairly simple. Now we want to derive an equation for the output voltage of a circuit

More information

Lab 1: Basic RL and RC DC Circuits

Lab 1: Basic RL and RC DC Circuits Name- Surname: ID: Department: Lab 1: Basic RL and RC DC Circuits Objective In this exercise, the DC steady state response of simple RL and RC circuits is examined. The transient behavior of RC circuits

More information

Low-Cost Power Sources Meet Advanced ADC and VCO Characterization Requirements

Low-Cost Power Sources Meet Advanced ADC and VCO Characterization Requirements Low-Cost Power Sources Meet Advanced ADC and VCO Characterization Requirements Our thanks to Agilent Technologies for allowing us to reprint this article. Introduction Finding a cost-effective power source

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: Voltage, current, and power. In the simplest

More information

Faraday s Law PHYS 296 Your name Lab section

Faraday s Law PHYS 296 Your name Lab section Faraday s Law PHYS 296 Your name Lab section PRE-LAB QUIZZES 1. What will we investigate in this lab? 2. State and briefly explain Faraday s Law. 3. For the setup in Figure 1, when you move the bar magnet

More information

Experiment 9 The Oscilloscope and Function Generator

Experiment 9 The Oscilloscope and Function Generator Experiment 9 The Oscilloscope and Function Generator Introduction The oscilloscope is one of the most important electronic instruments available for making circuit measurements. It displays a curve plot

More information

Oscilloscope and Function Generators

Oscilloscope and Function Generators MEHRAN UNIVERSITY OF ENGINEERING AND TECHNOLOGY, JAMSHORO DEPARTMENT OF ELECTRONIC ENGINEERING ELECTRONIC WORKSHOP # 02 Oscilloscope and Function Generators Roll. No: Checked by: Date: Grade: Object: To

More information

Magnitude and Phase Measurements. Analog Discovery

Magnitude and Phase Measurements. Analog Discovery Magnitude and Phase Measurements Analog Discovery Set up the oscilloscope to measure the signal of the reference voltage (the input voltage from the arbitrary function generator, in this case) and the

More information

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer

Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer Curve Tracer Laboratory Assistant Using the Analog Discovery Module as A Curve Tracer The objective of this lab is to become familiar with methods to measure the dc current-voltage (IV) behavior of diodes

More information

Getting Started. MSO/DPO Series Oscilloscopes. Basic Concepts

Getting Started. MSO/DPO Series Oscilloscopes. Basic Concepts Getting Started MSO/DPO Series Oscilloscopes Basic Concepts 001-1523-00 Getting Started 1.1 Getting Started What is an oscilloscope? An oscilloscope is a device that draws a graph of an electrical signal.

More information

Experiment P42: Transformer (Power Amplifier, Voltage Sensor)

Experiment P42: Transformer (Power Amplifier, Voltage Sensor) PASCO scientific Vol. 2 Physics Lab Manual: P42-1 Experiment P42: (Power Amplifier, Voltage Sensor) Concept Time SW Interface Macintosh File Windows File basic electricity 30 m 700 P42 P42_XTRN.SWS EQUIPMENT

More information

Magnetism and Induction

Magnetism and Induction Magnetism and Induction Before the Lab Read the following sections of Giancoli to prepare for this lab: 27-2: Electric Currents Produce Magnetism 28-6: Biot-Savart Law EXAMPLE 28-10: Current Loop 29-1:

More information

Introduction to basic laboratory instruments

Introduction to basic laboratory instruments Introduction to basic laboratory instruments 1. OBJECTIVES... 2 2. LABORATORY SAFETY... 2 3. BASIC LABORATORY INSTRUMENTS... 2 4. USING A DC POWER SUPPLY... 2 5. USING A FUNCTION GENERATOR... 3 5.1 TURN

More information

total j = BA, [1] = j [2] total

total j = BA, [1] = j [2] total Name: S.N.: Experiment 2 INDUCTANCE AND LR CIRCUITS SECTION: PARTNER: DATE: Objectives Estimate the inductance of the solenoid used for this experiment from the formula for a very long, thin, tightly wound

More information

Schmitt trigger. V I is converted from a sine wave into a square wave. V O switches between +V SAT SAT and is in phase with V I.

Schmitt trigger. V I is converted from a sine wave into a square wave. V O switches between +V SAT SAT and is in phase with V I. When you have completed this exercise, you will be able to operate a sine wave to square wave converter. You will verify your results with an oscilloscope. Schmitt trigger. V I is converted from a sine

More information

ENG 100 Lab #2 Passive First-Order Filter Circuits

ENG 100 Lab #2 Passive First-Order Filter Circuits ENG 100 Lab #2 Passive First-Order Filter Circuits In Lab #2, you will construct simple 1 st -order RL and RC filter circuits and investigate their frequency responses (amplitude and phase responses).

More information

EE 230 Lab Lab 9. Prior to Lab

EE 230 Lab Lab 9. Prior to Lab MOS transistor characteristics This week we look at some MOS transistor characteristics and circuits. Most of the measurements will be done with our usual lab equipment, but we will also use the parameter

More information

Passive Probe Ground Lead Effects

Passive Probe Ground Lead Effects Passive Probe Ground Lead Effects TECHNICAL BRIEF June 20, 2013 Summary All passive probes have some bandwidth specification which is generally in the range of a few hundred megahertz up to one gigahertz.

More information

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents.

Goals. Introduction. To understand the use of root mean square (rms) voltages and currents. Lab 10. AC Circuits Goals To show that AC voltages cannot generally be added without accounting for their phase relationships. That is, one must account for how they vary in time with respect to one another.

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

AC Measurement of Magnetic Susceptibility

AC Measurement of Magnetic Susceptibility AC Measurement of Magnetic Susceptibility Ferromagnetic materials such as iron, cobalt and nickel are made up of microscopic domains in which the magnetization of each domain has a well defined orientation.

More information

Exercise 2: Inductors in Series and in Parallel

Exercise 2: Inductors in Series and in Parallel Exercise 2: Inductors in Series and in Parallel EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the total inductance of a circuit containing inductors in series

More information

Experiment 13: LR Circuit

Experiment 13: LR Circuit 012-05892A AC/DC Electronics Laboratory Experiment 13: LR Circuit Purpose Theory EQUIPMENT NEEDED: Computer and Science Workshop Interface Power Amplifier (CI-6552A) (2) Voltage Sensor (CI-6503) AC/DC

More information

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope.

The Oscilloscope. Vision is the art of seeing things invisible. J. Swift ( ) OBJECTIVE To learn to operate a digital oscilloscope. The Oscilloscope Vision is the art of seeing things invisible. J. Swift (1667-1745) OBJECTIVE To learn to operate a digital oscilloscope. THEORY The oscilloscope, or scope for short, is a device for drawing

More information

ArbStudio Triggers. Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912

ArbStudio Triggers. Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912 ArbStudio Triggers Using Both Input & Output Trigger With ArbStudio APPLICATION BRIEF LAB912 January 26, 2012 Summary ArbStudio has provision for outputting triggers synchronous with the output waveforms

More information

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS

University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS University of Michigan EECS 311: Electronic Circuits Fall 2009 LAB 2 NON IDEAL OPAMPS Issued 10/5/2008 Pre Lab Completed 10/12/2008 Lab Due in Lecture 10/21/2008 Introduction In this lab you will characterize

More information

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to

Lab E2: B-field of a Solenoid. In the case that the B-field is uniform and perpendicular to the area, (1) reduces to E2.1 Lab E2: B-field of a Solenoid In this lab, we will explore the magnetic field created by a solenoid. First, we must review some basic electromagnetic theory. The magnetic flux over some area A is

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

Lecture 6 ECEN 4517/5517

Lecture 6 ECEN 4517/5517 Lecture 6 ECEN 4517/5517 Experiment 4: inverter system Battery 12 VDC HVDC: 120-200 VDC DC-DC converter Isolated flyback DC-AC inverter H-bridge v ac AC load 120 Vrms 60 Hz d d Feedback controller V ref

More information

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007)

ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) ECE65 Introduction to the Function Generator and the Oscilloscope Created by: Eldridge Alcantara (Spring 2007) I. Getting Started with the Function Generator OUTPUT Red Clip Small Black Clip 1) Turn on

More information

ET1210: Module 5 Inductance and Resonance

ET1210: Module 5 Inductance and Resonance Part 1 Inductors Theory: When current flows through a coil of wire, a magnetic field is created around the wire. This electromagnetic field accompanies any moving electric charge and is proportional to

More information

Advanced electromagnetism and electromagnetic induction

Advanced electromagnetism and electromagnetic induction Advanced electromagnetism and electromagnetic induction This worksheet and all related files are licensed under the Creative Commons Attribution License, version 1.0. To view a copy of this license, visit

More information

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013

University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Exercise 1: PWM Modulator University of North Carolina-Charlotte Department of Electrical and Computer Engineering ECGR 3157 Electrical Engineering Design II Fall 2013 Lab 3: Power-System Components and

More information

2 Oscilloscope Familiarization

2 Oscilloscope Familiarization Lab 2 Oscilloscope Familiarization What You Need To Know: Voltages and currents in an electronic circuit as in a CD player, mobile phone or TV set vary in time. Throughout the course you will investigate

More information

#8A RLC Circuits: Free Oscillations

#8A RLC Circuits: Free Oscillations #8A RL ircuits: Free Oscillations Goals In this lab we investigate the properties of a series RL circuit. Such circuits are interesting, not only for there widespread application in electrical devices,

More information

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering

UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering UNIVERSITY OF NORTH CAROLINA AT CHARLOTTE Department of Electrical and Computer Engineering EXPERIMENT 7 LAMPS OBJECTIVES The purpose of this experiment is to introduce the concept of resistance change

More information

Homework Assignment 06

Homework Assignment 06 Homework Assignment 06 Question 1 (Short Takes) One point each unless otherwise indicated. 1. Consider the current mirror below, and neglect base currents. What is? Answer: 2. In the current mirrors below,

More information

LeCroy. SDA-UWB Software Option. Operator s Manual

LeCroy. SDA-UWB Software Option. Operator s Manual LeCroy SDA-UWB Software Option Operator s Manual August 2006 LeCroy Corporation 700 Chestnut Ridge Road Chestnut Ridge, NY 10977 6499 Tel: (845) 578 6020, Fax: (845) 578 5985 Internet: www.lecroy.com 2006

More information

EE-4022 Experiment 3 Frequency Modulation (FM)

EE-4022 Experiment 3 Frequency Modulation (FM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 3-1 Student Objectives: EE-4022 Experiment 3 Frequency Modulation (FM) In this experiment the student will use laboratory modules including a Voltage-Controlled

More information

PGT313 Digital Communication Technology. Lab 3. Quadrature Phase Shift Keying (QPSK) and 8-Phase Shift Keying (8-PSK)

PGT313 Digital Communication Technology. Lab 3. Quadrature Phase Shift Keying (QPSK) and 8-Phase Shift Keying (8-PSK) PGT313 Digital Communication Technology Lab 3 Quadrature Phase Shift Keying (QPSK) and 8-Phase Shift Keying (8-PSK) Objectives i) To study the digitally modulated quadrature phase shift keying (QPSK) and

More information

Integrators, differentiators, and simple filters

Integrators, differentiators, and simple filters BEE 233 Laboratory-4 Integrators, differentiators, and simple filters 1. Objectives Analyze and measure characteristics of circuits built with opamps. Design and test circuits with opamps. Plot gain vs.

More information

S240. Real Time Spectrum Analysis Software Application. Product Brochure

S240. Real Time Spectrum Analysis Software Application. Product Brochure Product Brochure S240 Real Time Spectrum Analysis Software Application Featuring Clean, simple and user friendly graphical user interface (GUI) Three visualization modes Spectrogram, Persistence & Time

More information

EXPERIMENT 1 PRELIMINARY MATERIAL

EXPERIMENT 1 PRELIMINARY MATERIAL EXPERIMENT 1 PRELIMINARY MATERIAL BREADBOARD A solderless breadboard, like the basic model in Figure 1, consists of a series of square holes, and those columns of holes are connected to each other via

More information

THE SINUSOIDAL WAVEFORM

THE SINUSOIDAL WAVEFORM Chapter 11 THE SINUSOIDAL WAVEFORM The sinusoidal waveform or sine wave is the fundamental type of alternating current (ac) and alternating voltage. It is also referred to as a sinusoidal wave or, simply,

More information

Agilent E4438C ESG Vector Signal Generator Differential I/Q outputs. Product Note

Agilent E4438C ESG Vector Signal Generator Differential I/Q outputs. Product Note Agilent E4438C ESG Vector Signal Generator Differential I/Q outputs Product Note Table of contents Introduction................................................................3 Block Diagram of I/Q Adjustments

More information

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper

Exercise 8. The Four-Quadrant Chopper EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION. The Four-Quadrant Chopper Exercise 8 The Four-Quadrant Chopper EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the operation of the four-quadrant chopper. DISCUSSION OUTLINE The Discussion of

More information

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2

Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 Signals A Preliminary Discussion EE442 Analog & Digital Communication Systems Lecture 2 The Fourier transform of single pulse is the sinc function. EE 442 Signal Preliminaries 1 Communication Systems and

More information

THE UNDER HUNG VOICE COIL MOTOR ASSEMBLY REVISITED IN THE LARGE SIGNAL DOMAIN BY STEVE MOWRY

THE UNDER HUNG VOICE COIL MOTOR ASSEMBLY REVISITED IN THE LARGE SIGNAL DOMAIN BY STEVE MOWRY THE UNDER HUNG VOICE COIL MOTOR ASSEMBLY REVISITED IN THE LARGE SIGNAL DOMAIN BY STEVE MOWRY The under hung voice coil can be defined as a voice coil being shorter in wind height than the magnetic gap

More information

Lab 2: Capacitors. Integrator and Differentiator Circuits

Lab 2: Capacitors. Integrator and Differentiator Circuits Lab 2: Capacitors Topics: Differentiator Integrator Low-Pass Filter High-Pass Filter Band-Pass Filter Integrator and Differentiator Circuits The simple RC circuits that you built in a previous section

More information

Chapter 13: Comparators

Chapter 13: Comparators Chapter 13: Comparators So far, we have used op amps in their normal, linear mode, where they follow the op amp Golden Rules (no input current to either input, no voltage difference between the inputs).

More information

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab

Boise State University Department of Electrical and Computer Engineering ECE 212L Circuit Analysis and Design Lab Objecties Boise State Uniersity Department of Electrical and Computer Engineering ECE 22L Circuit Analysis and Design Lab Experiment #2: Sinusoidal Steady State and Resonant Circuits The objecties of this

More information

Class #9: Experiment Diodes Part II: LEDs

Class #9: Experiment Diodes Part II: LEDs Class #9: Experiment Diodes Part II: LEDs Purpose: The objective of this experiment is to become familiar with the properties and uses of LEDs, particularly as a communication device. This is a continuation

More information

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit.

Tektronix digital oscilloscope, BK Precision Function Generator, coaxial cables, breadboard, the crystal earpiece from your AM radio kit. Experiment 0: Review I. References The 174 and 275 Lab Manuals Any standard text on error analysis (for example, Introduction to Error Analysis, J. Taylor, University Science Books, 1997) The manual for

More information

Experiment 8: An AC Circuit

Experiment 8: An AC Circuit Experiment 8: An AC Circuit PART ONE: AC Voltages. Set up this circuit. Use R = 500 Ω, L = 5.0 mh and C =.01 μf. A signal generator built into the interface provides the emf to run the circuit from Output

More information

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation

EECE208 INTRO To ELECTRICAL ENG LAB. LAB 2. Instrumentation EECE208 INTRO To ELECTRICAL ENG LAB Dr. Charles Kim LAB 2. Instrumentation Objectives A brief description of the equipment (Oscilloscope, Function Generator, Power Supply, and Digital Multimeter) and its

More information

PREVIEW COPY. Amplifiers. Table of Contents. Introduction to Amplifiers...3. Single-Stage Amplifiers...19

PREVIEW COPY. Amplifiers. Table of Contents. Introduction to Amplifiers...3. Single-Stage Amplifiers...19 Amplifiers Table of Contents Lesson One Lesson Two Lesson Three Introduction to Amplifiers...3 Single-Stage Amplifiers...19 Amplifier Performance and Multistage Amplifiers...35 Lesson Four Op Amps...51

More information

Amplitude Modulation Methods and Circuits

Amplitude Modulation Methods and Circuits Amplitude Modulation Methods and Circuits By: Mark Porubsky Milwaukee Area Technical College Electronic Technology Electronic Communications Milwaukee, WI Purpose: The various parts of this lab unit will

More information

Characteristics of HF Coastal Radars

Characteristics of HF Coastal Radars Function Characteristics System 1 Maximum operational (measurement) range** Characteristics of HF Coastal Radars 5 MHz Long-range oceanographic 160-220 km average during (daytime)* System 2 System 3 System

More information

Physics 132 Quiz # 23

Physics 132 Quiz # 23 Name (please (please print) print) Physics 132 Quiz # 23 I. I. The The current in in an an ac ac circuit is is represented by by a phasor.the value of of the the current at at some time time t t is is

More information

Oscilloscope Measurements

Oscilloscope Measurements PC1143 Physics III Oscilloscope Measurements 1 Purpose Investigate the fundamental principles and practical operation of the oscilloscope using signals from a signal generator. Measure sine and other waveform

More information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information

UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering. ECE 2A & 2B Laboratory Equipment Information UNIVERSITY OF CALIFORNIA, SANTA BARBARA Department of Electrical and Computer Engineering ECE 2A & 2B Laboratory Equipment Information Table of Contents Digital Multi-Meter (DMM)... 1 Features... 1 Using

More information

CHAPTER 6. Motor Driver

CHAPTER 6. Motor Driver CHAPTER 6 Motor Driver In this lab, we will construct the circuitry that your robot uses to drive its motors. However, before testing the motor circuit we will begin by making sure that you are able to

More information

EE-4022 Experiment 2 Amplitude Modulation (AM)

EE-4022 Experiment 2 Amplitude Modulation (AM) EE-4022 MILWAUKEE SCHOOL OF ENGINEERING 2015 Page 2-1 Student objectives: EE-4022 Experiment 2 Amplitude Modulation (AM) In this experiment the student will use laboratory modules to implement operations

More information

Experiment-4 Study of the characteristics of the Klystron tube

Experiment-4 Study of the characteristics of the Klystron tube Experiment-4 Study of the characteristics of the Klystron tube OBJECTIVE To study the characteristics of the reflex Klystron tube and to determine the its electronic tuning range EQUIPMENTS Klystron power

More information

Lecture 2 Analog circuits. Seeing the light..

Lecture 2 Analog circuits. Seeing the light.. Lecture 2 Analog circuits Seeing the light.. I t IR light V1 9V +V IR detection Noise sources: Electrical (60Hz, 120Hz, 180Hz.) Other electrical IR from lights IR from cameras (autofocus) Visible light

More information