EE359 Discussion Session 8 Beamforming, Diversity-multiplexing tradeoff, MIMO receiver design, Multicarrier modulation

Size: px
Start display at page:

Download "EE359 Discussion Session 8 Beamforming, Diversity-multiplexing tradeoff, MIMO receiver design, Multicarrier modulation"

Transcription

1 EE359 Discussion Session 8 Beamforming, Diversity-multiplexing tradeoff, MIMO receiver design, Multicarrier modulation November 29, 2017 EE359 Discussion 8 November 29, / 33

2 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

3 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

4 Brief recap of the notation for a point to point MIMO system y = Hx + n ỹ = Σ x + ñ where H = UΣV H = i σ iu i v H i and x = V x, ỹ = U H y N t transmit antennas and N r receive antennas Decomposition into parallel channels with perfect CSIT and CSIR σ 1 > σ 2 >... EE359 Discussion 8 November 29, / 33

5 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

6 Beamforming Idea If CSIT available, simply transmit along vector with the largest singular value, i.e. make x C scalar - one value Some points Equivalent scalar channel ỹ = u H Hv x + ñ 1 Maximizes SNR if u and v are first singular vectors Optimal only if other parallel channels are weak (low SNR) Why is maximum SNR scheme not always optimal? Any choice of u and v other than u 1 and v 1 is suboptimal EE359 Discussion 8 November 29, / 33

7 Homework 7 Problem 1 In part (a), it can be assumed that the magnitude of path loss is the same in all transmissions. Show that optimal (i.e., SNR maximizing) choice for u and v are u 1 and v 1 respectively Problem 2 Problem 2 explores linear algebra inequality between 2-norm and Frobenius norm. As well as the connection between MIMO communication and Maximal Ratio Combining in Rayleigh fading. EE359 Discussion 8 November 29, / 33

8 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

9 The tradeoff Setting CSI (channel state info) known at receiver but is unknown at transmitter, finite blocklengths. Intuition Antennas can be used for higher reliability (diversity) or rate (multiplexing) Fineprint We assume i.i.d. complex normal entries for H High SNR concept: Multiplexing gain r = R(SNR) limsnr log 2 (SNR) Diversity gain d = log P limsnr e log SNR EE359 Discussion 8 November 29, / 33

10 The tradeoff Diversity d Multiplexing r Figure: Blue curve for N t = 3, N r = 3, green for N t = 2, N r = 2 Blue dot corresponds to low rate, high reliability transmission Red dot corresponds to high rate, low reliability transmission Achievability Any point on this tradeoff curve may be achieved in general by a suitable space time code EE359 Discussion 8 November 29, / 33

11 Homework 7 Problem 3 Explores the diversity multiplexing tradeoff for a simple system Problem 4 Evaluate capacity using waterfilling (CSIT) or uniform allocation (only CSIR). Also evaluate bit error rates and total throughput for some achievable schemes. EE359 Discussion 8 November 29, / 33

12 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

13 The optimal receiver Idea Maximum likelihood criterion: ˆx = argmax x X p(x H, y) Some more details about ML decoder For i.i.d. Gaussian noise statistics and uniformly random MQAM signalling, p(x H, y) e c y Hx 2, so ˆx = argmax y Hx 2 x X Problem An NP-hard combinatorial optimization problem. EE359 Discussion 8 November 29, / 33

14 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

15 Simple approximations: Zero forcing Idea Use matrix inversion Math ˆx = H y where H = (H H H) 1 H H if H is tall Some features Requires O ( Nt 3 ) operations. (Can t expect to do better than this unless H is sparse) Nearly optimal when condition number is close to 1. Poor performance for ill-conditioned channels. EE359 Discussion 8 November 29, / 33

16 Zero Forcing in Pictures H H -1 EE359 Discussion 8 November 29, / 33

17 Zero Forcing in Pictures H H -1 EE359 Discussion 8 November 29, / 33

18 Zero Forcing in Pictures H H -1 EE359 Discussion 8 November 29, / 33

19 Zero Forcing in Pictures H H -1-1 EE359 Discussion 8 November 29, / 33

20 Simple approximations: Linear MMSE decoding Idea Write estimate as an affine function of y. Minimize expected squared error by choosing right affine function. Regular MMSE: Assume x to be i.i.d. multivariate Gaussian and compute optimal decoder (minimum expected mean squared error (MSE)) Math (assuming SNR = 1/σ 2 ) ˆx = (H H H + σ 2 I) 1 H H y Some features Good complexity (similar to zero forcing) Less sensitive to ill-conditioned matrices In practice x is not Gaussian EE359 Discussion 8 November 29, / 33

21 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

22 An ML Algorithm: Enumeration ML Decoding: Find closest point in l 2 norm. How to search for close points? Naïve approach Check all M n points, return closest EE359 Discussion 8 November 29, / 33

23 Enumeration BPSK, N t = 2 x Nt x Nt x Nt 1 x Nt 1 x Nt 1 x Nt There is no reason two adjacent nodes are close! Questions Is there are smart way to traverse this graph? What is our stopping criteria? Can we prune nodes? EE359 Discussion 8 November 29, / 33

24 Better Enumeration: QR Decomposition H = QR = Q r 1,1 r. 1, r 1,n r n,n New Basis x = Rx, y Hx 2 = Q H y x 2 Notice: l 2 norm in this basis can be considered element-wise: x n,..., x 1 Partial objective : s m = m i=1 ( q n i, y x n i ) EE359 Discussion 8 November 29, / 33

25 Sphere decoder Prune branches below m if s m > r s 1 > r x Nt x Nt x Nt 1 x Nt 1 x Nt 1 x Nt 1 EE359 Discussion 8 November 29, / 33

26 Sphere decoder Prune branches below m if s m > r s 1 > r x Nt x Nt x Nt 1 x Nt 1 x Nt 1 x Nt 1 EE359 Discussion 8 November 29, / 33

27 Sphere decoder Prune branches below m if s m > r s 1 < r x Nt x Nt x Nt 1 x Nt 1 x Nt 1 x Nt 1 EE359 Discussion 8 November 29, / 33

28 Sphere decoder Prune branches below m if s m > r s 1 < r x Nt x Nt x Nt 1 x Nt 1 x Nt 1 x Nt 1 EE359 Discussion 8 November 29, / 33

29 Sphere decoder Prune branches below m if s m > r s 1 < r x Nt x Nt x Nt 1 x Nt 1 x Nt 1 x Nt 1 Return minimum value of objective function at last depth. EE359 Discussion 8 November 29, / 33

30 Further notes If r is large enough, gives ML estimate If correct solution is pruned, declare error (erased symbol) Reducing r reduces complexity. Complexity also based on channel condition number and signal to noise ratio Further techniques exist improve enumeration (e.g. LLL algorithm) EE359 Discussion 8 November 29, / 33

31 Homework 7 Problem 5 Apply ML, Zero Forcing and MMSE decoder. Naïve implementation of ML is fine. Problem 6 Simple exploration of sphere decoding. No implementation needed! EE359 Discussion 8 November 29, / 33

32 Outline 1 MIMO concepts Beamforming Diversity multiplexing tradeoff for point to point MIMO 2 MIMO Decoding Linear Decoders Sphere Decoding 3 Multicarrier modulation EE359 Discussion 8 November 29, / 33

33 Intersymbol interference Problem Coherence bandwidth of channel is small, thus channel spreads wideband signal in time Some common remedies Equalization/deconvolution/channel inversion Multicarrier modulation Spread spectrum EE359 Discussion 8 November 29, / 33

34 Multicarrier modulation Idea Split wideband (B) into N narrowband chunks each of bandwidth B/N, such that B n = B/N B c Common incarnations Frequency division multiplexing (FDM) Orthogonal FDM (OFDM) Uses 4G LTE, Wifi use OFDM 2G standards (GSM) used FDM heavily EE359 Discussion 8 November 29, / 33

35 FDM Idea Pack a bunch of orthonormal basis functions in frequency domain, thereby creating parallel channels Implementation issues Minimum carrier frequency separation with signal duration T N is 1/T N Usually need a rolloff factor β and guard bands ɛ, thus effective occupancy B n = N(1 + β + ɛ)/t N Need separate receiver hardware/modulation schemes at each carrier frequency EE359 Discussion 8 November 29, / 33

36 Homework 7 Problem 7 Two signals s i (t) and s j (t) over time T N are orthogonal if TN t=0 s i(t)s j (t)dt = 0 EE359 Discussion 8 November 29, / 33

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Lecture 4 Diversity and MIMO Communications

Lecture 4 Diversity and MIMO Communications MIMO Communication Systems Lecture 4 Diversity and MIMO Communications Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Spring 2017 1 Outline Diversity Techniques

More information

Index. Cambridge University Press Fundamentals of Wireless Communication David Tse and Pramod Viswanath. Index.

Index. Cambridge University Press Fundamentals of Wireless Communication David Tse and Pramod Viswanath. Index. ad hoc network 5 additive white Gaussian noise (AWGN) 29, 30, 166, 241 channel capacity 167 capacity-achieving AWGN channel codes 170, 171 packing spheres 168 72, 168, 169 channel resources 172 bandwidth

More information

CHAPTER 5 DIVERSITY. Xijun Wang

CHAPTER 5 DIVERSITY. Xijun Wang CHAPTER 5 DIVERSITY Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 7 2. Tse, Fundamentals of Wireless Communication, Chapter 3 2 FADING HURTS THE RELIABILITY n The detection

More information

Lecture 8 Multi- User MIMO

Lecture 8 Multi- User MIMO Lecture 8 Multi- User MIMO I-Hsiang Wang ihwang@ntu.edu.tw 5/7, 014 Multi- User MIMO System So far we discussed how multiple antennas increase the capacity and reliability in point-to-point channels Question:

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

CHAPTER 8 MIMO. Xijun Wang

CHAPTER 8 MIMO. Xijun Wang CHAPTER 8 MIMO Xijun Wang WEEKLY READING 1. Goldsmith, Wireless Communications, Chapters 10 2. Tse, Fundamentals of Wireless Communication, Chapter 7-10 2 MIMO 3 BENEFITS OF MIMO n Array gain The increase

More information

Multiple Antennas and Space-Time Communications

Multiple Antennas and Space-Time Communications Chapter 10 Multiple Antennas and Space-Time Communications In this chapter we consider systems with multiple antennas at the transmitter and receiver, which are commonly referred to as multiple input multiple

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1 Antenna, Antenna : Antenna and Theoretical Foundations of Wireless Communications 1 Friday, April 27, 2018 9:30-12:00, Kansliet plan 3 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication

2: Diversity. 2. Diversity. Some Concepts of Wireless Communication 2. Diversity 1 Main story Communication over a flat fading channel has poor performance due to significant probability that channel is in a deep fade. Reliability is increased by providing more resolvable

More information

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION

IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION IMPROVED QR AIDED DETECTION UNDER CHANNEL ESTIMATION ERROR CONDITION Jigyasha Shrivastava, Sanjay Khadagade, and Sumit Gupta Department of Electronics and Communications Engineering, Oriental College of

More information

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique

Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding Technique e-issn 2455 1392 Volume 2 Issue 6, June 2016 pp. 190 197 Scientific Journal Impact Factor : 3.468 http://www.ijcter.com Performance Study of MIMO-OFDM System in Rayleigh Fading Channel with QO-STB Coding

More information

Adaptive Wireless. Communications. gl CAMBRIDGE UNIVERSITY PRESS. MIMO Channels and Networks SIDDHARTAN GOVJNDASAMY DANIEL W.

Adaptive Wireless. Communications. gl CAMBRIDGE UNIVERSITY PRESS. MIMO Channels and Networks SIDDHARTAN GOVJNDASAMY DANIEL W. Adaptive Wireless Communications MIMO Channels and Networks DANIEL W. BLISS Arizona State University SIDDHARTAN GOVJNDASAMY Franklin W. Olin College of Engineering, Massachusetts gl CAMBRIDGE UNIVERSITY

More information

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS Puneetha R 1, Dr.S.Akhila 2 1 M. Tech in Digital Communication B M S College Of Engineering Karnataka, India 2 Professor Department of

More information

Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System

Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System Saqib Saleem 1, Qamar-Ul-Islam 2 Department of Communication System Engineering Institute of Space Technology Islamabad,

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems

Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems Multi-Input Multi-Output Systems (MIMO) Channel Model for MIMO MIMO Decoding MIMO Gains Multi-User MIMO Systems MIMO Each node has multiple antennas Capable of transmitting (receiving) multiple streams

More information

Comparative Study of the detection algorithms in MIMO

Comparative Study of the detection algorithms in MIMO Comparative Study of the detection algorithms in MIMO Ammu.I, Deepa.R. Department of Electronics and Communication, Amrita Vishwa Vidyapeedam,Ettimadai, Coimbatore, India. Abstract- Wireless communication

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System

Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System International Journal of Electrical & Computer Sciences IJECS-IJENS Vol: 11 No: 02 6 Performance and Complexity Comparison of Channel Estimation Algorithms for OFDM System Saqib Saleem 1, Qamar-Ul-Islam

More information

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm

Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm Channel Capacity Estimation in MIMO Systems Based on Water-Filling Algorithm 1 Ch.Srikanth, 2 B.Rajanna 1 PG SCHOLAR, 2 Assistant Professor Vaagdevi college of engineering. (warangal) ABSTRACT power than

More information

Antennas and Propagation. Chapter 6d: Diversity Techniques and Spatial Multiplexing

Antennas and Propagation. Chapter 6d: Diversity Techniques and Spatial Multiplexing Antennas and Propagation d: Diversity Techniques and Spatial Multiplexing Introduction: Diversity Diversity Use (or introduce) redundancy in the communications system Improve (short time) link reliability

More information

Performance of wireless Communication Systems with imperfect CSI

Performance of wireless Communication Systems with imperfect CSI Pedagogy lecture Performance of wireless Communication Systems with imperfect CSI Yogesh Trivedi Associate Prof. Department of Electronics and Communication Engineering Institute of Technology Nirma University

More information

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei The Case for Optimum Detection Algorithms in MIMO Wireless Systems Helmut Bölcskei joint work with A. Burg, C. Studer, and M. Borgmann ETH Zurich Data rates in wireless double every 18 months throughput

More information

Power Allocation Tradeoffs in Multicarrier Authentication Systems

Power Allocation Tradeoffs in Multicarrier Authentication Systems Power Allocation Tradeoffs in Multicarrier Authentication Systems Paul L. Yu, John S. Baras, and Brian M. Sadler Abstract Physical layer authentication techniques exploit signal characteristics to identify

More information

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Volume 4, Issue 6, June (016) Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Pranil S Mengane D. Y. Patil

More information

MMSE Algorithm Based MIMO Transmission Scheme

MMSE Algorithm Based MIMO Transmission Scheme MMSE Algorithm Based MIMO Transmission Scheme Rashmi Tiwari 1, Agya Mishra 2 12 Department of Electronics and Tele-Communication Engineering, Jabalpur Engineering College, Jabalpur, Madhya Pradesh, India

More information

MIMO Channel Capacity of Static Channels

MIMO Channel Capacity of Static Channels MIMO Channel Capacity of Static Channels Zhe Chen Department of Electrical and Computer Engineering Tennessee Technological University Cookeville, TN38505 December 2008 Contents Introduction Parallel Decomposition

More information

Diversity and Freedom: A Fundamental Tradeoff in Multiple Antenna Channels

Diversity and Freedom: A Fundamental Tradeoff in Multiple Antenna Channels Diversity and Freedom: A Fundamental Tradeoff in Multiple Antenna Channels Lizhong Zheng and David Tse Department of EECS, U.C. Berkeley Feb 26, 2002 MSRI Information Theory Workshop Wireless Fading Channels

More information

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114

IJESRT. Scientific Journal Impact Factor: (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY PERFORMANCE IMPROVEMENT OF CONVOLUTION CODED OFDM SYSTEM WITH TRANSMITTER DIVERSITY SCHEME Amol Kumbhare *, DR Rajesh Bodade *

More information

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers

Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Performance Comparison of MIMO Systems over AWGN and Rician Channels with Zero Forcing Receivers Navjot Kaur and Lavish Kansal Lovely Professional University, Phagwara, E-mails: er.navjot21@gmail.com,

More information

Diversity and Multiplexing: A Fundamental Tradeoff in Wireless Systems

Diversity and Multiplexing: A Fundamental Tradeoff in Wireless Systems Diversity and Multiplexing: A Fundamental Tradeoff in Wireless Systems David Tse Department of EECS, U.C. Berkeley June 6, 2003 UCSB Wireless Fading Channels Fundamental characteristic of wireless channels:

More information

Diversity Techniques

Diversity Techniques Diversity Techniques Vasileios Papoutsis Wireless Telecommunication Laboratory Department of Electrical and Computer Engineering University of Patras Patras, Greece No.1 Outline Introduction Diversity

More information

Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users

Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users Power allocation for Block Diagonalization Multi-user MIMO downlink with fair user scheduling and unequal average SNR users Therdkiat A. (Kiak) Araki-Sakaguchi Laboratory MCRG group seminar 12 July 2012

More information

STUDY OF THE PERFORMANCE OF THE LINEAR AND NON-LINEAR NARROW BAND RECEIVERS FOR 2X2 MIMO SYSTEMS WITH STBC MULTIPLEXING AND ALAMOTI CODING

STUDY OF THE PERFORMANCE OF THE LINEAR AND NON-LINEAR NARROW BAND RECEIVERS FOR 2X2 MIMO SYSTEMS WITH STBC MULTIPLEXING AND ALAMOTI CODING International Journal of Electrical and Electronics Engineering Research Vol.1, Issue 1 (2011) 68-83 TJPRC Pvt. Ltd., STUDY OF THE PERFORMANCE OF THE LINEAR AND NON-LINEAR NARROW BAND RECEIVERS FOR 2X2

More information

Written Exam Channel Modeling for Wireless Communications - ETIN10

Written Exam Channel Modeling for Wireless Communications - ETIN10 Written Exam Channel Modeling for Wireless Communications - ETIN10 Department of Electrical and Information Technology Lund University 2017-03-13 2.00 PM - 7.00 PM A minimum of 30 out of 60 points are

More information

UNIVERSITY OF MORATUWA BEAMFORMING TECHNIQUES FOR THE DOWNLINK OF SPACE-FREQUENCY CODED DECODE-AND-FORWARD MIMO-OFDM RELAY SYSTEMS

UNIVERSITY OF MORATUWA BEAMFORMING TECHNIQUES FOR THE DOWNLINK OF SPACE-FREQUENCY CODED DECODE-AND-FORWARD MIMO-OFDM RELAY SYSTEMS UNIVERSITY OF MORATUWA BEAMFORMING TECHNIQUES FOR THE DOWNLINK OF SPACE-FREQUENCY CODED DECODE-AND-FORWARD MIMO-OFDM RELAY SYSTEMS By Navod Devinda Suraweera This thesis is submitted to the Department

More information

Principles of Orthogonal Frequency Division Multiplexing and Multiple Input Multiple Output Communications Systems

Principles of Orthogonal Frequency Division Multiplexing and Multiple Input Multiple Output Communications Systems Principles of Orthogonal Frequency Division Multiplexing and Multiple Input Multiple Output Communications Systems OFDM OFDM Material Multicarrier communications Synchronization Issues Synchronization

More information

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS

SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS SPLIT MLSE ADAPTIVE EQUALIZATION IN SEVERELY FADED RAYLEIGH MIMO CHANNELS RASHMI SABNUAM GUPTA 1 & KANDARPA KUMAR SARMA 2 1 Department of Electronics and Communication Engineering, Tezpur University-784028,

More information

Space Time Line Code. INDEX TERMS Space time code, space time block code, space time line code, spatial diversity gain, multiple antennas.

Space Time Line Code. INDEX TERMS Space time code, space time block code, space time line code, spatial diversity gain, multiple antennas. Received October 11, 017, accepted November 1, 017, date of publication November 4, 017, date of current version February 14, 018. Digital Object Identifier 10.1109/ACCESS.017.77758 Space Time Line Code

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection

Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Performance Analysis of Multiuser MIMO Systems with Scheduling and Antenna Selection Mohammad Torabi Wessam Ajib David Haccoun Dept. of Electrical Engineering Dept. of Computer Science Dept. of Electrical

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

Study of Turbo Coded OFDM over Fading Channel

Study of Turbo Coded OFDM over Fading Channel International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 2 (August 2012), PP. 54-58 Study of Turbo Coded OFDM over Fading Channel

More information

Multiple Antennas in Wireless Communications

Multiple Antennas in Wireless Communications Multiple Antennas in Wireless Communications Luca Sanguinetti Department of Information Engineering Pisa University lucasanguinetti@ietunipiit April, 2009 Luca Sanguinetti (IET) MIMO April, 2009 1 / 46

More information

Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems

Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems Implementation and Complexity Analysis of List Sphere Detector for MIMO-OFDM systems Markus Myllylä University of Oulu, Centre for Wireless Communications markus.myllyla@ee.oulu.fi Outline Introduction

More information

Iterative Leakage-Based Precoding for Multiuser-MIMO Systems. Eric Sollenberger

Iterative Leakage-Based Precoding for Multiuser-MIMO Systems. Eric Sollenberger Iterative Leakage-Based Precoding for Multiuser-MIMO Systems Eric Sollenberger Thesis submitted to the faculty of the Virginia Polytechnic Institute and State University in partial fulfillment of the requirements

More information

Multiple Input Multiple Output (MIMO) Operation Principles

Multiple Input Multiple Output (MIMO) Operation Principles Afriyie Abraham Kwabena Multiple Input Multiple Output (MIMO) Operation Principles Helsinki Metropolia University of Applied Sciences Bachlor of Engineering Information Technology Thesis June 0 Abstract

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

Performance Evaluation of STBC MIMO Systems with Linear Precoding

Performance Evaluation of STBC MIMO Systems with Linear Precoding elfor Journal, Vol., No., 00. Performance Evaluation of SBC MIMO Systems with Linear Precoding Ancuţa Moldovan, udor Palade, Emanuel Puşchiţă, Irina Vermeşan, and Rebeca Colda Abstract It is known that

More information

Reduced Complexity of QRD-M Detection Scheme in MIMO-OFDM Systems

Reduced Complexity of QRD-M Detection Scheme in MIMO-OFDM Systems Advanced Science and echnology Letters Vol. (ASP 06), pp.4- http://dx.doi.org/0.457/astl.06..4 Reduced Complexity of QRD-M Detection Scheme in MIMO-OFDM Systems Jong-Kwang Kim, Jae-yun Ro and young-kyu

More information

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved.

VOL. 3, NO.11 Nov, 2012 ISSN Journal of Emerging Trends in Computing and Information Sciences CIS Journal. All rights reserved. Effect of Fading Correlation on the Performance of Spatial Multiplexed MIMO systems with circular antennas M. A. Mangoud Department of Electrical and Electronics Engineering, University of Bahrain P. O.

More information

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK

SNS COLLEGE OF ENGINEERING COIMBATORE DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK SNS COLLEGE OF ENGINEERING COIMBATORE 641107 DEPARTMENT OF INFORMATION TECHNOLOGY QUESTION BANK EC6801 WIRELESS COMMUNICATION UNIT-I WIRELESS CHANNELS PART-A 1. What is propagation model? 2. What are the

More information

3 Local scattering channel model Local scattering model Statistics with the local scattering model Summary...

3 Local scattering channel model Local scattering model Statistics with the local scattering model Summary... Abstract Cellular wireless communication like GSM and WLAN has become an important part of the infrastructure. The next generation of wireless systems is believed to be based on multiple-input multiple-output

More information

Spectral spreading by linear block codes for OFDM in Powerline Communications

Spectral spreading by linear block codes for OFDM in Powerline Communications Spectral spreading by linear block codes for OFDM in Powerline Communications Dirk Benyoucef, Marc Kuhn and Armin Wittneben Institute of Digital Communications University of Saarland, Swiss Federal Institute

More information

Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading

Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading Robust Frequency-Hopping System for Channels with Interference and Frequency-Selective Fading Don Torrieri 1, Shi Cheng 2, and Matthew C. Valenti 2 1 US Army Research Lab 2 Lane Department of Computer

More information

Improving Diversity Using Linear and Non-Linear Signal Detection techniques

Improving Diversity Using Linear and Non-Linear Signal Detection techniques International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 6 (June 2014), PP.13-19 Improving Diversity Using Linear and Non-Linear

More information

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System Pranil Mengane 1, Ajitsinh Jadhav 2 12 Department of Electronics & Telecommunication Engg, D.Y. Patil College of Engg & Tech, Kolhapur

More information

Optimal user pairing for multiuser MIMO

Optimal user pairing for multiuser MIMO Optimal user pairing for multiuser MIMO Emanuele Viterbo D.E.I.S. Università della Calabria Arcavacata di Rende, Italy Email: viterbo@deis.unical.it Ari Hottinen Nokia Research Center Helsinki, Finland

More information

Wireless Communications Over Rapidly Time-Varying Channels

Wireless Communications Over Rapidly Time-Varying Channels Wireless Communications Over Rapidly Time-Varying Channels Edited by Franz Hlawatsch Gerald Matz ELSEVIER AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY

More information

Bit Loading of OFDM with High Spectral Efficiency for MIMO

Bit Loading of OFDM with High Spectral Efficiency for MIMO IJCAES ISSN: 2231-4946 Volume III, Special Issue, August 2013 International Journal of Computer Applications in Engineering Sciences Special Issue on National Conference on Information and Communication

More information

Linear Precoding in MIMO Wireless Systems

Linear Precoding in MIMO Wireless Systems Linear Precoding in MIMO Wireless Systems Bhaskar Rao Center for Wireless Communications University of California, San Diego Acknowledgement: Y. Isukapalli, L. Yu, J. Zheng, J. Roh 1 / 48 Outline 1 Promise

More information

A Sphere Decoding Algorithm for MIMO

A Sphere Decoding Algorithm for MIMO A Sphere Decoding Algorithm for MIMO Jay D Thakar Electronics and Communication Dr. S & S.S Gandhy Government Engg College Surat, INDIA ---------------------------------------------------------------------***-------------------------------------------------------------------

More information

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels

Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Orthogonal Frequency Division Multiplexing (OFDM) based Uplink Multiple Access Method over AWGN and Fading Channels Prashanth G S 1 1Department of ECE, JNNCE, Shivamogga ---------------------------------------------------------------------***----------------------------------------------------------------------

More information

ICI Mitigation for Mobile OFDM with Application to DVB-H

ICI Mitigation for Mobile OFDM with Application to DVB-H ICI Mitigation for Mobile OFDM with Application to DVB-H Outline Background and Motivation Coherent Mobile OFDM Detection DVB-H System Description Hybrid Frequency/Time-Domain Channel Estimation Conclusions

More information

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN

International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July ISSN International Journal of Scientific & Engineering Research, Volume 4, Issue 7, July-2013 414 Rayleigh Fading Channel Estimation Of Mimo System With Spectral Efficiency And Channel Capacity Using High Data

More information

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context

4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context 4x4 Time-Domain MIMO encoder with OFDM Scheme in WIMAX Context Mohamed.Messaoudi 1, Majdi.Benzarti 2, Salem.Hasnaoui 3 Al-Manar University, SYSCOM Laboratory / ENIT, Tunisia 1 messaoudi.jmohamed@gmail.com,

More information

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems

Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems , 2009, 5, 351-356 doi:10.4236/ijcns.2009.25038 Published Online August 2009 (http://www.scirp.org/journal/ijcns/). Iterative Detection and Decoding with PIC Algorithm for MIMO-OFDM Systems Zhongpeng WANG

More information

Opportunistic Communication in Wireless Networks

Opportunistic Communication in Wireless Networks Opportunistic Communication in Wireless Networks David Tse Department of EECS, U.C. Berkeley October 10, 2001 Networking, Communications and DSP Seminar Communication over Wireless Channels Fundamental

More information

Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes

Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes Performance Analysis of MIMO Equalization Techniques with Highly Efficient Channel Coding Schemes Neha Aggarwal 1 Shalini Bahel 2 Teglovy Singh Chohan 3 Jasdeep Singh 4 1,2,3,4 Department of Electronics

More information

PERFORMANCE ANALYSIS OF AN UPLINK MISO-CDMA SYSTEM USING MULTISTAGE MULTI-USER DETECTION SCHEME WITH V-BLAST SIGNAL DETECTION ALGORITHMS

PERFORMANCE ANALYSIS OF AN UPLINK MISO-CDMA SYSTEM USING MULTISTAGE MULTI-USER DETECTION SCHEME WITH V-BLAST SIGNAL DETECTION ALGORITHMS PERFORMANCE ANALYSIS OF AN UPLINK MISO-CDMA SYSTEM USING MULTISTAGE MULTI-USER DETECTION SCHEME WITH V-BLAST SIGNAL DETECTION ALGORITHMS 1 G.VAIRAVEL, 2 K.R.SHANKAR KUMAR 1 Associate Professor, ECE Department,

More information

EELE 6333: Wireless Commuications

EELE 6333: Wireless Commuications EELE 6333: Wireless Commuications Chapter # 4 : Capacity of Wireless Channels Spring, 2012/2013 EELE 6333: Wireless Commuications - Ch.4 Dr. Musbah Shaat 1 / 18 Outline 1 Capacity in AWGN 2 Capacity of

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON ELEC6014W1 SEMESTER II EXAMINATIONS 2007/08 RADIO COMMUNICATION NETWORKS AND SYSTEMS Duration: 120 mins Answer THREE questions out of FIVE. University approved calculators may

More information

Professor & Executive Director, Banasthali University, Jaipur Campus, Jaipur (Rajasthan), INDIA 3 Assistant Professor, PIET, SAMALKHA Haryana, INDIA

Professor & Executive Director, Banasthali University, Jaipur Campus, Jaipur (Rajasthan), INDIA 3 Assistant Professor, PIET, SAMALKHA Haryana, INDIA American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Transmit Antenna Selection and User Selection in Multiuser MIMO Downlink Systems

Transmit Antenna Selection and User Selection in Multiuser MIMO Downlink Systems Transmit Antenna Selection and User Selection in Multiuser MIMO Downlink Systems By: Mohammed Al-Shuraifi A Thesis Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy (PhD)

More information

Performance Analysis of MIMO-OFDM System Using Singular Value Decomposition and Water Filling Algorithm

Performance Analysis of MIMO-OFDM System Using Singular Value Decomposition and Water Filling Algorithm Performance Analysis of MIMO-OFDM System Using Singular Value Decomposition and Water Filling Algorithm Md. Noor-A-Rahim 1, Md. Saiful Islam 2, Md. Nashid Anjum 3, Md. Kamal Hosain 4, and Abbas Z. Kouzani

More information

Comparative Study of OFDM & MC-CDMA in WiMAX System

Comparative Study of OFDM & MC-CDMA in WiMAX System IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 1, Ver. IV (Jan. 2014), PP 64-68 Comparative Study of OFDM & MC-CDMA in WiMAX

More information

ARQ strategies for MIMO eigenmode transmission with adaptive modulation and coding

ARQ strategies for MIMO eigenmode transmission with adaptive modulation and coding ARQ strategies for MIMO eigenmode transmission with adaptive modulation and coding Elisabeth de Carvalho and Petar Popovski Aalborg University, Niels Jernes Vej 2 9220 Aalborg, Denmark email: {edc,petarp}@es.aau.dk

More information

On Using Channel Prediction in Adaptive Beamforming Systems

On Using Channel Prediction in Adaptive Beamforming Systems On Using Channel rediction in Adaptive Beamforming Systems T. R. Ramya and Srikrishna Bhashyam Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai - 600 036, India. Email:

More information

Dynamic Fair Channel Allocation for Wideband Systems

Dynamic Fair Channel Allocation for Wideband Systems Outlines Introduction and Motivation Dynamic Fair Channel Allocation for Wideband Systems Department of Mobile Communications Eurecom Institute Sophia Antipolis 19/10/2006 Outline of Part I Outlines Introduction

More information

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Kenichi Higuchi (1) and Hidekazu Taoka (2) (1) Tokyo University of Science (2)

More information

Detecting the Number of Transmit Antennas with Unauthorized or Cognitive Receivers in MIMO Systems

Detecting the Number of Transmit Antennas with Unauthorized or Cognitive Receivers in MIMO Systems Detecting the Number of Transmit Antennas with Unauthorized or Cognitive Receivers in MIMO Systems Oren Somekh, Osvaldo Simeone, Yeheskel Bar-Ness,andWeiSu CWCSPR, Department of Electrical and Computer

More information

ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM

ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM ENERGY EFFICIENT WATER-FILLING ALGORITHM FOR MIMO- OFDMA CELLULAR SYSTEM Hailu Belay Kassa, Dereje H.Mariam Addis Ababa University, Ethiopia Farzad Moazzami, Yacob Astatke Morgan State University Baltimore,

More information

Space-Time Coding: Fundamentals

Space-Time Coding: Fundamentals Space-Time Coding: Fundamentals Xiang-Gen Xia Dept of Electrical and Computer Engineering University of Delaware Newark, DE 976, USA Email: xxia@ee.udel.edu and xianggen@gmail.com Outline Background Single

More information

On Allocation Strategies for Dynamic MIMO-OFDMA with Multi-User Beamforming

On Allocation Strategies for Dynamic MIMO-OFDMA with Multi-User Beamforming On Allocation Strategies for Dynamic MIMO-A with Multi-User Beamforming Mark Petermann, Carsten Bockelmann, Karl-Dirk Kammeyer Department of Communications Engineering University of Bremen, 28359 Bremen,

More information

AN EFFICIENT LINK PERFOMANCE ESTIMATION TECHNIQUE FOR MIMO-OFDM SYSTEMS

AN EFFICIENT LINK PERFOMANCE ESTIMATION TECHNIQUE FOR MIMO-OFDM SYSTEMS AN EFFICIENT LINK PERFOMANCE ESTIMATION TECHNIQUE FOR MIMO-OFDM SYSTEMS 1 K. A. Narayana Reddy, 2 G. Madhavi Latha, 3 P.V.Ramana 1 4 th sem, M.Tech (Digital Electronics and Communication Systems), Sree

More information

Low BER performance using Index Modulation in MIMO OFDM

Low BER performance using Index Modulation in MIMO OFDM Low BER performance using Modulation in MIMO OFDM Samuddeta D H 1, V.R.Udupi 2 1MTech Student DCN, KLS Gogte Institute of Technology, Belgaum, India. 2Professor, Dept. of E&CE, KLS Gogte Institute of Technology,

More information

E7220: Radio Resource and Spectrum Management. Lecture 4: MIMO

E7220: Radio Resource and Spectrum Management. Lecture 4: MIMO E7220: Radio Resource and Spectrum Management Lecture 4: MIMO 1 Timeline: Radio Resource and Spectrum Management (5cr) L1: Random Access L2: Scheduling and Fairness L3: Energy Efficiency L4: MIMO L5: UDN

More information

Multi-user Space Time Scheduling for Wireless Systems with Multiple Antenna

Multi-user Space Time Scheduling for Wireless Systems with Multiple Antenna Multi-user Space Time Scheduling for Wireless Systems with Multiple Antenna Vincent Lau Associate Prof., University of Hong Kong Senior Manager, ASTRI Agenda Bacground Lin Level vs System Level Performance

More information

Performance Comparison of MIMO Systems over AWGN and Rayleigh Channels with Zero Forcing Receivers

Performance Comparison of MIMO Systems over AWGN and Rayleigh Channels with Zero Forcing Receivers Global Journal of Researches in Engineering Electrical and Electronics Engineering Volume 13 Issue 1 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

EECS 380: Wireless Technologies Week 7-8

EECS 380: Wireless Technologies Week 7-8 EECS 380: Wireless Technologies Week 7-8 Michael L. Honig Northwestern University May 2018 Outline Diversity, MIMO Multiple Access techniques FDMA, TDMA OFDMA (LTE) CDMA (3G, 802.11b, Bluetooth) Random

More information

Wireless Communication Systems: Implementation perspective

Wireless Communication Systems: Implementation perspective Wireless Communication Systems: Implementation perspective Course aims To provide an introduction to wireless communications models with an emphasis on real-life systems To investigate a major wireless

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

Iterative Soft Decision Based Complex K-best MIMO Decoder

Iterative Soft Decision Based Complex K-best MIMO Decoder Iterative Soft Decision Based Complex K-best MIMO Decoder Mehnaz Rahman Department of ECE Texas A&M University College Station, Tx- 77840, USA Gwan S. Choi Department of ECE Texas A&M University College

More information

IN AN MIMO communication system, multiple transmission

IN AN MIMO communication system, multiple transmission 3390 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 55, NO 7, JULY 2007 Precoded FIR and Redundant V-BLAST Systems for Frequency-Selective MIMO Channels Chun-yang Chen, Student Member, IEEE, and P P Vaidyanathan,

More information

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM

CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 89 CHAPTER 4 PERFORMANCE ANALYSIS OF THE ALAMOUTI STBC BASED DS-CDMA SYSTEM 4.1 INTRODUCTION This chapter investigates a technique, which uses antenna diversity to achieve full transmit diversity, using

More information