Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading

Size: px
Start display at page:

Download "Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading"

Transcription

1 Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading Don Torrieri 1, Shi Cheng 2, and Matthew C. Valenti 2 1 US Army Research Lab 2 Lane Department of Computer Science and Electrical Engineering West Virginia University June 26, 2007 ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 1 Engine / 20

2 Outline 1 Why Use CPFSK for FH Systems? 2 Capacity of Noncoherent CPFSK 3 Applications 4 Conclusion ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 2 Engine / 20

3 Why Use CPFSK for FH Systems? Motivation A Tale of Two Philosophies B W B W Philosophy # 1 Large B. Wideband hopping channels. Better AWGN performance. Fewer hopping channels M = B/W. Worse performance with interference. Philosophy # 2 Small B. Narrowband hopping channels. Worse AWGN performance. More hopping channels M = B/W. Better performance with interference. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 3 Engine / 20

4 Why Use CPFSK for FH Systems? CPFSK Modulation Modulation Choices for Frequency Hopping s d (t) = 1 Ts e j2πdt/ts, d = 0, 1,, q 1 Philosophy #1: Orthogonal FSK Suitable for noncoherent reception. Reasonable energy efficiency. Poor bandwidth efficiency because adjacent tones are 1/T s apart. Philosophy #2: Nonorthogonal CPFSK Reduce bandwidth by using modulation index h < 1. Adjacent frequency tones are h/t s apart. Continuous-phase constraint controls the spectrum. Transmitted x(t) = e jφ s d (t) where phase φ is accumulated φ = φ + 2πdh ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 4 Engine / 20

5 Why Use CPFSK for FH Systems? CPFSK Modulation Modulation Choices for Frequency Hopping s d (t) = 1 Ts e j2πdht/ts, d = 0, 1,, q 1 Philosophy #1: Orthogonal FSK Suitable for noncoherent reception. Reasonable energy efficiency. Poor bandwidth efficiency because adjacent tones are 1/T s apart. Philosophy #2: Nonorthogonal CPFSK Reduce bandwidth by using modulation index h < 1. Adjacent frequency tones are h/t s apart. Continuous-phase constraint controls the spectrum. Transmitted x(t) = e jφ s d (t) where phase φ is accumulated φ = φ + 2πdh ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 4 Engine / 20

6 Why Use CPFSK for FH Systems? Bandwidth of CPFSK CPFSK Modulation q=64 3 q=32 q=16 Bandwidth B (Hz/bps) q=2 q=8 q= % Power Bandwidth h (modulation index) ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 5 Engine / 20

7 Capacity of Noncoherent CPFSK System Model Discrete Time Model The output of q complex filers matched to the tones is: y = ae jθ E s x + n where Unlike orthogonal FSK, the x are not elementary vectors. Define K to be a correlation matrix with entry i, j k i,j = Ts 0 s i (t)s j (t)dt x is chosen from columns of K = [k 0, k 1,, k q 1 ] n is colored noise, with E(nn H ) = N 0 K. a is the fading amplitude, assumed to be constant for each hop. θ includes effects of continuous-phase constraint, fading, and oscillator frequency offset. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 6 Engine / 20

8 Capacity of Noncoherent CPFSK System Model Demodulator Metric and Channel Estimation cos(2πf d t) sin(2πf d t) dt dt log I 0 ( ) The likelihood of symbol d ){0,..., q 1} is p(y x = cos(2πf k d ) q-1 t) I 0 (2 a E s N 0 y d Channel estimation a E dt s /N 0 is the channel state information (CSI). EMsin(2πf algorithm q-1 t) used to estimate the CSI for each log hop. I 0 ( ) Extrinsic information from decoder used to refine the CSI estimates. dt ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 7 Engine / 20

9 Capacity of Noncoherent CPFSK System Model Demodulator Metric and Channel Estimation cos(2πf d t) sin(2πf d t) dt dt log I 0 ( ) The likelihood of symbol d ){0,..., q 1} is p(y x = cos(2πf k d ) q-1 t) I 0 (2 a E s N 0 y d Channel estimation a E dt s /N 0 is the channel state information (CSI). EMsin(2πf algorithm q-1 t) used to estimate the CSI for each log hop. I 0 ( ) Extrinsic information from decoder used to refine the CSI estimates. dt ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 7 Engine / 20

10 Capacity Calculation Capacity of Noncoherent CPFSK Computing Capacity Assuming equally-likely input symbols x, the capacity is the mutual information between x and y where I(x; y) = H(x) H(x y) = log q E x,y [h(x y)] h(x y) = log p(x y) x = log S p(y x ) p(y x) Monte Carlo simulation can be used to evaluate the expectation. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 8 Engine / 20

11 Capacity Calculation Capacity of Noncoherent CPFSK Computing Capacity Assuming equally-likely input symbols x, the capacity is the mutual information between x and y where I(x; y) = H(x) H(x y) = log q E x,y [h(x y)] h(x y) = log p(x y) x = log S p(y x ) p(y x) Monte Carlo simulation can be used to evaluate the expectation. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 8 Engine / 20

12 Capacity of Noncoherent CPFSK Computing Capacity Binary Noncoherent CPFSK Capacity in AWGN 25 1 h=1 h=0.8 dashed line 20 Mutual Information h=0.4 Minimum Eb/No in db 15 h= h= h=0.2 h=0.6 h=0.8 h= Es/No in db (a) channel capacity versus E S/N Code rate r (b) minimum E b /N 0 versus coding rate ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 9 Engine / 20

13 Capacity of Noncoherent CPFSK Computing Capacity Binary Noncoherent CPFSK Capacity in AWGN under Bandwidth Constraint 25 Minimum Eb/No in db B = 1 B is normalized bandwidth in Hz/bps 10 B= 2 B= 3 B = inf h ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 10 Engine / 20

14 Capacity of Noncoherent CPFSK Computing Capacity Noncoherent CPFSK Capacity in AWGN 30 B = 2 (solid lines) B = inf. (dashed) 25 q=2 Minimum Eb/No in db h ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 11 Engine / 20

15 Capacity of Noncoherent CPFSK Computing Capacity Noncoherent CPFSK Capacity in Rayleigh Fading 30 B = 2 (solid lines) 25 q=2 B = 0 (dashed lines) Minimum Eb/No in db h ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 12 Engine / 20

16 A Multi-user FH Network Applications Multiple-access Interference Interference Nodes (d<4) d=1 Transmissions Independent and asynchronous hopping. Equal transmit power. Interfering users randomly placed up to 4x away from desired transmitter. Channel Path loss coefficient of 4. Log-normal shadowing (σ = 8dB) of interfering users. Block Rayleigh fading. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 13 Engine / 20

17 Applications Multiple-access Interference Waveforms for FH Network Total bandwidth W = 2000 Hz/bps. All users use the same modulation and coding UMTS turbo code 32 hops/codeword. h q Coding rate Number of channels / / / / / / Channel estimation using EM algorithm. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 14 Engine / 20

18 Applications Minimum E b /N 0 for BER = 10 4 Multiple-access Interference E b /N o in db CPFSK h = 1 4CPFSK h = 1 8CPFSK h = 1 2CPFSK h = 0.6 4CPFSK h = CPFSK h = Users ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 15 Engine / 20

19 Partial-band Jamming Applications Partial-band Jamming Waveforms Three systems: q h info bits code bits code rate All three have BW efficiency η = 0.5 bps/hz. Turbo code from UMTS standard used. 16, 32, or 64 hops per codeword. Interference Interference covers fraction µ of the band. I 0 is interference spectral density when µ = 1. Additional noise power of I 0 /µ if hop has interference. E b /I 0 = 13 db. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 16 Engine / 20

20 Partial-band Jamming Applications Partial-band Jamming Waveforms Three systems: q h info bits code bits code rate All three have BW efficiency η = 0.5 bps/hz. Turbo code from UMTS standard used. 16, 32, or 64 hops per codeword. Interference Interference covers fraction µ of the band. I 0 is interference spectral density when µ = 1. Additional noise power of I 0 /µ if hop has interference. E b /I 0 = 13 db. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 16 Engine / 20

21 Applications Influence of Alphabet Size Partial-band Jamming q=2 Perfect CSI EM estimator E b /N o in db Rayleigh AWGN q=4 q=8 q=2 q=4 Minimum E b /N 0 for BER = hops/codeword. 6 q= μ ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 17 Engine / 20

22 Applications Influence of the Number of Hops Partial-band Jamming E b /N o in db ary CPFSK, 16 hops 4-ary CPFSK, 32 hops 4-ary CPFSK, 64 hops 8-ary CPFSK, 16 hops 8-ary CPFSK, 32 hops 8-ary CPFSK, 64 hops Minimum E b /N 0 for BER = Block Rayleigh fading μ ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 18 Engine / 20

23 Conclusion Conclusion In FH systems, the bandwidth B per hopping channel must be carefully chosen. Large B gives better performance in interference-free environment. Small B is beneficial in presence of interference. Capacity analysis can be used to determine best h and r for a particular bandwidth constraint. Channel estimation can be performed using EM algorithm. Nonbinary signaling (q > 2) with small h can provide additional gains. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 19 Engine / 20

24 Conclusion Conclusion In FH systems, the bandwidth B per hopping channel must be carefully chosen. Large B gives better performance in interference-free environment. Small B is beneficial in presence of interference. Capacity analysis can be used to determine best h and r for a particular bandwidth constraint. Channel estimation can be performed using EM algorithm. Nonbinary signaling (q > 2) with small h can provide additional gains. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 19 Engine / 20

25 Conclusion Conclusion In FH systems, the bandwidth B per hopping channel must be carefully chosen. Large B gives better performance in interference-free environment. Small B is beneficial in presence of interference. Capacity analysis can be used to determine best h and r for a particular bandwidth constraint. Channel estimation can be performed using EM algorithm. Nonbinary signaling (q > 2) with small h can provide additional gains. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 19 Engine / 20

26 Conclusion Conclusion In FH systems, the bandwidth B per hopping channel must be carefully chosen. Large B gives better performance in interference-free environment. Small B is beneficial in presence of interference. Capacity analysis can be used to determine best h and r for a particular bandwidth constraint. Channel estimation can be performed using EM algorithm. Nonbinary signaling (q > 2) with small h can provide additional gains. ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 19 Engine / 20

27 Conclusion Questions ( US Army Robust Research Frequency-Hopping Lab, Lane Department of Computer Science June 26, and 2007 Electrical 20 Engine / 20

The Capacity of Noncoherent Continuous-Phase Frequency Shift Keying

The Capacity of Noncoherent Continuous-Phase Frequency Shift Keying The Capacity of Noncoherent Continuous-Phase Frequency Shift Keying Shi Cheng 1 Rohit Iyer Seshadri 1 Matthew C. Valenti 1 Don Torrieri 2 1 Lane Department of Computer Science and Electrical Engineering

More information

The Transmission Capacity of Frequency-Hopping Ad Hoc Networks

The Transmission Capacity of Frequency-Hopping Ad Hoc Networks The Transmission Capacity of Frequency-Hopping Ad Hoc Networks Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University June 13, 2011 Matthew C. Valenti

More information

An Iterative Noncoherent Relay Receiver for the Two-way Relay Channel

An Iterative Noncoherent Relay Receiver for the Two-way Relay Channel An Iterative Noncoherent Relay Receiver for the Two-way Relay Channel Terry Ferrett 1 Matthew Valenti 1 Don Torrieri 2 1 West Virginia University 2 U.S. Army Research Laboratory June 12th, 2013 1 / 26

More information

Receiver Design for Noncoherent Digital Network Coding

Receiver Design for Noncoherent Digital Network Coding Receiver Design for Noncoherent Digital Network Coding Terry Ferrett 1 Matthew Valenti 1 Don Torrieri 2 1 West Virginia University 2 U.S. Army Research Laboratory November 3rd, 2010 1 / 25 Outline 1 Introduction

More information

Noncoherent Digital Network Coding using M-ary CPFSK Modulation

Noncoherent Digital Network Coding using M-ary CPFSK Modulation Noncoherent Digital Network Coding using M-ary CPFSK Modulation Terry Ferrett 1 Matthew Valenti 1 Don Torrieri 2 1 West Virginia University 2 U.S. Army Research Laboratory November 9th, 2011 1 / 31 Outline

More information

Communication Theory in the Cloud: The Transformative Power of Cheap Utility Computing

Communication Theory in the Cloud: The Transformative Power of Cheap Utility Computing Communication Theory in the Cloud: The Transformative Power of Cheap Utility Computing Matthew C. Valenti West Virginia University Jan. 30, 2012 This work supported by the National Science Foundation under

More information

Noncoherent Digital Network Coding Using Multi-tone CPFSK Modulation

Noncoherent Digital Network Coding Using Multi-tone CPFSK Modulation Noncoherent Digital Network Coding Using Multi-tone CPFSK Modulation Terry Ferrett, Matthew C. Valenti, and Don Torrieri West Virginia University, Morgantown, WV, USA. U.S. Army Research Laboratory, Adelphi,

More information

The BICM Capacity of Coherent Continuous-Phase Frequency Shift Keying

The BICM Capacity of Coherent Continuous-Phase Frequency Shift Keying The BICM Capacity of Coherent Continuous-Phase Frequency Shift Keying Rohit Iyer Seshadri, Shi Cheng and Matthew C. Valenti Lane Dept. of Computer Sci. and Electrical Eng. West Virginia University Morgantown,

More information

Robust Frequency Hopping for Interference and Fading Channels

Robust Frequency Hopping for Interference and Fading Channels IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 56, NO., AUGUST 1343 Robust Frequency Hopping for Interference and Fading Channels Don Torrieri, Shi Cheng, and Matthew C. Valenti Abstract A robust frequency-hopping

More information

Frequency-Hopped Spread-Spectrum

Frequency-Hopped Spread-Spectrum Chapter Frequency-Hopped Spread-Spectrum In this chapter we discuss frequency-hopped spread-spectrum. We first describe the antijam capability, then the multiple-access capability and finally the fading

More information

Noncoherent Physical-Layer Network Coding Using Binary CPFSK Modulation

Noncoherent Physical-Layer Network Coding Using Binary CPFSK Modulation Noncoherent Physical-Layer Network Coding Using Binary CPFSK Modulation Matthew C. Valenti, Don Torrieri and Terry Ferrett West Virginia University, Morgantown, WV, USA. U.S. Army Research Laboratory,

More information

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. About Homework The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. Good news: No complicated mathematics and calculations! Concepts: Understanding and remember! Homework: review

More information

Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum

Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum Mobile Radio Systems OPAM: Understanding OFDM and Spread Spectrum Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology

More information

Noncoherent Physical-Layer Network Coding with Frequency-Shift Keying Modulation

Noncoherent Physical-Layer Network Coding with Frequency-Shift Keying Modulation Noncoherent Physical-Layer Network Coding with Frequency-Shift Keying Modulation Terry Ferrett Dissertation submitted to the College of Engineering and Mineral Resources at West Virginia University in

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

Modulation and Coding Tradeoffs

Modulation and Coding Tradeoffs 0 Modulation and Coding Tradeoffs Contents 1 1. Design Goals 2. Error Probability Plane 3. Nyquist Minimum Bandwidth 4. Shannon Hartley Capacity Theorem 5. Bandwidth Efficiency Plane 6. Modulation and

More information

Problem Sheet 1 Probability, random processes, and noise

Problem Sheet 1 Probability, random processes, and noise Problem Sheet 1 Probability, random processes, and noise 1. If F X (x) is the distribution function of a random variable X and x 1 x 2, show that F X (x 1 ) F X (x 2 ). 2. Use the definition of the cumulative

More information

Part A: Spread Spectrum Systems

Part A: Spread Spectrum Systems 1 Telecommunication Systems and Applications (TL - 424) Part A: Spread Spectrum Systems Dr. ir. Muhammad Nasir KHAN Department of Electrical Engineering Swedish College of Engineering and Technology March

More information

Spread Spectrum Techniques

Spread Spectrum Techniques 0 Spread Spectrum Techniques Contents 1 1. Overview 2. Pseudonoise Sequences 3. Direct Sequence Spread Spectrum Systems 4. Frequency Hopping Systems 5. Synchronization 6. Applications 2 1. Overview Basic

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Physical-layer Network Coding using FSK Modulation under Frequency Offset

Physical-layer Network Coding using FSK Modulation under Frequency Offset Physical-layer Network Coding using FSK Modulation under Frequency Offset Terry Ferrett, Hideki Ochiai, Matthew C. Valenti West Virginia University, Morgantown, WV, USA. Yokohama National University, Yokohama,

More information

Objectives. Presentation Outline. Digital Modulation Revision

Objectives. Presentation Outline. Digital Modulation Revision Digital Modulation Revision Professor Richard Harris Objectives To identify the key points from the lecture material presented in the Digital Modulation section of this paper. What is in the examination

More information

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

Outage Probability of a Multi-User Cooperation Protocol in an Asynchronous CDMA Cellular Uplink

Outage Probability of a Multi-User Cooperation Protocol in an Asynchronous CDMA Cellular Uplink Outage Probability of a Multi-User Cooperation Protocol in an Asynchronous CDMA Cellular Uplink Kanchan G. Vardhe, Daryl Reynolds, and Matthew C. Valenti Lane Dept. of Comp. Sci and Elec. Eng. West Virginia

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

Multipath Path. Direct Path

Multipath Path. Direct Path Chapter Fading Channels. Channel Models In this chapter we examine models of fading channels and the performance of coding and modulation for fading channels. Fading occurs due to multiple paths between

More information

Unit 1 Introduction to Spread- Spectrum Systems. Department of Communication Engineering, NCTU 1

Unit 1 Introduction to Spread- Spectrum Systems. Department of Communication Engineering, NCTU 1 Unit 1 Introduction to Spread- Spectrum Systems Department of Communication Engineering, NCTU 1 What does it mean by spread spectrum communications Spread the energy of an information bit over a bandwidth

More information

EE359 Discussion Session 8 Beamforming, Diversity-multiplexing tradeoff, MIMO receiver design, Multicarrier modulation

EE359 Discussion Session 8 Beamforming, Diversity-multiplexing tradeoff, MIMO receiver design, Multicarrier modulation EE359 Discussion Session 8 Beamforming, Diversity-multiplexing tradeoff, MIMO receiver design, Multicarrier modulation November 29, 2017 EE359 Discussion 8 November 29, 2017 1 / 33 Outline 1 MIMO concepts

More information

Lecture 9: Spread Spectrum Modulation Techniques

Lecture 9: Spread Spectrum Modulation Techniques Lecture 9: Spread Spectrum Modulation Techniques Spread spectrum (SS) modulation techniques employ a transmission bandwidth which is several orders of magnitude greater than the minimum required bandwidth

More information

Closing the Gap to the Capacity of APSK: Constellation Shaping and Degree Distributions

Closing the Gap to the Capacity of APSK: Constellation Shaping and Degree Distributions Closing the Gap to the Capacity of APSK: Constellation Shaping and Degree Distributions Xingyu Xiang and Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia

More information

PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS

PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS PRINCIPLES OF SPREAD-SPECTRUM COMMUNICATION SYSTEMS By DON TORRIERI Springer ebook ISBN: 0-387-22783-0 Print ISBN: 0-387-22782-2 2005 Springer Science

More information

Part A: Spread Spectrum Systems

Part A: Spread Spectrum Systems 1 Telecommunication Systems and Applications (TL - 424) Part A: Spread Spectrum Systems Dr. ir. Muhammad Nasir KHAN Department of Electrical Engineering Swedish College of Engineering and Technology March

More information

Frequency-Hopped Multiple-Access Communications with Multicarrier On Off Keying in Rayleigh Fading Channels

Frequency-Hopped Multiple-Access Communications with Multicarrier On Off Keying in Rayleigh Fading Channels 1692 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 48, NO. 10, OCTOBER 2000 Frequency-Hopped Multiple-Access Communications with Multicarrier On Off Keying in Rayleigh Fading Channels Seung Ho Kim and Sang

More information

Digital Modulators & Line Codes

Digital Modulators & Line Codes Digital Modulators & Line Codes Professor A. Manikas Imperial College London EE303 - Communication Systems An Overview of Fundamental Prof. A. Manikas (Imperial College) EE303: Dig. Mod. and Line Codes

More information

Computational Complexity of Multiuser. Receivers in DS-CDMA Systems. Syed Rizvi. Department of Electrical & Computer Engineering

Computational Complexity of Multiuser. Receivers in DS-CDMA Systems. Syed Rizvi. Department of Electrical & Computer Engineering Computational Complexity of Multiuser Receivers in DS-CDMA Systems Digital Signal Processing (DSP)-I Fall 2004 By Syed Rizvi Department of Electrical & Computer Engineering Old Dominion University Outline

More information

Amplitude Frequency Phase

Amplitude Frequency Phase Chapter 4 (part 2) Digital Modulation Techniques Chapter 4 (part 2) Overview Digital Modulation techniques (part 2) Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency

More information

Chapter 6 Passband Data Transmission

Chapter 6 Passband Data Transmission Chapter 6 Passband Data Transmission Passband Data Transmission concerns the Transmission of the Digital Data over the real Passband channel. 6.1 Introduction Categories of digital communications (ASK/PSK/FSK)

More information

Analyze BER Performance of Wireless FSK System

Analyze BER Performance of Wireless FSK System nalyze BER Performance of Wireless FSK System Microwaves & RF; Nov009, Vol. 48 Issue 11, p80 Hamood Shehab Hamid 1 Ekhlas Kadhum,,Widad Ismail 3, Mandeep Singh 4 1 School of Electrical and Electronics

More information

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1 Wireless Networks: Physical Layer: Modulation, FEC Guevara Noubir Noubir@ccsneuedu S, COM355 Wireless Networks Lecture 3, Lecture focus Modulation techniques Bit Error Rate Reducing the BER Forward Error

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

DIGITAL CPFSK TRANSMITTER AND NONCOHERENT RECEIVER/DEMODULATOR IMPLEMENTATION 1

DIGITAL CPFSK TRANSMITTER AND NONCOHERENT RECEIVER/DEMODULATOR IMPLEMENTATION 1 DIGIAL CPFSK RANSMIER AND NONCOHEREN RECEIVER/DEMODULAOR IMPLEMENAION 1 Eric S. Otto and Phillip L. De León New Meico State University Center for Space elemetry and elecommunications ABSRAC As radio frequency

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

EFFECTS OF PHASE AND AMPLITUDE ERRORS ON QAM SYSTEMS WITH ERROR- CONTROL CODING AND SOFT DECISION DECODING

EFFECTS OF PHASE AND AMPLITUDE ERRORS ON QAM SYSTEMS WITH ERROR- CONTROL CODING AND SOFT DECISION DECODING Clemson University TigerPrints All Theses Theses 8-2009 EFFECTS OF PHASE AND AMPLITUDE ERRORS ON QAM SYSTEMS WITH ERROR- CONTROL CODING AND SOFT DECISION DECODING Jason Ellis Clemson University, jellis@clemson.edu

More information

Error Correcting Codes for Cooperative Broadcasting

Error Correcting Codes for Cooperative Broadcasting San Jose State University SJSU ScholarWorks Faculty Publications Electrical Engineering 11-30-2010 Error Correcting Codes for Cooperative Broadcasting Robert H. Morelos-Zaragoza San Jose State University,

More information

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61)

QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) QUESTION BANK SUBJECT: DIGITAL COMMUNICATION (15EC61) Module 1 1. Explain Digital communication system with a neat block diagram. 2. What are the differences between digital and analog communication systems?

More information

Constellation Shaping for LDPC-Coded APSK

Constellation Shaping for LDPC-Coded APSK Constellation Shaping for LDPC-Coded APSK Matthew C. Valenti Lane Department of Computer Science and Electrical Engineering West Virginia University U.S.A. Mar. 14, 2013 ( Lane Department LDPCof Codes

More information

Noncoherent Analog Network Coding using LDPC-coded FSK

Noncoherent Analog Network Coding using LDPC-coded FSK Noncoherent Analog Network Coding using LDPC-coded FSK Terry Ferrett and Matthew C. Valenti, West Virginia University, Morgantown, WV, USA. arxiv:73.43v cs.it] 4 Mar 7 Abstract Analog network coding ANC)

More information

Amplitude and Phase Distortions in MIMO and Diversity Systems

Amplitude and Phase Distortions in MIMO and Diversity Systems Amplitude and Phase Distortions in MIMO and Diversity Systems Christiane Kuhnert, Gerd Saala, Christian Waldschmidt, Werner Wiesbeck Institut für Höchstfrequenztechnik und Elektronik (IHE) Universität

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 2: Modulation and Demodulation Reference: Chap. 5 in Goldsmith s book Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Modulation From Wikipedia: The process of varying

More information

Capacity-Based Parameter Optimization of Bandwidth Constrained CPM

Capacity-Based Parameter Optimization of Bandwidth Constrained CPM Capacity-Based Parameter Optimization of Bandwidth Constrained CPM by Rohit Iyer Seshadri Dissertation submitted to the College of Engineering and Mineral Resources at West Virginia University in partial

More information

ELEC E7210: Communication Theory. Lecture 7: Adaptive modulation and coding

ELEC E7210: Communication Theory. Lecture 7: Adaptive modulation and coding ELEC E721: Communication Theory Lecture 7: Adaptive modulation and coding Adaptive modulation and coding (1) Change modulation and coding relative to fading AMC enable robust and spectrally efficient transmission

More information

PERFORMANCE COMPARISON OF SOQPSK DETECTORS: COHERENT VS. NONCOHERENT

PERFORMANCE COMPARISON OF SOQPSK DETECTORS: COHERENT VS. NONCOHERENT PERFORMANCE COMPARISON OF SOQPSK DETECTORS: COHERENT VS. NONCOHERENT Tom Bruns L-3 Communications Nova Engineering, Cincinnati, OH ABSTRACT Shaped Offset Quadrature Shift Keying (SOQPSK) is a spectrally

More information

Table of Contents. Acknowledgments... XVII Prologue... 1

Table of Contents. Acknowledgments... XVII Prologue... 1 Introduction to Spread-Spectrum Communications By Roger L. Peterson (Motorola), Rodger E. Ziemer (University of Co. at Colorado Springs), and David E. Borth (Motorola) Prentice Hall, 1995 (Navtech order

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

A System-Level Description of a SOQPSK- TG Demodulator for FEC Applications

A System-Level Description of a SOQPSK- TG Demodulator for FEC Applications A System-Level Description of a SOQPSK- TG Demodulator for FEC Applications Item Type text; Proceedings Authors Rea, Gino Publisher International Foundation for Telemetering Journal International Telemetering

More information

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA

Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA Performance of Wideband Mobile Channel with Perfect Synchronism BPSK vs QPSK DS-CDMA By Hamed D. AlSharari College of Engineering, Aljouf University, Sakaka, Aljouf 2014, Kingdom of Saudi Arabia, hamed_100@hotmail.com

More information

Theory of Telecommunications Networks

Theory of Telecommunications Networks Theory of Telecommunications Networks Anton Čižmár Ján Papaj Department of electronics and multimedia telecommunications CONTENTS Preface... 5 1 Introduction... 6 1.1 Mathematical models for communication

More information

Communications Theory and Engineering

Communications Theory and Engineering Communications Theory and Engineering Master's Degree in Electronic Engineering Sapienza University of Rome A.A. 2018-2019 TDMA, FDMA, CDMA (cont d) and the Capacity of multi-user channels Code Division

More information

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication 2. Diversity 1 Main story Communication over a flat fading channel has poor performance due to significant probability that channel is in a deep fade. Reliability is increased by providing more resolvable

More information

PERFORMANCE EVALUATION OF DIRECT SEQUENCE SPREAD SPECTRUM UNDER PHASE NOISE EFFECT WITH SIMULINK SIMULATIONS

PERFORMANCE EVALUATION OF DIRECT SEQUENCE SPREAD SPECTRUM UNDER PHASE NOISE EFFECT WITH SIMULINK SIMULATIONS PERFORMANCE EVALUATION OF DIRECT SEQUENCE SPREAD SPECTRUM UNDER PHASE NOISE EFFECT WITH SIMULINK SIMULATIONS Rupender Singh 1, Dr. S.K. Soni 2 1,2 Department of Electronics & Communication Engineering,

More information

Performance of Single-tone and Two-tone Frequency-shift Keying for Ultrawideband

Performance of Single-tone and Two-tone Frequency-shift Keying for Ultrawideband erformance of Single-tone and Two-tone Frequency-shift Keying for Ultrawideband Cheng Luo Muriel Médard Electrical Engineering Electrical Engineering and Computer Science, and Computer Science, Massachusetts

More information

Chapter 2 Direct-Sequence Systems

Chapter 2 Direct-Sequence Systems Chapter 2 Direct-Sequence Systems A spread-spectrum signal is one with an extra modulation that expands the signal bandwidth greatly beyond what is required by the underlying coded-data modulation. Spread-spectrum

More information

Wireless Multiple Access Communication over Collision Frequency Shift Channels

Wireless Multiple Access Communication over Collision Frequency Shift Channels University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Theses, Dissertations, and Student Research from Electrical & Computer Engineering Electrical & Computer Engineering, Department

More information

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1 CSE414 Digital Communications Chapter 4 Bandpass Modulation and Demodulation/Detection Bandpass Modulation Page 1 1 Bandpass Modulation n Baseband transmission is conducted at low frequencies n Passband

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

More information

Blind Iterative Channel Estimation and Detection for LDPC-Coded Cooperation Under Multi-User Interference

Blind Iterative Channel Estimation and Detection for LDPC-Coded Cooperation Under Multi-User Interference Blind Iterative Channel Estimation and Detection for LDPC-Coded Cooperation Under Multi-User Interference Don Torrieri*, Amitav Mukherjee, Hyuck M. Kwon Army Research Laboratory* University of California

More information

Jamming Mitigation Based on Coded Message-Driven Frequency Hopping

Jamming Mitigation Based on Coded Message-Driven Frequency Hopping Jamming Mitigation Based on Coded Message-Driven Frequency Hopping Huahui Wang and Tongtong Li Department of Electrical & Computer Engineering Michigan State University, East Lansing, Michigan 48824, USA

More information

ULTRA-WIDEBAND (UWB) communication systems

ULTRA-WIDEBAND (UWB) communication systems IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 55, NO. 9, SEPTEMBER 2007 1667 Narrowband Interference Avoidance in OFDM-Based UWB Communication Systems Dimitrie C. Popescu, Senior Member, IEEE, and Prasad Yaddanapudi,

More information

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System

Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Implementation of Different Interleaving Techniques for Performance Evaluation of CDMA System Anshu Aggarwal 1 and Vikas Mittal 2 1 Anshu Aggarwal is student of M.Tech. in the Department of Electronics

More information

Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading Sequences

Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading Sequences Turbo Receiver for Spread Spectrum Systems Employing Parity Bit Selected Spreading Sequences by Alireza Mirzaee Thesis submitted to the Faculty of Graduate and Postdoctoral Studies In partial fulfillment

More information

Chapter 3 Convolutional Codes and Trellis Coded Modulation

Chapter 3 Convolutional Codes and Trellis Coded Modulation Chapter 3 Convolutional Codes and Trellis Coded Modulation 3. Encoder Structure and Trellis Representation 3. Systematic Convolutional Codes 3.3 Viterbi Decoding Algorithm 3.4 BCJR Decoding Algorithm 3.5

More information

CHAPTER 6 SPREAD SPECTRUM. Xijun Wang

CHAPTER 6 SPREAD SPECTRUM. Xijun Wang CHAPTER 6 SPREAD SPECTRUM Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 13 2. Tse, Fundamentals of Wireless Communication, Chapter 4 2 WHY SPREAD SPECTRUM n Increase signal

More information

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( )

CHAPTER 2. Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication ( ) CHAPTER 2 Instructor: Mr. Abhijit Parmar Course: Mobile Computing and Wireless Communication (2170710) Syllabus Chapter-2.4 Spread Spectrum Spread Spectrum SS was developed initially for military and intelligence

More information

Chapter 4. Part 2(a) Digital Modulation Techniques

Chapter 4. Part 2(a) Digital Modulation Techniques Chapter 4 Part 2(a) Digital Modulation Techniques Overview Digital Modulation techniques Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency Shift Keying (FSK) Quadrature

More information

Principles of Communications

Principles of Communications Principles of Communications Meixia Tao Shanghai Jiao Tong University Chapter 8: Digital Modulation Techniques Textbook: Ch 8.4 8.5, Ch 10.1-10.5 1 Topics to be Covered data baseband Digital modulator

More information

Problem Set. I- Review of Some Basics. and let X = 10 X db/10 be the corresponding log-normal RV..

Problem Set. I- Review of Some Basics. and let X = 10 X db/10 be the corresponding log-normal RV.. Department of Telecomunications Norwegian University of Science and Technology NTNU Communication & Coding Theory for Wireless Channels, October 2002 Problem Set Instructor: Dr. Mohamed-Slim Alouini E-mail:

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information

COMMUNICATION SYSTEMS

COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 4TH EDITION Simon Hayhin McMaster University JOHN WILEY & SONS, INC. Ш.! [ BACKGROUND AND PREVIEW 1. The Communication Process 1 2. Primary Communication Resources 3 3. Sources of

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Performance analysis of BPSK system with ZF & MMSE equalization

Performance analysis of BPSK system with ZF & MMSE equalization Performance analysis of BPSK system with ZF & MMSE equalization Manish Kumar Department of Electronics and Communication Engineering Swift institute of Engineering & Technology, Rajpura, Punjab, India

More information

Communications IB Paper 6 Handout 5: Multiple Access

Communications IB Paper 6 Handout 5: Multiple Access Communications IB Paper 6 Handout 5: Multiple Access Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk Lent Term Jossy Sayir

More information

Digital Image Watermarking by Spread Spectrum method

Digital Image Watermarking by Spread Spectrum method Digital Image Watermarking by Spread Spectrum method Andreja Samčovi ović Faculty of Transport and Traffic Engineering University of Belgrade, Serbia Belgrade, november 2014. I Spread Spectrum Techniques

More information

Performance of Hybrid Concatenated Trellis Codes CPFSK with Iterative Decoding over Fading Channels

Performance of Hybrid Concatenated Trellis Codes CPFSK with Iterative Decoding over Fading Channels Performance of Hybrid Concatenated Trellis Codes CPFSK with Iterative Decoding over Fading Channels Labib Francis Gergis Misr Academy for Engineering and Technology Mansoura, Egypt IACSIT Senior Member,

More information

Digital modulation techniques

Digital modulation techniques Outline Introduction Signal, random variable, random process and spectra Analog modulation Analog to digital conversion Digital transmission through baseband channels Signal space representation Optimal

More information

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS

EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS EFFECTIVE CHANNEL CODING OF SERIALLY CONCATENATED ENCODERS AND CPM OVER AWGN AND RICIAN CHANNELS Manjeet Singh (ms308@eng.cam.ac.uk) Ian J. Wassell (ijw24@eng.cam.ac.uk) Laboratory for Communications Engineering

More information

Fund. of Digital Communications Ch. 3: Digital Modulation

Fund. of Digital Communications Ch. 3: Digital Modulation Fund. of Digital Communications Ch. 3: Digital Modulation Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Laboratory www.spsc.tugraz.at Graz University of Technology November

More information

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing

Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing 16.548 Notes 15: Concatenated Codes, Turbo Codes and Iterative Processing Outline! Introduction " Pushing the Bounds on Channel Capacity " Theory of Iterative Decoding " Recursive Convolutional Coding

More information

Digital Communication Digital Modulation Schemes

Digital Communication Digital Modulation Schemes Digital Communication Digital Modulation Schemes Yabo Li Fall, 2013 Chapter Outline Representation of Digitally Modulated Signals Linear Modulation PAM PSK QAM Multi-Dimensional Signal Non-linear Modulation

More information

Performance Analysis of Different Ultra Wideband Modulation Schemes in the Presence of Multipath

Performance Analysis of Different Ultra Wideband Modulation Schemes in the Presence of Multipath Application Note AN143 Nov 6, 23 Performance Analysis of Different Ultra Wideband Modulation Schemes in the Presence of Multipath Maurice Schiff, Chief Scientist, Elanix, Inc. Yasaman Bahreini, Consultant

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 7 : Diversity Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.7 Dr. Musbah Shaat 1 / 19 Outline 1 Introduction 2 3 Transmitter Diversity EELE 6333:

More information

Chapter 14 MODULATION INTRODUCTION

Chapter 14 MODULATION INTRODUCTION Chapter 14 MODULATION INTRODUCTION As we have seen in previous three chapters, different types of media need different types of electromagnetic signals to carry information from the source to the destination.

More information

Exam in 1TT850, 1E275. Modulation, Demodulation and Coding course

Exam in 1TT850, 1E275. Modulation, Demodulation and Coding course Exam in 1TT850, 1E275 Modulation, Demodulation and Coding course EI, TF, IT programs 16th of August 2004, 14:00-19:00 Signals and systems, Uppsala university Examiner Sorour Falahati office: 018-471 3071

More information

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 7 Multiple Division Techniques for Traffic Channels Introduction to Wireless & Mobile Systems Chapter 7 Multiple Division Techniques for Traffic Channels Outline Introduction Concepts and Models for Multiple Divisions Frequency Division Multiple Access

More information

Performance Analysis of Rake Receivers in IR UWB System

Performance Analysis of Rake Receivers in IR UWB System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735. Volume 6, Issue 3 (May. - Jun. 2013), PP 23-27 Performance Analysis of Rake Receivers in IR UWB

More information

PERFORMANCE ANALYSIS OF MC-CDMA COMMUNICATION SYSTEMS OVER NAKAGAMI-M ENVIRONMENTS

PERFORMANCE ANALYSIS OF MC-CDMA COMMUNICATION SYSTEMS OVER NAKAGAMI-M ENVIRONMENTS 58 Journal of Marine Science and Technology, Vol. 4, No., pp. 58-63 (6) Short Paper PERFORMANCE ANALYSIS OF MC-CDMA COMMUNICATION SYSTEMS OVER NAKAGAMI-M ENVIRONMENTS Joy Iong-Zong Chen Key words: MC-CDMA

More information

0.6 kbits/s, the modulation shall be aviation binary phase shift keying (A-BPSK).

0.6 kbits/s, the modulation shall be aviation binary phase shift keying (A-BPSK). SECTION 3 RF CHANNEL CHARACTERISTICS 3.1 Modulation 3.1.1 Modulation for channel rates 2.4 kbits/s and below. For channel rates of 2.4, 1.2 and 0.6 kbits/s, the modulation shall be aviation binary phase

More information

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27)

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27) ECEn 665: Antennas and Propagation for Wireless Communications 131 9. Modulation Modulation is a way to vary the amplitude and phase of a sinusoidal carrier waveform in order to transmit information. When

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING

CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING CALIFORNIA STATE UNIVERSITY, NORTHRIDGE FADING CHANNEL CHARACTERIZATION AND MODELING A graduate project submitted in partial fulfillment of the requirements For the degree of Master of Science in Electrical

More information

Principles of Spread-Spectrum Communication Systems

Principles of Spread-Spectrum Communication Systems Principles of Spread-Spectrum Communication Systems Don Torrieri Principles of Spread-Spectrum Communication Systems Third Edition 2123 Don Torrieri US Army Research Laboratory Adelphi Maryland USA The

More information