Ionospheric disturbances observed coincident with the 2006 and 2009 North Korean underground nuclear tests

Size: px
Start display at page:

Download "Ionospheric disturbances observed coincident with the 2006 and 2009 North Korean underground nuclear tests"

Transcription

1 GEOPHYSICAL RESEARCH LETTERS, VOL. 39,, doi: /2011gl050428, 2012 Ionospheric disturbances observed coincident with the 2006 and 2009 North Korean underground nuclear tests Yu-Ming Yang, 1 James L. Garrison, 1 and See-Chen Lee 1 Received 5 December 2011; accepted 22 December 2011; published 27 January [1] Acoustic-Gravity Waves (AGWs) in the neutral atmosphere can induce disturbances in the ionosphere that are subsequently observable in trans-ionospheric Global Navigation Satellite System (GNSS) measurements. Disruptive events on the Earth s surface, such as earthquakes, tsunamis and large explosions are one source of these disturbances. In this study, we apply wavelet analysis to enhance a crosscorrelation technique for detecting the presence of ionospheric disturbances in dual frequency GNSS time series collected from the GEONET (Japan) during the North Korean Underground Nuclear Tests (UGTs) conducted on 9 October 2006 and 25 May Through use of the wavelet coherence analysis, we are able to find significant wave trains in the Integrated Electron Content (IEC) data collected from the network. Low frequency disturbances, with periods between 3 and 12 min and horizontal propagation speeds between 75 and 453 m/s were found coincident with both the 2006 and 2009 events. High frequency disturbances, with periods between 2 and 5 min and horizontal speeds between 297 and 1322 m/s were found only after the 2009 event. The disturbances extracted from these signals showed propagation speeds, directions, and times of arrival coincident with the reported geographic location and times of the UGTs. Citation: Yang, Y.-M., J. L. Garrison, and S.-C. Lee (2012), Ionospheric disturbances observed coincident with the 2006 and 2009 North Korean underground nuclear tests, Geophys. Res. Lett., 39,, doi: /2011gl Introduction [2] Substantial research on the mechanism of ionospheric disturbances induced by atmospheric acoustic-gravity waves (AGWs) has been conducted [e.g., Hines, 1960; Georges and Hooke, 1970; Hunsucker, 1982; Hocke and Schlegel, 1996]. AGWs from solid earth events have been shown to be strong enough to transfer energy from the ground/sea surface into the atmosphere which then propagates up to the F-region of the ionosphere [Artru et al., 2004; Mai and Kiang, 2009; Hickey et al., 2009]. [3] Nuclear explosions are known to produce ionospheric disturbances through this mechanism [Breitling et al., 1967; Blanc, 1984; Fitzgerald, 1994; Goldflam et al., 1984; Fitzgerald et al., 1993]. These disturbances are understood to be the ionospheric response to the radiated acoustic fields from the spall zone of the UGT [Rudenko and Uralov, 1995; 1 School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana, USA. Copyright 2012 by the American Geophysical Union /12/2011GL Krasnov and Drobzheva, 2005]. Krasnov and Drobzheva [2005] developed a model for studying the temperature and ionospheric electron perturbations caused by a UGT. Calculations from this model showed good agreement with the experimental measurements using Doppler radio sounding of the ionosphere above several underground explosions at the Semipalatinsk Test Site of the former Soviet Union. [4] In contrast to the Doppler radio sounding techniques, GPS senses the integrated electron content (IEC) along its signal propagation path. Ionospheric disturbances caused by earthquakes [Ducic et al., 2003], mine blasts [Calais et al., 1998], tsunamis [Artru et al., 2005] and many other natural and anthropogenic sources have been observed in GPS network data. Signal processing methods for detecting these disturbances in IEC time series include spectral tests [Afraimovich et al., 2003], the Statistical Angle-of-Arrival and Doppler Method (SADM-GPS) [Afraimovich et al., 2000] and cross-correlation [Garrison et al., 2007; Hernández-Pajares et al., 2006]. All of these approaches assume that a single perturbation is observable at a time and that the disturbance can be approximated as a quasi-monochromatic wave. However, multiple perturbations may be present within the same time and space, as prior studies have shown that the occurrence rate of natural disturbances is quite high. Šauli et al. [2006] applied wavelet decomposition to ionosonde measurements of disturbances produced during a solar eclipse, demonstrating an improved ability to separate different wave structures. [5] North Korea is known to have conducted two UGTs, the first on 9 October 2006 and the second on 25 May The reported magnitude of the UGT in 2009 was larger than that in The reported location for the first and second tests were N, E and N, E, respectively. A recent study on ionospheric responses from the 2009 UGT event has conclude that a UGT-generated ionospheric disturbances propagate radially from the event with the relatively constant velocity of roughly 273 m/s, estimated from GNSS measurements of 7 stations in South Korea [Park et al., 2011]. However, the method used by Park et al. [2011] is not able to classify different types of disturbances that may be present in the same IEC time series, or to directly estimate the propagation speed and direction. [6] In this study, we applied wavelet analysis to identify time-frequency regions of high coherence, identifying the presence of a propagating disturbance in the GEONET GPS data collected during the week of each of the two reported UGTs. We then used this information to select the bandwidth of filters that were applied to the IEC time series. The filtered time series were then cross-correlated following the approach of Garrison et al. [2007] to estimate the speed and direction of propagation for each disturbance. Geometric 1of6

2 Figure 1. Illustrations of the wavelet coherence analysis of subarea 31 in GEONET. Plots present the wavelet coherence spectrum for a 5-day data centered on the date of the 2009 North Korea UGT event. The coherence analysis reveals a potential ionospheric perturbation with dominant frequencies in a band from Hz at time 1:03 UT (about 9 minutes after the reported time of the detonation). The black contour represents the significance at 5% level (i.e., 95% confidence p ffiffi interval in statistics). The two curves show the distributions of COI for the singularity at the edge drops by a factor 2 /f. Regions above these two curves ensure that the edge effects are insignificant. consistency between these measurements and the reported time and location of the UGT events suggest that AGWs produced from these explosions were the source of the observed ionospheric disturbances. 2. Data Processing [7] The Integrated Electron Content (IEC) is defined as the integral of electron density along the path of radio frequency propagation from the transmitter to the receiver. Z receiver IECðÞ¼ t n e ðl; tþdl: ð1þ satellite Time-variation arises both due to the relative motion of the transmitter and receiver and variations in the electron density. For a dual-frequency GNSS receiver, the IEC time series can be calculated using the method of Mannucci et al. [1993]. [8] The wavelet coherency function [Kumar and Foufoula-Georgiou, 1997] of two IEC time series IEC 1 (t) and IEC 2 (t) is defined as R 1;2 ða; bþ ¼ W 1ða; bþw2 ða; bþ jw 1 ða; bþjjw 2 ða; bþj W n (a,b) is the continuous wavelet transform (CWT) [Mallat, 1999] of the IEC time series, IEC n (t), observed by receiver n. Z W n ða; bþ ¼ IEC n ðþy t t b dt ð3þ a y is a wavelet function, a is the wavelet scale, and b is the localized time index. W 2 *(a,b) is the conjugate of W 2 (a,b). We chose the Morlet wavelet, defined as a complex exponential function (when p >5)y(t) =e ipt e t2 /2 where p (frequency parameter) adjusts the time and scale resolution. The Morlet wavelet has a special feature in that the wavelet scale is the ð2þ 2of6

3 Figure 2. Ionospheric disturbances detected in each subarea on 25 May 2009 and 9 October The magnitude of vectors are proportional to the speed of the disturbance, and centered at the location of maximum IEC variation in the ionosphere. inverse of frequency (i.e., f = 1/a). jw n (a,b)j is the scalogram used by Šauli et al. [2006]. R 2 1,2 (a,b) can take values from 0 to 1, with larger values indicating the presence, at time index b, of coherent structure, at scale a, in both signals. Due to the finite IEC time series used to calculate the CWT, the cone of influence (COI) is analyzed to ensure the identified high coherence spectrums are not in the regions of edge effects. For the significance test of wavelet coherence, a Monte-Carlo approach is applied to test the null hypothesis H 0 statistically by repeating many independent realizations of the IEC time series. A detection threshold l a at the significance level a with N multiple tests is defined as l a =1 a 1/(N 1). For more details regarding the significance test refer to Maraun and Kurths [2004]. A threshold of 0.58 was set on R 2 1,2 (a,b) to identify strong coherence structures above significance at 5% level which implies 95% confidence interval in statistics (see Figure 1). [9] A set of band-pass filters, tuned to the frequencies of highest coherence, were then applied to each time series, before masking only those time frames of high coherence (R 2 1,2 (a,b) > 0.58 in Figure 1). The cross-correlation method of Garrison et al. [2007] was then applied to the filtered and masked time series to estimate propagation speeds and directions of the corresponding disturbances. This technique was based on the assumptions of planar wave propagation, a locally flat earth and thin shell ionosphere at the height of the maximum electron content. Through dividing the full network into smaller sub-areas, the variation of propagation direction and speed over a large area can be observed while maintaining the assumption of a planar wave over each small sub-area. We divided the full GEONET network (1235 GPS stations) into 32 sub-areas (on an approximately 1 1 grid as shown in Figure 2 and ran the wavelet coherence analysis on small sets of GPS stations within each sub-area. [10] Threshold values for selecting cross-correlation pairs were determined by applying the process of Garrison et al. [2007] to each subarea. The height of a thin-shell ionosphere was set to 350 km, corresponding to the height of maximum electron density determined from the IRI model on the event dates ( ionospheric/iri/). 3. Observations and Analysis [11] In this section, we will summarize our discovery, through use of the methods described above, of ionospheric disturbances coincident with the first and second North Korean UGT. GEONET data were processed over a range of 5-day windows of data centered on the 2009 and the 2006 events. These 5-day windows were used to determine if any disturbances appeared multiple days, in order to confirm that the observed disturbances were not diurnal artifacts, appearing by chance at the time and place of the UGT. Other than the disturbances reported later, which we attribute to the UGTs, only two other disturbances were observed in either 5-day windows of data. Some ionospheric disturbances were observed on the east coast of Japan approximately 15 hours and 39 hours after the 2009 event. However, the geometry of their propagation vectors were not consistent with the disturbances attributed to the UGTs, described later. No disturbances, other than those attributed to the 9 Oct 2006 UGT, were observed in the 2006 data. We also checked for space and terrestrial weather events which could have occurred within hours of the observed disturbances, to reduce the likelihood of the coincident appearance of a disturbance from another source. The space weather records from Space Weather Prediction Center of the National Oceanographic and Atmospheric Administration (NOAA) ( did not indicate any sudden and severe weather events during the time windows. [12] Figure 1 shows wavelet coherency computed between stations 0433 and 1041 on each of the 5 days of data, centered on the 2009 test. This example shows observations of satellite PRN 24 collected in sub-area 31. A high wavelet coherency exists on the event date (May ) only. The region of high coherency lies within a frequency band between Hz, centered at 1:03H UT (approximate 9 minutes after the reported time of the detonation). These 3of6

4 Figure 3. Illustrations of four GNSS stations filtered IEC waveforms for a 5-day data centered on 25 May 2009, the date of the second North Korea UGT. findings were used to design a Butterworth band-pass filter that was applied to the IEC time series prior to the crosscorrelation method of Garrison et al. [2007]. Figure 3 presents an example of a filtered IEC waveform. The averaged signal to noise ratio (SNR) of these disturbance signals from the four stations in Figure 3 on the event day (Day 145) is 11.2 db. The averaged SNR is 2.6 db for the other four days. [13] After filtering, the amplitude of the disturbances were found to range up to 0.17 TEC unit. This represents approximately a 2.6 percent change in the background level (6.5 TEC unit). This result is consistent with the calculations and experimental observations from Doppler radio sounding measurements presented by Krasnov and Drobzheva [2005]. [14] We applied this approach to the IEC data from every satellite visible during a 5-day window centered on each event. For the 25 May 2009 event, we also observed longperiod (3 12 min) disturbances in data from PRN 18 and 21 from 7 and 6 different sub-areas, respectively. The estimated horizontal speeds of these disturbances ranged from 61 to 174 m/s, consistent with gravity waves. Next, we tested the geometric consistency of these observed disturbances with a source at the reported UGT location. We plotted the apparent propagation time (difference between the mean time of the peak IEC and the reported explosion time) against the greatcircle distance from the reported test location. Figure 4 shows these results, overlaid with the expected arrival times for a range of horizontal propagation speeds. A 15 min shift was included in the apparent propagation times to account for the propagation delay from the surface of the Earth to the ionosphere. This figure shows the the arrival times and propagation distances are consistent with a disturbance propagating with a mean horizontal speed within the range of those observed. [15] We observed some short-period (2 5 min) disturbances in the signal from PRN 24 as reported above, within 3 subareas. Similar short-period disturbances were observed in the data from PRN 29 in 2 subareas. The horizontal speeds of these disturbances were also generally higher than the speed of the long-period disturbances (up to 1322 m/s) and appeared between 7 and 19 min. after the reported UGT time. This suggests that these disturbances were the result of acoustic waves produced at the source. Figure 5 shows ray traces (solid lines) of the acoustic field calculated by integrating d ds 1 c dx i ds ¼ 1 ; x i c where x i =(x 1, x 3 ) represents the horizon distance and the altitude from the point source, s is the arc length of the ray path, and c is the sound speed dependent on altitude. Dashed lines represent the arrival times in 1 minute increments. The horizontal distances of these observed IPP locations for PRN Figure 4. Comparison of the travel times and great-circle distances of the observed long period disturbances on 25 May 2009 against predicted arrival times for propagation speeds between 75 and 275 m/s. (P18, S19) represents PRN18 and subarea 19 respectively, for example. The travel times are reduced by 15 mins to approximate the propagation time from ground to ionosphere. 4of6

5 Figure 5. Ray traces of acoustic fields from a point source on the surface with no atmospheric winds. The MSIS-E-90 atmosphere model is applied for generating the vertical profile of the speed of sound on 25 May The Locations of the ionospheric pierce point (IPP) of PRN 29 and 24 are shown at the time of detection of short-period disturbances. The observed time agrees with that predicted from the ray trace. 24 and 29(at the height 350 km of ionosphere) are 257 km and 756 km, respectively, from the reported UGT location, indicated on Figure 5 as the thick circles. This observed arrival times, reported earlier, are consistent with the ray trace calculations that predict: 7 and 15 mins vs. 9 and 18 mins, respectively. All of the disturbances coincident with the 2009 UGT are plotted as vectors on Figure 2. The length of each vector is scaled with the estimated horizontal speed. The satellite PRN and subarea number are indicated on each vector and the tail of each vector is placed at the location of maximum IEC variation. [16] For the 9 Oct 2006 event, only long-period (3 12 min) disturbances were observed. These disturbances were detected in IEC measurements from satellites PRN 16 and 23, within 3 sub-areas each. Horizontal speeds for these disturbances were also within the gravity-wave regime, between 135 and 453 m/s. Figure 2 shows the location, horizontal speed, and direction of each of the disturbances found for the 9 Oct 2006 UGT. 4. Summary [17] Traveling ionospheric disturbances were detected using measurements from a GNSS network at distances of more than 1000 km from the reported locations of the 2006 and 2009 North Korean UGT events. Observations of short period disturbances with a fast horizontal speed (up to 1322 m/s) were observed 7 18 minutes after the 2009 UGT. Other disturbances with long period ( sec) and slower propagation speeds ( m/s) were observed 1 2 hours after both the 2006 and 2009 explosions. Directions of these observed disturbances were consistent with a source at the reported UGT locations. [18] Additionally, we have demonstrated that the crosscorrelation method, enhanced with a wavelet analysis, can be applied to detect and identify different types of ionospheric disturbances, separated in time and frequency. Ionospheric sounding, using large networks of GNSS receivers already deployed, has the potential to be a new sensing technique for monitoring weapons development and verifying test treaty compliance, complementing the present use of seismic and infrasound methods. [19] Acknowledgments. Yu-Ming Yang was supported by a NASA Earth and Space Science Fellowship, grant number NNX09AN52H. James Garrison was supported by the 2008 ASEE Summer Faculty Fellowship Program (SFFP) at Hansom Air Force Base. [20] The Editor thanks two anonymous reviewers for their assistance in evaluating this paper. References Afraimovich, E., K. Palamartchouk, and N. Perevalova (2000), Statistical angle-of-arrival and Doppler method for GPS radio interferometry of TIDS, Adv. Space Res., 26(6), Afraimovich, E. L., N. P. Perevalova, and S. V. Voyeiko (2003), Traveling wave packets of total elevtron content disturbances as deduced from global GPS network data, J. Atmos. Sol. Terr. Phys., 65(11 13), Artru, J., T. Farges, and P. Lognonne (2004), Acoustic waves generated from seismic surface waves: Propagation properties determined from Doppler sounding observations and normal-mode modelling, Geophys. J. Int., 158(3), Artru, J., V. Ducic, H. Kanamori, P. Lognonné, and M. Murakami (2005), Ionospheric detection of gravity waves induced by tsunamis, Geophys. J. Int., 160(3), Blanc, E. (1984), Interaction of an acoustic wave of artificial origin with the ionosphere as observed by vertical HF sounding at total reflection levels, Radio Sci., 19, Breitling, W. J., R. A. Kupferman, and G. J. Gassmann (1967), Traveling ionospheric disturbances associated with nuclear detonations, J. Geophys. Res., 72(1), Calais, E., J. B. Minster, M. A. Hofton, and M. A. Hedlin (1998), Ionospheric signature of surface mine blasts from Global Positioning System measurements, Geophys. J. Int., 132(1), Ducic, V., J. Artru, and P. Lognonné (2003), Ionospheric remote sensing of the Denali Earthquake Rayleigh surface waves, Geophys. Res. Lett., 30(18), 1951, doi: /2003gl Fitzgerald, T. (1994), Ionospheric measurements for the non-proliferation experiment, in Proceedings of the Symposium on The Non-Proliferation 5of6

6 Experiment (NPE): Results and Implications for Test Ban Treaties, edited by M. D. Denny, pp. 8 23, U.S. Dep. of Energy, Washington, D. C. Fitzgerald, T., R. Carlos, and P. E. Argo (1993), Integrated verification experiment data collected as part of the Los Alamos National Laboratory s source region program, Tech. Rep. LAUR , Los Alamos Natl. Lab., Los Alamos, N. M. Garrison, J. L., S.-C. G. Lee, J. S. Haase, and E. Calais (2007), A method for detecting ionospheric disturbances and estimating their propagation speed and direction using a large GPS network, Radio Sci., 42, RS6011, doi: /2007rs Georges, T. M., and W. H. Hooke (1970), Wave-induced fluctuations in ionospheric electron content: A model indicating some observational biases, J. Geophys. Res., 75(31), Goldflam, R., G. McCartor, and B. Wortman (1984), Ionospheric gravity waves from nuclear surface bursts, Tech. Rep. MRC-R-825, Mission Res. Corp., Santa Barbara, Calif. Hernández-Pajares, M., J. M. Juan, and J. Sanz (2006), Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis, J. Geophys. Res., 111, A07S11, doi: / 2005JA Hickey, M. P., G. Schubert, and R. L. Walterscheid (2009), Propagation of tsunami-driven gravity waves into the thermosphere and ionosphere, J. Geophys. Res., 114, A08304, doi: /2009ja Hines, C. O. (1960), Internal atmospheric gravity waves at ionospheric heights, Can. J. Phys., 38, Hocke, K., and K. Schlegel (1996), A review of atmospheric gravity waves and travelling ionospheric disturbances: , Ann. Geophys., 14(9), Hunsucker, R. (1982), Atmospheric gravity waves generated in the highlatitude ionosphere: A review, Rev. Geophys., 20(2), Krasnov, V., and Y. Drobzheva (2005), The acoustic field in the ionosphere caused by an underground nuclear explosion, J. Atmos. Sol. Terr. Phys., 67(10), Kumar, P., and E. Foufoula-Georgiou (1997), Wavelet analysis for geophysical applications, Rev. Geophys., 35(4), Mai, C.-L., and J.-F. Kiang (2009), Modeling of ionospheric perturbation by 2004 Sumatra tsunami, Radio Sci., 44, RS3011, doi: / 2008RS Mallat, S. (1999), A Wavelet Tour of Signal Processing, Academic, San Diego, Calif. Mannucci, A. J., B. D. Wilson, and C. D. Edwards (1993), A new method for monitoring the Earth s ionospheric total electron content using GPS global network, paper presented at Conference GPS-93, Inst. of Navig., Salt Lake City, Utah. Maraun, D., and J. Kurths (2004), Cross wavelet analysis: Significance testing and pitfalls, Nonlinear Processes Geophys., 11(11), Park, J., R. R. B. von Frese, D. A. Grejner-Brzezinska, Y. Morton, and L. R. Gaya-Pique (2011), Ionospheric detection of the 25 May 2009 North Korean underground nuclear test, Geophys. Res. Lett., 38, L22802, doi: /2011gl Rudenko, G., and A. Uralov (1995), Calculation of ionospheric effects due to acoustic radiation from an underground nuclear explosion, J. Atmos. Terr. Phys., 57(3), Šauli, P., P. Abry, J. Boška, and L. Duchayne (2006), Wavelet characterisation of ionospheric acoustic and gravity waves occurring during the solar eclipse of August 11, 1999, J. Atmos. Sol. Terr. Phys., 68(3 5), J. L. Garrison, S.-C. Lee, and Y.-M. Yang, School of Aeronautics and Astronautics, Purdue University, 701 W. Stadium Ave., West Lafayette, IN 47907, USA. (oscaryang@purdue.edu) 6of6

The Three-dimensional Propagation of Tsunami-Generated Internal Waves in the Atmosphere

The Three-dimensional Propagation of Tsunami-Generated Internal Waves in the Atmosphere The Three-dimensional Propagation of Tsunami-Generated Internal Waves in the Atmosphere Yue Wu, Stefan G. Llewellyn Smith, James W. Rottman, Dave Broutman and Jean-Bernard H. Minster Abstract Department

More information

Tsunami detection in the ionosphere

Tsunami detection in the ionosphere Tsunami detection in the ionosphere [by Juliette Artru (Caltech, Pasadena, USA), Philippe Lognonné, Giovanni Occhipinti, François Crespon, Raphael Garcia (IPGP, Paris, France), Eric Jeansou, Noveltis (Toulouse,

More information

PUBLICATIONS. Radio Science. The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements RESEARCH ARTICLE 10.

PUBLICATIONS. Radio Science. The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements RESEARCH ARTICLE 10. PUBLICATIONS RESEARCH ARTICLE Key Points: An extensive analysis of the ionospheric impact of the Chelyabinsk meteor event We classify three different types of resulting TIDs This is the first observation

More information

Detecting Ionospheric TEC Perturbations Generated by Natural Hazards Using a Real-Time Network of GPS Receivers

Detecting Ionospheric TEC Perturbations Generated by Natural Hazards Using a Real-Time Network of GPS Receivers Detecting Ionospheric TEC Perturbations Generated by Natural Hazards Using a Real-Time Network of GPS Receivers Attila Komjathy, Yu-Ming Yang, and Anthony J. Mannucci Jet Propulsion Laboratory California

More information

GPS-TEC : a new versatile sensor of the Earth

GPS-TEC : a new versatile sensor of the Earth 2006 Jun. VI Hotine-Marussi Symp. Theor. Computational Geodesy GPS-TEC : a new versatile sensor of the Earth Kosuke Heki (Hokkaido Univ., Sapporo, Japan) Ionospheric disturbances can be measured with GPS

More information

Multi-instrument observations of atmospheric gravity waves/traveling ionospheric disturbances associated with enhanced auroral activity

Multi-instrument observations of atmospheric gravity waves/traveling ionospheric disturbances associated with enhanced auroral activity Multi-instrument observations of atmospheric gravity waves/traveling ionospheric disturbances associated with enhanced auroral activity Zama Katamzi-Joseph *, Anasuya Aruliah, Kjellmar Oksavik, John Bosco

More information

The GPS measured SITEC caused by the very intense solar flare on July 14, 2000

The GPS measured SITEC caused by the very intense solar flare on July 14, 2000 Advances in Space Research 36 (2005) 2465 2469 www.elsevier.com/locate/asr The GPS measured SITEC caused by the very intense solar flare on July 14, 2000 Weixing Wan a, *, Libo Liu a, Hong Yuan b, Baiqi

More information

Geomagnetic Conjugate Observations of Ionospheric Disturbances in. response to North Korea Underground Nuclear Explosion on 3

Geomagnetic Conjugate Observations of Ionospheric Disturbances in. response to North Korea Underground Nuclear Explosion on 3 1 2 3 Geomagnetic Conjugate Observations of Ionospheric Disturbances in response to North Korea Underground Nuclear Explosion on 3 September 2017 4 5 6 7 Yi Liu, Chen Zhou *, Qiong Tang, Guanyi Chen, and

More information

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications RADIO SCIENCE, VOL. 44,, doi:10.1029/2009rs004210, 2009 A technique for calculating ionospheric Doppler shifts from standard ionograms suitable for scientific, HF communication, and OTH radar applications

More information

Investigation of earthquake signatures on the Ionosphere over Europe

Investigation of earthquake signatures on the Ionosphere over Europe Investigation of earthquake signatures on the Ionosphere over Europe Haris Haralambous 1, Christina Oikonomou 1, Buldan Muslim 2 1 Frederick Research Center Filokyprou St.7, Palouriotissa, Nicosia, 1036,

More information

GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe

GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe RADIO SCIENCE, VOL. 41,, doi:10.1029/2005rs003269, 2006 GPS interfrequency biases and total electron content errors in ionospheric imaging over Europe Richard M. Dear 1 and Cathryn N. Mitchell 1 Received

More information

Ionospheric Signatures of Tohoku-Oki Tsunami of March 11, 2011: Model Comparisons Near the Epicenter

Ionospheric Signatures of Tohoku-Oki Tsunami of March 11, 2011: Model Comparisons Near the Epicenter Publications 7-12-2012 Ionospheric Signatures of Tohoku-Oki Tsunami of March 11, 2011: Model Comparisons Near the Epicenter David A. Galvan RAND Corporation Attila Komjathy Jet Propulsion Laboratory, California

More information

Vertical group and phase velocities of ionospheric waves derived from the MU radar

Vertical group and phase velocities of ionospheric waves derived from the MU radar Click Here for Full Article Vertical group and phase velocities of ionospheric waves derived from the MU radar J. Y. Liu, 1,2 C. C. Hsiao, 1,6 C. H. Liu, 1 M. Yamamoto, 3 S. Fukao, 3 H. Y. Lue, 4 and F.

More information

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT

Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter ABSTRACT Ground based measurements of ionospheric turbulence manifestations induced by the VLF transmitter Dmitry S. Kotik, 1 Fedor I. Vybornov, 1 Alexander V. Ryabov, 1 Alexander V. Pershin 1 and Vladimir A. Yashnov

More information

Dynasonde measurements advance understanding of the thermosphereionosphere

Dynasonde measurements advance understanding of the thermosphereionosphere Dynasonde measurements advance understanding of the thermosphereionosphere dynamics Nikolay Zabotin 1 with contributions from Oleg Godin 2, Catalin Negrea 1,4, Terence Bullett 3,5, Liudmila Zabotina 1

More information

Study of Ionospheric Perturbations during Strong Seismic Activity by Correlation Technique using NmF2 Data

Study of Ionospheric Perturbations during Strong Seismic Activity by Correlation Technique using NmF2 Data Research Journal of Recent Sciences Res.J.Recent Sci. Study of Ionospheric Perturbations during Strong Seismic Activity by Correlation Technique using NmF2 Data Abstract Gwal A.K., Jain Santosh, Panda

More information

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan

A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan A study of the ionospheric effect on GBAS (Ground-Based Augmentation System) using the nation-wide GPS network data in Japan Takayuki Yoshihara, Electronic Navigation Research Institute (ENRI) Naoki Fujii,

More information

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves

An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves Earth Planets Space, 65, 911 916, 2013 An error analysis on nature and radar system noises in deriving the phase and group velocities of vertical propagation waves C. C. Hsiao 1,J.Y.Liu 1,2,3, and Y. H.

More information

Ionospheric detection of the 25 May 2009 North Korean underground nuclear test

Ionospheric detection of the 25 May 2009 North Korean underground nuclear test GEOPHYSICAL RESEARCH LETTERS, VOL. 38,, doi:10.1029/2011gl049430, 2011 Ionospheric detection of the 25 May 2009 North Korean underground nuclear test Jihye Park, 1 Ralph R. B. von Frese, 2 Dorota A. Grejner

More information

GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake

GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake Earth Planets Space, 58, 159 5, 2006 GPS detection of total electron content variations over Indonesia and Thailand following the 26 December 2004 earthquake Y. Otsuka 1, N. Kotake 1, T. Tsugawa 1, K.

More information

Earthquake Analysis over the Equatorial

Earthquake Analysis over the Equatorial Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic Index Earthquake Analysis over the Equatorial Region by Using the Critical Frequency Data and Geomagnetic

More information

arxiv: v2 [physics.geo-ph] 24 Jan 2017

arxiv: v2 [physics.geo-ph] 24 Jan 2017 Pre-seismic ionospheric anomalies detected before the 2016 Kumamoto earthquake Takuya Iwata, Ken Umeno Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Kyoto,

More information

Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere

Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere RADIO SCIENCE, VOL. 44,, doi:10.1029/2008rs004081, 2009 Modeling the ionospheric response to the 28 October 2003 solar flare due to coupling with the thermosphere David J. Pawlowski 1 and Aaron J. Ridley

More information

Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis

Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 111,, doi:10.1029/2005ja011474, 2006 Medium-scale traveling ionospheric disturbances affecting GPS measurements: Spatial and temporal analysis M. Hernández-Pajares,

More information

Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake

Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake LETTER Earth Planets Space, 63, 869 873, 2011 Ionospheric multiple stratifications and irregularities induced by the 2011 off the Pacific coast of Tohoku Earthquake Takashi Maruyama 1, Takuya Tsugawa 1,

More information

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE

SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE Publ. Astron. Obs. Belgrade No. 80 (2006), 191-195 Contributed paper SPACE WEATHER SIGNATURES ON VLF RADIO WAVES RECORDED IN BELGRADE DESANKA ŠULIĆ1, VLADIMIR ČADEŽ2, DAVORKA GRUBOR 3 and VIDA ŽIGMAN4

More information

The use of GPS arrays in detecting the ionospheric response during rocket launchings

The use of GPS arrays in detecting the ionospheric response during rocket launchings LETTER Earth Planets Space, 52, 1061 1066, 2000 The use of GPS arrays in detecting the ionospheric response during rocket launchings Edward L. Afraimovich, Eugene A. Kosogorov, Kirill S. Palamarchouk,

More information

Daily and seasonal variations of TID parameters over the Antarctic Peninsula

Daily and seasonal variations of TID parameters over the Antarctic Peninsula Daily and seasonal variations of TID parameters over the Antarctic Peninsula A. Zalizovski 1, Y. Yampolski 1, V. Paznukhov 2, E. Mishin 3, A. Sopin 1 1. Institute of Radio Astronomy, National Academy of

More information

Preseismic TEC changes for Tohoku Oki earthquake

Preseismic TEC changes for Tohoku Oki earthquake FORMOSAT 2 ISUAL Preseismic TEC changes for Tohoku Oki earthquake C. L. Kuo 1( 郭政靈 ), L. C. Lee 1,2 ( 李羅權 ), J. D. Huba 3, and K. Heki 4 1 Institute of Space Science, National Central University, Jungli,

More information

Using GNSS Tracking Networks to Map Global Ionospheric Irregularities and Scintillation

Using GNSS Tracking Networks to Map Global Ionospheric Irregularities and Scintillation Using GNSS Tracking Networks to Map Global Ionospheric Irregularities and Scintillation Xiaoqing Pi Anthony J. Mannucci Larry Romans Yaoz Bar-Sever Jet Propulsion Laboratory, California Institute of Technology

More information

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton

Monitoring the polar cap/ auroral ionosphere: Industrial applications. P. T. Jayachandran Physics Department University of New Brunswick Fredericton Monitoring the polar cap/ auroral ionosphere: Industrial applications P. T. Jayachandran Physics Department University of New Brunswick Fredericton Outline Ionosphere and its effects on modern and old

More information

Examination of Three Empirical Atmospheric Models

Examination of Three Empirical Atmospheric Models Examination of Three Empirical Atmospheric Models A Presentation Given to The Department of Physics Utah State University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy

More information

Ionospheric Effects on Aviation

Ionospheric Effects on Aviation Ionospheric Effects on Aviation Recent experience in the observation and research of ionospheric irregularities, gradient anomalies, depletion walls, etc. in USA and Europe Stan Stankov, René Warnant,

More information

Global Detection of Infrasonic Signals from Three Large Bolides

Global Detection of Infrasonic Signals from Three Large Bolides Earth Moon Planet (2008) 102:357 363 DOI 10.1007/s11038-007-9205-z Global Detection of Infrasonic Signals from Three Large Bolides Stephen J. Arrowsmith Æ Doug ReVelle Æ Wayne Edwards Æ Peter Brown Received:

More information

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model

Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation (IDED-DA) Model DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Scientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and ElectroDynamics - Data Assimilation

More information

Correlation Analysis for Total Electron Content Anomalies on 11th March, 2011

Correlation Analysis for Total Electron Content Anomalies on 11th March, 2011 arxiv:166.78v [physics.geo-ph] 1 Jun 16 Correlation Analysis for Total Electron Content Anomalies on 11th March, 11 Takuya Iwata, Ken Umeno Iwata and Umeno Department of Applied Mathematics and Physics,

More information

Rec. ITU-R P RECOMMENDATION ITU-R P *

Rec. ITU-R P RECOMMENDATION ITU-R P * Rec. ITU-R P.682-1 1 RECOMMENDATION ITU-R P.682-1 * PROPAGATION DATA REQUIRED FOR THE DESIGN OF EARTH-SPACE AERONAUTICAL MOBILE TELECOMMUNICATION SYSTEMS (Question ITU-R 207/3) Rec. 682-1 (1990-1992) The

More information

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data

Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data Chapter 2 Analysis of Polar Ionospheric Scintillation Characteristics Based on GPS Data Lijing Pan and Ping Yin Abstract Ionospheric scintillation is one of the important factors that affect the performance

More information

The low latitude ionospheric effects of the April 2000 magnetic storm near the longitude 120 E

The low latitude ionospheric effects of the April 2000 magnetic storm near the longitude 120 E Earth Planets Space, 56, 67 612, 24 The low latitude ionospheric effects of the April 2 magnetic storm near the longitude 12 E Libo Liu 1, Weixing Wan 1,C.C.Lee 2, Baiqi Ning 1, and J. Y. Liu 2 1 Institute

More information

Study of small scale plasma irregularities. Đorđe Stevanović

Study of small scale plasma irregularities. Đorđe Stevanović Study of small scale plasma irregularities in the ionosphere Đorđe Stevanović Overview 1. Global Navigation Satellite Systems 2. Space weather 3. Ionosphere and its effects 4. Case study a. Instruments

More information

Total Electron Content (TEC) and Model Validation at an Equatorial Region

Total Electron Content (TEC) and Model Validation at an Equatorial Region Total Electron Content (TEC) and Model Validation at an Equatorial Region NORSUZILA YA ACOB 1, MARDINA ABDULLAH 2,* MAHAMOD ISMAIL 2,* AND AZAMI ZAHARIM 3,** 1 Faculty of Electrical Engineering, Universiti

More information

Ionospheric ripples excited by superimposed wave fronts associated with Rayleigh waves in the thermosphere

Ionospheric ripples excited by superimposed wave fronts associated with Rayleigh waves in the thermosphere JOURNAL OF GEOPHYSICAL RESEARCH: SPACE PHYSICS, VOL. 8, 95 9, doi:./jgra.599, 3 Ionospheric ripples excited by superimposed wave fronts associated with Rayleigh waves in the thermosphere Yoshihiro Kakinami,

More information

Developing systems for ionospheric data assimilation

Developing systems for ionospheric data assimilation Developing systems for ionospheric data assimilation Making a quantitative comparison between observations and models A.C. Bushell, 5 th European Space Weather Week, Brussels, 20 th November 2008 Collaborators

More information

A case study of Seismo-generated gravity waves and associated ionospheric fluctuations observed by the ground-based GPS receivers

A case study of Seismo-generated gravity waves and associated ionospheric fluctuations observed by the ground-based GPS receivers A case study of Seismo-generated gravity waves and associated ionospheric fluctuations observed by the ground-based GPS receivers P. S. Brahmanandam 1, D.V. Phanikumar 2, S. Gopi Krishna 3 1Department

More information

Evidence for stratosphere sudden warming ionosphere coupling due to vertically propagating tides

Evidence for stratosphere sudden warming ionosphere coupling due to vertically propagating tides Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2010gl043560, 2010 Evidence for stratosphere sudden warming ionosphere coupling due to vertically propagating tides N. M.

More information

GPS based total electron content (TEC) anomalies and their association with large magnitude earthquakes occurred around Indian region

GPS based total electron content (TEC) anomalies and their association with large magnitude earthquakes occurred around Indian region Indian Journal of Radio & Space Physics Vol 42, June 2013, pp 131-135 GPS based total electron content (TEC) anomalies and their association with large magnitude earthquakes occurred around Indian region

More information

NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings. Impact of ionospheric effects on SBAS L1 operations. Montreal, Canada, October, 2006

NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings. Impact of ionospheric effects on SBAS L1 operations. Montreal, Canada, October, 2006 NAVIGATION SYSTEMS PANEL (NSP) NSP Working Group meetings Agenda Item 2b: Impact of ionospheric effects on SBAS L1 operations Montreal, Canada, October, 26 WORKING PAPER CHARACTERISATION OF IONOSPHERE

More information

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements

Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Study of the Ionosphere Irregularities Caused by Space Weather Activity on the Base of GNSS Measurements Iu. Cherniak 1, I. Zakharenkova 1,2, A. Krankowski 1 1 Space Radio Research Center,, University

More information

Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms

Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms RADIO SCIENCE, VOL. 40,, doi:10.1029/2005rs003279, 2005 Automated daily processing of more than 1000 ground-based GPS receivers for studying intense ionospheric storms Attila Komjathy, Lawrence Sparks,

More information

Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals

Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals 1398 J O U R N A L O F A T M O S P H E R I C A N D O C E A N I C T E C H N O L O G Y VOLUME 26 Optimal Noise Filtering for the Ionospheric Correction of GPS Radio Occultation Signals S. SOKOLOVSKIY, W.SCHREINER,

More information

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940

TARUN K. CHANDRAYADULA Sloat Ave # 3, Monterey,CA 93940 TARUN K. CHANDRAYADULA 703-628-3298 650 Sloat Ave # 3, cptarun@gmail.com Monterey,CA 93940 EDUCATION George Mason University, Fall 2009 Fairfax, VA Ph.D., Electrical Engineering (GPA 3.62) Thesis: Mode

More information

Simple model for post seismic ionospheric disturbances above an earthquake epicentre and along connecting magnetic field lines

Simple model for post seismic ionospheric disturbances above an earthquake epicentre and along connecting magnetic field lines Nat. Hazards Earth Syst. Sci., 8, 1341 1347, 2008 Author(s) 2008. This work is distributed under the Creative Commons Attribution 3.0 License. Natural Hazards and Earth System Sciences Simple model for

More information

EFFECTS OF SCINTILLATIONS IN GNSS OPERATION

EFFECTS OF SCINTILLATIONS IN GNSS OPERATION - - EFFECTS OF SCINTILLATIONS IN GNSS OPERATION Y. Béniguel, J-P Adam IEEA, Courbevoie, France - 2 -. Introduction At altitudes above about 8 km, molecular and atomic constituents of the Earth s atmosphere

More information

Large-scale traveling ionospheric disturbances of auroral origin according to the data of the GPS network and ionosondes

Large-scale traveling ionospheric disturbances of auroral origin according to the data of the GPS network and ionosondes Available online at www.sciencedirect.com Advances in Space Research 42 (2008) 1213 1217 www.elsevier.com/locate/asr Large-scale traveling ionospheric disturbances of auroral origin according to the data

More information

Comparison of GPS receiver DCB estimation methods using a GPS network

Comparison of GPS receiver DCB estimation methods using a GPS network Earth Planets Space, 65, 707 711, 2013 Comparison of GPS receiver DCB estimation methods using a GPS network Byung-Kyu Choi 1, Jong-Uk Park 1, Kyoung Min Roh 1, and Sang-Jeong Lee 2 1 Space Science Division,

More information

First GPS-TEC evidence for the wave structure excited by the solar terminator

First GPS-TEC evidence for the wave structure excited by the solar terminator LETTER Earth Planets Space, 60, 895 900, 2008 First GPS-TEC evidence for the wave structure excited by the solar terminator E. L. Afraimovich Institute of Solar-Terrestrial Physics SB PAS, P.O. 291, Irkutsk,

More information

Assimilative Modeling of Ionospheric Dynamics for Now-casting of HF Propagation Channels in the Presence of TIDs 1

Assimilative Modeling of Ionospheric Dynamics for Now-casting of HF Propagation Channels in the Presence of TIDs 1 Assimilative Modeling of Ionospheric Dynamics for Now-casting of HF Propagation Channels in the Presence of TIDs L. J. Nickisch, Sergey Fridman, Mark Hausman, Shawn Kraut, George Zunich* NorthWest Research

More information

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere

Satellite Navigation Science and Technology for Africa. 23 March - 9 April, The African Ionosphere 2025-28 Satellite Navigation Science and Technology for Africa 23 March - 9 April, 2009 The African Ionosphere Radicella Sandro Maria Abdus Salam Intern. Centre For Theoretical Physics Aeronomy and Radiopropagation

More information

Advances in Planetary Seismology Using Infrasound and Airglow Signatures on Venus

Advances in Planetary Seismology Using Infrasound and Airglow Signatures on Venus Advances in Planetary Seismology Using Infrasound and Airglow Signatures on Venus 1 Attila Komjathy, 1 Siddharth Krishnamoorthy 1 James Cutts, 1 Michael Pauken,, 1 Sharon Kedar, 1 Suzanne Smrekar, 1 Jeff

More information

To Estimate The Regional Ionospheric TEC From GEONET Observation

To Estimate The Regional Ionospheric TEC From GEONET Observation To Estimate The Regional Ionospheric TEC From GEONET Observation Jinsong Ping(Email: jsping@miz.nao.ac.jp) 1,2, Nobuyuki Kawano 2,3, Mamoru Sekido 4 1. Dept. Astronomy, Beijing Normal University, Haidian,

More information

A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years

A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major magnetic storms over the years Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2008ja013037, 2008 A statistical study of large-scale traveling ionospheric disturbances observed by GPS TEC during major

More information

ELECTROMAGNETIC PROPAGATION (ALT, TEC)

ELECTROMAGNETIC PROPAGATION (ALT, TEC) ELECTROMAGNETIC PROPAGATION (ALT, TEC) N. Picot CNES, 18 Av Ed Belin, 31401 Toulouse, France Email : Nicolas.Picot@cnes.fr ABSTRACT For electromagnetic propagation, the ionosphere plays a key role. This

More information

Horizontal velocities and propagation directions of gravity waves in the ionosphere over the Czech Republic

Horizontal velocities and propagation directions of gravity waves in the ionosphere over the Czech Republic JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2010ja015821, 2010 Horizontal velocities and propagation directions of gravity waves in the ionosphere over the Czech Republic Jaroslav Chum, 1 Tereza

More information

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O.

VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE. IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. VARIATIONS OF VLF SIGNALS RECEIVED ON DEMETER SATELLITE IN ASSOCIATION WITH SEISMICITY A. Rozhnoi 1, M. Solovieva 1, Molchanov O. 1 1 Institute of the Earth Physics, RAS, Bolshaya Gruzinskaya 10, Moscow,

More information

Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station

Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006ja012197, 2007 Signature of the 29 March 2006 eclipse on the ionosphere over an equatorial station J. O. Adeniyi, 1,2 S. M. Radicella, 1 I. A.

More information

Solar flare detection system based on global positioning system data: First results

Solar flare detection system based on global positioning system data: First results Advances in Space Research 39 (27) 889 89 www.elsevier.com/locate/asr Solar flare detection system based on global positioning system data: First results A. García-Rigo *, M. Hernández-Pajares, J.M. Juan,

More information

Ionospheric Estimation using Extended Kriging for a low latitude SBAS

Ionospheric Estimation using Extended Kriging for a low latitude SBAS Ionospheric Estimation using Extended Kriging for a low latitude SBAS Juan Blanch, odd Walter, Per Enge, Stanford University ABSRAC he ionosphere causes the most difficult error to mitigate in Satellite

More information

Solar eclipse effects of 22 July 2009 on Sporadic-E

Solar eclipse effects of 22 July 2009 on Sporadic-E Ann. Geophys., 28, 353 357, 2010 Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Annales Geophysicae Solar eclipse effects of 22 July 2009 on Sporadic-E G.

More information

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite

Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite Daytime modelling of VLF radio waves over land and sea, comparison with data from DEMETER Satellite S. G. Meyer 1,2, A. B. Collier 1,2, C. J. Rodger 3 1 SANSA Space Science, Hermanus, South Africa 2 School

More information

GNSS in Remote Sensing and Earth Science

GNSS in Remote Sensing and Earth Science GNSS in Remote Sensing and Earth Science James L Garrison School of Aeronau:cs and Astronau:cs Division of Environmental and Ecological Engineering School of Electrical and Computer Engineering (courtesy)

More information

Generation of Klobuchar Coefficients for Ionospheric Error Simulation

Generation of Klobuchar Coefficients for Ionospheric Error Simulation Research Paper J. Astron. Space Sci. 27(2), 11722 () DOI:.14/JASS..27.2.117 Generation of Klobuchar Coefficients for Ionospheric Error Simulation Chang-Moon Lee 1, Kwan-Dong Park 1, Jihyun Ha 2, and Sanguk

More information

Use of GNSS Radio Occultation data for Climate Applications Bill Schreiner Sergey Sokolovskiy, Doug Hunt, Ben Ho, Bill Kuo UCAR

Use of GNSS Radio Occultation data for Climate Applications Bill Schreiner Sergey Sokolovskiy, Doug Hunt, Ben Ho, Bill Kuo UCAR Use of GNSS Radio Occultation data for Climate Applications Bill Schreiner (schrein@ucar.edu), Sergey Sokolovskiy, Doug Hunt, Ben Ho, Bill Kuo UCAR COSMIC Program Office www.cosmic.ucar.edu 1 Questions

More information

TEC anomalies Local TEC changes prior to earthquakes or TEC response to solar and geomagnetic activity changes?

TEC anomalies Local TEC changes prior to earthquakes or TEC response to solar and geomagnetic activity changes? Earth Planets Space, 60, 961 966, 2008 TEC anomalies Local TEC changes prior to earthquakes or TEC response to solar and geomagnetic activity changes? Edward L. Afraimovich 1 and Elvira I. Astafyeva 1,2

More information

Isolated ionospheric disturbances as deduced from global GPS network

Isolated ionospheric disturbances as deduced from global GPS network Isolated ionospheric disturbances as deduced from global GPS network E. L. Afraimovich, E. I. Astafieva, Institute of Solar-Terrestrial Physics SD RAS, p. o. box 426, Irkutsk, 66433, Russia, fax: +7 3952

More information

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient

The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient The spatial structure of an acoustic wave propagating through a layer with high sound speed gradient Alex ZINOVIEV 1 ; David W. BARTEL 2 1,2 Defence Science and Technology Organisation, Australia ABSTRACT

More information

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking

A Bistatic HF Radar for Current Mapping and Robust Ship Tracking A Bistatic HF Radar for Current Mapping and Robust Ship Tracking Dennis Trizna Imaging Science Research, Inc. V. 703-801-1417 dennis @ isr-sensing.com www.isr-sensing.com Objective: Develop methods for

More information

Th P6 01 Retrieval of the P- and S-velocity Structure of the Groningen Gas Reservoir Using Noise Interferometry

Th P6 01 Retrieval of the P- and S-velocity Structure of the Groningen Gas Reservoir Using Noise Interferometry Th P6 1 Retrieval of the P- and S-velocity Structure of the Groningen Gas Reservoir Using Noise Interferometry W. Zhou* (Utrecht University), H. Paulssen (Utrecht University) Summary The Groningen gas

More information

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS

EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS EFFECTS OF IONOSPHERIC SMALL-SCALE STRUCTURES ON GNSS G. Wautelet, S. Lejeune, R. Warnant Royal Meteorological Institute of Belgium, Avenue Circulaire 3 B-8 Brussels (Belgium) e-mail: gilles.wautelet@oma.be

More information

Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals

Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2012ja017761, 2012 Tsunami-induced phase and amplitude perturbations of subionospheric VLF signals A. Rozhnoi, 1 S. Shalimov, 1,2 M. Solovieva, 1

More information

Scientific Data Processing on Mobile Devices

Scientific Data Processing on Mobile Devices Scientific Data Processing on Mobile Devices David Mascharka PI: Victor Pankratius MIT Haystack Observatory 6 August 2015 Smartphones for Scientific Data? Smartphones for Scientific Data? Powerful multi-core

More information

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics

Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Direct Imaging of Group Velocity Dispersion Curves in Shallow Water Christopher Liner*, University of Houston; Lee Bell and Richard Verm, Geokinetics Summary Geometric dispersion is commonly observed in

More information

Anomalous behaviour of very low frequency signals during the earthquake events

Anomalous behaviour of very low frequency signals during the earthquake events Indian Journal of Radio & Space Physics Vol 43, December 2014, pp 333-339 Anomalous behaviour of very low frequency signals during the earthquake events T Madhavi Latha 1,$,*, P Peddi Naidu 2, D N Madhusudhana

More information

Ionospheric Radio Occultation Measurements Onboard CHAMP

Ionospheric Radio Occultation Measurements Onboard CHAMP Ionospheric Radio Occultation Measurements Onboard CHAMP N. Jakowski 1, K. Tsybulya 1, S. M. Stankov 1, V. Wilken 1, S. Heise 2, A. Wehrenpfennig 3 1 DLR / Institut für Kommunikation und Navigation, Kalkhorstweg

More information

Extracting time-domain Green s function estimates from ambient seismic noise

Extracting time-domain Green s function estimates from ambient seismic noise GEOPHYSICAL RESEARCH LETTERS, VOL. 32,, doi:10.1029/2004gl021862, 2005 Extracting time-domain Green s function estimates from ambient seismic noise Karim G. Sabra, Peter Gerstoft, Philippe Roux, and W.

More information

Influence of Major Geomagnetic Storms Occurred in the Year 2011 On TEC Over Bangalore Station In India

Influence of Major Geomagnetic Storms Occurred in the Year 2011 On TEC Over Bangalore Station In India International Journal of Electronics and Communication Engineering. ISSN 0974-2166 Volume 6, Number 1 (2013), pp. 105-110 International Research Publication House http://www.irphouse.com Influence of Major

More information

AIRPORT MULTIPATH SIMULATION AND MEASUREMENT TOOL FOR SITING DGPS REFERENCE STATIONS

AIRPORT MULTIPATH SIMULATION AND MEASUREMENT TOOL FOR SITING DGPS REFERENCE STATIONS AIRPORT MULTIPATH SIMULATION AND MEASUREMENT TOOL FOR SITING DGPS REFERENCE STATIONS ABSTRACT Christophe MACABIAU, Benoît ROTURIER CNS Research Laboratory of the ENAC, ENAC, 7 avenue Edouard Belin, BP

More information

Assimilation Ionosphere Model

Assimilation Ionosphere Model Assimilation Ionosphere Model Robert W. Schunk Space Environment Corporation 399 North Main, Suite 325 Logan, UT 84321 phone: (435) 752-6567 fax: (435) 752-6687 email: schunk@spacenv.com Award #: N00014-98-C-0085

More information

Radio Science. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S rocket

Radio Science. Estimate of a D region ionospheric electron density profile from MF radio wave observations by the S rocket RESEARCH ARTICLE Key Points: Observed the MF radio wave propagation characteristics in the ionospheric D region The polarized mode waves propagation characteristics obtained by analyzing the observed waveform

More information

First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM)

First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM) Ann. Geophys., 26, 353 359, 2008 European Geosciences Union 2008 Annales Geophysicae First assimilations of COSMIC radio occultation data into the Electron Density Assimilative Model (EDAM) M. J. Angling

More information

[titlelscientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model

[titlelscientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model [titlelscientific Studies of the High-Latitude Ionosphere with the Ionosphere Dynamics and Electrodynamics-Data Assimilation (IDED-DA) Model [awardnumberl]n00014-13-l-0267 [awardnumber2] [awardnumbermore]

More information

Using Radio Occultation Data for Ionospheric Studies

Using Radio Occultation Data for Ionospheric Studies LONG-TERM GOAL Using Radio Occultation Data for Ionospheric Studies Principal Investigator: Christian Rocken Co-Principal Investigators: William S. Schreiner, Sergey V. Sokolovskiy GPS Science and Technology

More information

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I:

imaging of the ionosphere and its applications to radio propagation Fundamentals of tomographic Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Ionospheric Tomography I: Fundamentals of tomographic imaging of the ionosphere and its applications to radio propagation Summary Introduction to tomography Introduction to tomography

More information

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE

IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE IONOSPHERIC SIGNATURES OF SEISMIC EVENTS AS OBSERVED BY THE DEMETER SATELLITE M. Parrot and F. Lefeuvre LPC2E/CNRS, 3 A Av Recherche Scientifique 45071 Orleans cedex 2 France lefeuvre@cnrs-orleans.fr URSI

More information

Persistence of planetary wave type oscillations in the mid-latitude ionosphere

Persistence of planetary wave type oscillations in the mid-latitude ionosphere ANNALS OF GEOPHYSICS, VOL. 49, N. 6, December 2006 Persistence of planetary wave type oscillations in the mid-latitude ionosphere Jan Laštovička, Petra Šauli and Peter Križan Institute of Atmospheric Physics,

More information

Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers

Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers Observation of Large-Scale Traveling Ionospheric Disturbance over Peninsular Malaysia Using GPS Receivers Intan Izafina Idrus, Mardina Abdullah, Alina Marie Hasbi, Asnawi Husin Abstract This paper presents

More information

Preliminary results from the Arecibo Heating EXperiment (HEX): From HF to GPS

Preliminary results from the Arecibo Heating EXperiment (HEX): From HF to GPS Preliminary results from the Arecibo Heating EXperiment (HEX): From HF to GPS CEDAR Workshop 2017 Keystone, Co Dr Natasha Jackson-Booth 21 st June 2017 Collaborators and Acknowledgements QinetiQ Richard

More information

Computer modeling of acoustic modem in the Oman Sea with inhomogeneities

Computer modeling of acoustic modem in the Oman Sea with inhomogeneities Indian Journal of Geo Marine Sciences Vol.46 (08), August 2017, pp. 1651-1658 Computer modeling of acoustic modem in the Oman Sea with inhomogeneities * Mohammad Akbarinassab University of Mazandaran,

More information

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles.

The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. The Effect of Geomagnetic Storm in the Ionosphere using N-h Profiles. J.C. Morka * ; D.N. Nwachuku; and D.A. Ogwu. Physics Department, College of Education, Agbor, Nigeria E-mail: johnmorka84@gmail.com

More information

APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION

APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION APPLICATION OF SMALL SATELLITES FOR HIGH PRECISION MEASURING EFFECTS OF RADIO WAVE PROPAGATION K. Igarashi 1, N.A. Armand 2, A.G. Pavelyev 2, Ch. Reigber 3, J. Wickert 3, K. Hocke 1, G. Beyerle 3, S.S.

More information

An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver

An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver An Assessment of Mapping Functions for VTEC Estimation using Measurements of Low Latitude Dual Frequency GPS Receiver Mrs. K. Durga Rao 1 Asst. Prof. Dr. L.B.College of Engg. for Women, Visakhapatnam,

More information