Wireless Communication Systems: Implementation perspective

Size: px
Start display at page:

Download "Wireless Communication Systems: Implementation perspective"

Transcription

1 Wireless Communication Systems: Implementation perspective

2 Course aims To provide an introduction to wireless communications models with an emphasis on real-life systems To investigate a major wireless communication standard and understand how to read it To introduce architectures and implementation issues of wireless systems

3 Course contents The wireless channel Implementation of DSP functions Baseband modulation, interleaving, and channel coding Fundamentals of RTL OFDM Timing and frequency synchronization & channel estimation Diversity, MIMO, and MIMO decoding techniques and circuits Front-end

4 Evaluation 20% coursework: 4-6 assignments 80% Final examination Need contact info for class representative My

5 References OFDM Wireless LANs: A Theoretical and Practical Guide, Juha Heiskala, John Terry n standard, physical layer

6 Wireless communications Wireless communication systems were historically analog, today most systems are digital (what does this mean?) Examples of digital wireless systems include cellular phones, WLANs, Wireless Internet last mile, Satellite Communications, Digital Video Broadcasting

7 Frequency spectrum The spectrum is very busy, prize goes to whoever pushes more bits reliably in a smaller bandwidth Throughput= Bits/sec Goodput= Correct bits/sec

8 Components of a digital wireless system Tx = Transmitter Rx = Receiver RF = Radio Frequency DAC = Digital to Analog Conversion ADC = Analog to Digital Conversion

9 What is Tx RF? At the transmitter the RF takes the baseband signal and raises it to the frequency where it will be transmitted DAC: Transform signal to analog domain Pulse shaping filter; limits the signal power outside its band to limit its interference Mixer: raises the frequency of the signal Power amplifier: Raises the power of the signal so it can travel a long distance

10 RF at the receiver Frontend filter: Limits the out-of-band noise LNA: Low Noise Amplifier is used to raise the value of the signal without adding much noise, reduces the effect of noise in following stages Mixer: Lowers the frequency of the signal typically to baseband ADC: Transform signal to digital domain (1 s and 0 s)

11 Baseband/passband Data in its original form is in the baseband, i.e. its spectrum is centered at zero frequency Once the RF section mixes it to a higher frequency it is said to be in passband

12 What happens before/after the RF? The baseband accepts a payload of raw 1 s and 0 s and transforms it into a digital signal that has more desirable properties: Better Inter-symbol interference Better error immunity Higher transmission rate in the same bandwidth These are all functions of the Digital Baseband Radio, the topic of most of the course

13 Baseband Tx The baseband transmitter consists of the following subsystems (each covered in more detail later): Channel coding: Adding redundancy to the message so it can be reconstructed at the receiver without error Baseband modulation: Increases the spectral efficiency of the system by packing more bits into the same bandwidth as long as SNR allows it Pilots and headers: Additional data used by the baseband receiver to recover the channel OFDM: Used to allow communication over broader channels

14 Baseband Rx Packet and symbol timing; Detect when a packet is being received, lock on the frequency of the transmitter, and the start time Reversing OFDM Channel estimation; Try to estimate the conditions the signal went through Channel inversion; Invert the effects of these conditions Demodulation; Expand the symbols into bits again Forward Error Correction (FEC); Use the redundant bits to try and detect an error and fix it if possible

15 Questions about baseband What are some of the algorithms used to perform these tasks? How are these algorithms implemented? If they are implemented in hardware, what architectural issues arise?

16 Layers Layers are levels of abstraction in the processing of data In our treatment we will deal with three basic layers: Application, MAC, and PHY Application: The layer that generates the payload, it is aware of the nature of content and can process it knowing its properties MAC: Application layer wraps data and hands it to MAC (Medium Access Control) which regulates who gets to access the channel when, and if the data received is useful or not PHY: Mac wraps data and sends it to PHY which performs everything necessary till transmission, PHY is not aware of anything MAC or APP know

17 Packet-based communication As each layer packs data into packets and hands it to lower layers, eventually PHY does the same The PHY packet is thus the basic unit of communication PHY sends a packet, the receiver PHY accepts it, and decodes it If the packet is correct, fine If the packet is incorrect, upper layers will must handle it. If only one bit is irretrievable, the whole packet is considered lost

18 SNR SNR: Signal to noise ratio, the ratio of signal power to noise power In a wireless system SNR is always measured at the receiver SNR is normally reported in db SNR Meaning SNR in absolute units: 2 2 S R= NP signal P noise = V signal V noise SNR in db: S / / 0 Signal and noise are roughly equal 10 Signal is roughly 10 times bigger than noise 20 Signal is roughly 100 times bigger than noise R= N10log ( P / P ) = 20log ( V / V ) 10 signal noise 10 signal noise

19 BER BER is bit error rate and is defined as: (#error bits)/(total bits received)

20 PER PER is packet error rate and is more useful in real systems. If a single bit is wrong in a packet, the packet is useless. So PER is normally much higher than BER

21 Mathematical representation of signals Real wireless signals are sinusoids whose phase, frequency, and or amplitude are varied The sinusoids are high frequency and carry no information This high frequency sine is the carrier To avoid writing trigonometric expressions we write complex phasor expressions (amplitude and phase only) Since the frequency of the carrier is no longer included, this complex number (phasor) is a baseband signal This allows us to analyze the system much more easily

22 Course contents in more detail Random processes and the wireless channel Correlation, covariance, autocorrelation, autocovariance, PSD, AWGN, flat and dispersive fading, fast and slow fading, simulating the wireless channel, packet-based communication Implementation of DSP functions Complex binary arithmetic, relative complexity of arithmetic functions, comparison of implementation platforms Baseband modulation, interleaving, and channel coding memory contention in interleavers, standard hardware partitions of Viterbi decoders Fundamentals of RTL OFDM OFDM in frequency and time domains, FFT using Cooley-Tukey, implementing FFT for n (resource estimation) Timing and frequency synchronization & channel estimation Packet edge detection, symbol timing recovery, frequency and phase offset recovery and impact on constellation, using CORDIC processors to rotate vectors Diversity, MIMO, and MIMO decoding techniques and circuits Maximal ratio combining and selection receiver diversity, spatial multiplexing, the zero forcing, minimum mean square error, singular value decomposition, maximum likelihood, and sphere decoder algorithms. Implementation of MMSE and SVD using systolic arrays Front-end RF impact on constellation, AGC, CCA, and PAPR

23 Next We will discuss the wireless channel What happens to a signal as it travels through air? Does it only lose its power? What happens as it reflects and deflects through barriers? Why do you get bad reception in some places but not others? Why is it harder to communicate over a large bandwidth?

From Antenna to Bits:

From Antenna to Bits: From Antenna to Bits: Wireless System Design with MATLAB and Simulink Cynthia Cudicini Application Engineering Manager MathWorks cynthia.cudicini@mathworks.fr 1 Innovations in the World of Wireless Everything

More information

OFDM and FFT. Cairo University Faculty of Engineering Department of Electronics and Electrical Communications Dr. Karim Ossama Abbas Fall 2010

OFDM and FFT. Cairo University Faculty of Engineering Department of Electronics and Electrical Communications Dr. Karim Ossama Abbas Fall 2010 OFDM and FFT Cairo University Faculty of Engineering Department of Electronics and Electrical Communications Dr. Karim Ossama Abbas Fall 2010 Contents OFDM and wideband communication in time and frequency

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

Chapter 2 Channel Equalization

Chapter 2 Channel Equalization Chapter 2 Channel Equalization 2.1 Introduction In wireless communication systems signal experiences distortion due to fading [17]. As signal propagates, it follows multiple paths between transmitter and

More information

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model M. Prem Anand 1 Rudrashish Roy 2 1 Assistant Professor 2 M.E Student 1,2 Department of Electronics & Communication

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

2002 IEEE International Solid-State Circuits Conference 2002 IEEE

2002 IEEE International Solid-State Circuits Conference 2002 IEEE Outline 802.11a Overview Medium Access Control Design Baseband Transmitter Design Baseband Receiver Design Chip Details What is 802.11a? IEEE standard approved in September, 1999 12 20MHz channels at 5.15-5.35

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications

ELEC E7210: Communication Theory. Lecture 11: MIMO Systems and Space-time Communications ELEC E7210: Communication Theory Lecture 11: MIMO Systems and Space-time Communications Overview of the last lecture MIMO systems -parallel decomposition; - beamforming; - MIMO channel capacity MIMO Key

More information

OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology

OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology OFDM (Orthogonal Frequency Division Multiplexing) SIMULATION USING MATLAB Neha Pathak MTech Scholar, Shri am Institute of Technology ABSTRACT This paper discusses the design and implementation of an OFDM

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke

Presentation Outline. Advisors: Dr. In Soo Ahn Dr. Thomas L. Stewart. Team Members: Luke Vercimak Karl Weyeneth. Karl. Luke Bradley University Department of Electrical and Computer Engineering Senior Capstone Project Presentation May 2nd, 2006 Team Members: Luke Vercimak Karl Weyeneth Advisors: Dr. In Soo Ahn Dr. Thomas L.

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 14: Full-Duplex Communications Instructor: Kate Ching-Ju Lin ( 林靖茹 ) 1 Outline What s full-duplex Self-Interference Cancellation Full-duplex and Half-duplex

More information

Comparison of BER for Various Digital Modulation Schemes in OFDM System

Comparison of BER for Various Digital Modulation Schemes in OFDM System ISSN: 2278 909X Comparison of BER for Various Digital Modulation Schemes in OFDM System Jaipreet Kaur, Hardeep Kaur, Manjit Sandhu Abstract In this paper, an OFDM system model is developed for various

More information

Using Modern Design Tools To Evaluate Complex Communication Systems: A Case Study on QAM, FSK and OFDM Transceiver Design

Using Modern Design Tools To Evaluate Complex Communication Systems: A Case Study on QAM, FSK and OFDM Transceiver Design Using Modern Design Tools To Evaluate Complex Communication Systems: A Case Study on QAM, FSK and OFDM Transceiver Design SOTIRIS H. KARABETSOS, SPYROS H. EVAGGELATOS, SOFIA E. KONTAKI, EVAGGELOS C. PICASIS,

More information

Bringing Multi-Antenna Gain to Energy-Constrained Wireless Devices Sanjib Sur, Teng Wei, Xinyu Zhang

Bringing Multi-Antenna Gain to Energy-Constrained Wireless Devices Sanjib Sur, Teng Wei, Xinyu Zhang Bringing Multi-Antenna Gain to Energy-Constrained Wireless Devices Sanjib Sur, Teng Wei, Xinyu Zhang University of Wisconsin - Madison 1 Power Consumption of MIMO MIMO boosts the wireless throughput by

More information

Basic idea: divide spectrum into several 528 MHz bands.

Basic idea: divide spectrum into several 528 MHz bands. IEEE 802.15.3a Wireless Information Transmission System Lab. Institute of Communications Engineering g National Sun Yat-sen University Overview of Multi-band OFDM Basic idea: divide spectrum into several

More information

ECE 630: Statistical Communication Theory

ECE 630: Statistical Communication Theory ECE 630: Statistical Communication Theory Dr. B.-P. Paris Dept. Electrical and Comp. Engineering George Mason University Last updated: January 23, 2018 2018, B.-P. Paris ECE 630: Statistical Communication

More information

Real-time FPGA realization of an UWB transceiver physical layer

Real-time FPGA realization of an UWB transceiver physical layer University of Wollongong Research Online University of Wollongong Thesis Collection 1954-2016 University of Wollongong Thesis Collections 2005 Real-time FPGA realization of an UWB transceiver physical

More information

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators

Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Making Noise in RF Receivers Simulate Real-World Signals with Signal Generators Noise is an unwanted signal. In communication systems, noise affects both transmitter and receiver performance. It degrades

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER

UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER UTILIZATION OF AN IEEE 1588 TIMING REFERENCE SOURCE IN THE inet RF TRANSCEIVER Dr. Cheng Lu, Chief Communications System Engineer John Roach, Vice President, Network Products Division Dr. George Sasvari,

More information

Fundamentals of Digital Communication

Fundamentals of Digital Communication Fundamentals of Digital Communication Network Infrastructures A.A. 2017/18 Digital communication system Analog Digital Input Signal Analog/ Digital Low Pass Filter Sampler Quantizer Source Encoder Channel

More information

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc.

B SCITEQ. Transceiver and System Design for Digital Communications. Scott R. Bullock, P.E. Third Edition. SciTech Publishing, Inc. Transceiver and System Design for Digital Communications Scott R. Bullock, P.E. Third Edition B SCITEQ PUBLISHtN^INC. SciTech Publishing, Inc. Raleigh, NC Contents Preface xvii About the Author xxiii Transceiver

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department

Lab 3.0. Pulse Shaping and Rayleigh Channel. Faculty of Information Engineering & Technology. The Communications Department Faculty of Information Engineering & Technology The Communications Department Course: Advanced Communication Lab [COMM 1005] Lab 3.0 Pulse Shaping and Rayleigh Channel 1 TABLE OF CONTENTS 2 Summary...

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Ultra Wideband Transceiver Design

Ultra Wideband Transceiver Design Ultra Wideband Transceiver Design By: Wafula Wanjala George For: Bachelor Of Science In Electrical & Electronic Engineering University Of Nairobi SUPERVISOR: Dr. Vitalice Oduol EXAMINER: Dr. M.K. Gakuru

More information

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang

Wireless Communication: Concepts, Techniques, and Models. Hongwei Zhang Wireless Communication: Concepts, Techniques, and Models Hongwei Zhang http://www.cs.wayne.edu/~hzhang Outline Digital communication over radio channels Channel capacity MIMO: diversity and parallel channels

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM

A Research Concept on Bit Rate Detection using Carrier offset through Analysis of MC-CDMA SYSTEM Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320 088X IMPACT FACTOR: 5.258 IJCSMC,

More information

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary

Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary Implementation and Comparative analysis of Orthogonal Frequency Division Multiplexing (OFDM) Signaling Rashmi Choudhary M.Tech Scholar, ECE Department,SKIT, Jaipur, Abstract Orthogonal Frequency Division

More information

A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM

A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM A GENERAL SYSTEM DESIGN & IMPLEMENTATION OF SOFTWARE DEFINED RADIO SYSTEM 1 J. H.VARDE, 2 N.B.GOHIL, 3 J.H.SHAH 1 Electronics & Communication Department, Gujarat Technological University, Ahmadabad, India

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts Signal Processing for OFDM Communication Systems Eric Jacobsen Minister of Algorithms, Intel Labs Communication Technology Laboratory/ Radio Communications Laboratory July 29, 2004 With a lot of material

More information

Comparison of MIMO OFDM System with BPSK and QPSK Modulation

Comparison of MIMO OFDM System with BPSK and QPSK Modulation e t International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 188-192(2015) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Comparison of MIMO OFDM System with BPSK

More information

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei

The Case for Optimum Detection Algorithms in MIMO Wireless Systems. Helmut Bölcskei The Case for Optimum Detection Algorithms in MIMO Wireless Systems Helmut Bölcskei joint work with A. Burg, C. Studer, and M. Borgmann ETH Zurich Data rates in wireless double every 18 months throughput

More information

Revision of Previous Six Lectures

Revision of Previous Six Lectures Revision of Previous Six Lectures Previous six lectures have concentrated on Modem, under ideal AWGN or flat fading channel condition Important issues discussed need to be revised, and they are summarised

More information

Integration of System Design and Standard Development in Digital Communication Education

Integration of System Design and Standard Development in Digital Communication Education Session F Integration of System Design and Standard Development in Digital Communication Education Xiaohua(Edward) Li State University of New York at Binghamton Abstract An innovative way is presented

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

Evaluation of BER and PAPR by using Different Modulation Schemes in OFDM System

Evaluation of BER and PAPR by using Different Modulation Schemes in OFDM System International Journal of Computer Networks and Communications Security VOL. 3, NO. 7, JULY 2015, 277 282 Available online at: www.ijcncs.org E-ISSN 2308-9830 (Online) / ISSN 2410-0595 (Print) Evaluation

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

Implementation of High-throughput Access Points for IEEE a/g Wireless Infrastructure LANs

Implementation of High-throughput Access Points for IEEE a/g Wireless Infrastructure LANs Implementation of High-throughput Access Points for IEEE 802.11a/g Wireless Infrastructure LANs Hussein Alnuweiri Ph.D. and Diego Perea-Vega M.A.Sc. Abstract In this paper we discuss the implementation

More information

ATSC 3.0 Physical Layer Overview

ATSC 3.0 Physical Layer Overview ATSC 3.0 Physical Layer Overview Agenda Terminology Real world concerns Technology to combat those concerns Summary Basic Terminology What is OFDM? What is FEC? What is Shannon s Theorem? What does BER

More information

2.

2. PERFORMANCE ANALYSIS OF STBC-MIMO OFDM SYSTEM WITH DWT & FFT Shubhangi R Chaudhary 1,Kiran Rohidas Jadhav 2. Department of Electronics and Telecommunication Cummins college of Engineering for Women Pune,

More information

Merging Propagation Physics, Theory and Hardware in Wireless. Ada Poon

Merging Propagation Physics, Theory and Hardware in Wireless. Ada Poon HKUST January 3, 2007 Merging Propagation Physics, Theory and Hardware in Wireless Ada Poon University of Illinois at Urbana-Champaign Outline Multiple-antenna (MIMO) channels Human body wireless channels

More information

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 2 August 26 ISSN (online): 2349-784X Performance Analysis of MIMO-OFDM based IEEE 82.n using Different Modulation Techniques

More information

Research and Implementation of 2x2 MIMO-OFDM System with BLAST Using USRP-RIO

Research and Implementation of 2x2 MIMO-OFDM System with BLAST Using USRP-RIO Research and Implementation of 2x2 MIMO-OFDM System with BLAST Using USRP-RIO Jingyi Zhao, Yanhui Lu, Ning Wang *, and Shouyi Yang School of Information Engineering, Zheng Zhou University, China * Corresponding

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX

Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Bit Error Rate Performance Evaluation of Various Modulation Techniques with Forward Error Correction Coding of WiMAX Amr Shehab Amin 37-20200 Abdelrahman Taha 31-2796 Yahia Mobasher 28-11691 Mohamed Yasser

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Bit Error Rate Performance Measurement of Wireless MIMO System Based on FPGA

Bit Error Rate Performance Measurement of Wireless MIMO System Based on FPGA Bit Error Rate Performance Measurement of Wireless MIMO System Based on FPGA Aravind Kumar. S, Karthikeyan. S Department of Electronics and Communication Engineering, Vandayar Engineering College, Thanjavur,

More information

Interoperability of FM Composite Multiplex Signals in an IP Based STL

Interoperability of FM Composite Multiplex Signals in an IP Based STL Interoperability of FM Composite Multiplex Signals in an IP Based STL Featuring GatesAir s April 23, 2017 NAB Show 2017 Junius Kim Hardware Engineer Keyur Parikh Director, Intraplex Copyright 2017 GatesAir,

More information

Orthogonal frequency division multiplexing (OFDM)

Orthogonal frequency division multiplexing (OFDM) Orthogonal frequency division multiplexing (OFDM) OFDM was introduced in 1950 but was only completed in 1960 s Originally grew from Multi-Carrier Modulation used in High Frequency military radio. Patent

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ]

Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ] Radiocommunication Study Groups Source: Subject: Document 5B/TEMP/376 Draft new Recommendation ITU-R M.[500kHz] Document 17 November 2011 English only Working Party 5B DRAFT NEW RECOMMENDATION ITU-R M.[500KHZ]

More information

Wireless Networks (PHY)

Wireless Networks (PHY) 802.11 Wireless Networks (PHY) Kate Ching-Ju Lin ( 林靖茹 ) Academia Sinica 2016.03.18 CSIE, NTU Reference 1. OFDM Tutorial online: http://home.iitj.ac.in/~ramana/ofdmtutorial.pdf 2. OFDM Wireless LWNs: A

More information

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey

GNSS Technologies. GNSS Acquisition Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey GNSS Acquisition 25.1.2016 Dr. Zahidul Bhuiyan Finnish Geospatial Research Institute, National Land Survey Content GNSS signal background Binary phase shift keying (BPSK) modulation Binary offset carrier

More information

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR

DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR DESIGN, IMPLEMENTATION AND OPTIMISATION OF 4X4 MIMO-OFDM TRANSMITTER FOR COMMUNICATION SYSTEMS Abstract M. Chethan Kumar, *Sanket Dessai Department of Computer Engineering, M.S. Ramaiah School of Advanced

More information

COMMUNICATION SYSTEMS

COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 4TH EDITION Simon Hayhin McMaster University JOHN WILEY & SONS, INC. Ш.! [ BACKGROUND AND PREVIEW 1. The Communication Process 1 2. Primary Communication Resources 3 3. Sources of

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

Fixed-Point Aspects of MIMO OFDM Detection on SDR Platforms

Fixed-Point Aspects of MIMO OFDM Detection on SDR Platforms Fixed-Point Aspects of MIMO OFDM Detection on SDR Platforms Daniel Guenther Chair ISS Integrierte Systeme der Signalverarbeitung June 27th 2012 Institute for Communication Technologies and Embedded Systems

More information

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM Indian J.Sci.Res. (): 0-05, 05 ISSN: 50-038 (Online) DESIGN OF STBC ENCODER AND DECODER FOR X AND X MIMO SYSTEM VIJAY KUMAR KATGI Assistant Profesor, Department of E&CE, BKIT, Bhalki, India ABSTRACT This

More information

SC - Single carrier systems One carrier carries data stream

SC - Single carrier systems One carrier carries data stream Digital modulation SC - Single carrier systems One carrier carries data stream MC - Multi-carrier systems Many carriers are used for data transmission. Data stream is divided into sub-streams and each

More information

Agilent MIMO Wireless LAN PHY Layer [RF] Operation & Measurement. Application Note 1509

Agilent MIMO Wireless LAN PHY Layer [RF] Operation & Measurement. Application Note 1509 Agilent MIMO Wireless LAN PHY Layer [RF] Operation & Measurement Application Note 1509 Introduction This application note is written for people who need an understanding of MIMO radio operation as it applies

More information

Digital Communication Systems Engineering with

Digital Communication Systems Engineering with Digital Communication Systems Engineering with Software-Defined Radio Di Pu Alexander M. Wyglinski ARTECH HOUSE BOSTON LONDON artechhouse.com Contents Preface xiii What Is an SDR? 1 1.1 Historical Perspective

More information

Digital Signal Analysis

Digital Signal Analysis Digital Signal Analysis Objectives - Provide a digital modulation overview - Review common digital radio impairments Digital Modulation Overview Signal Characteristics to Modify Polar Display / IQ Relationship

More information

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations

Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Local Oscillator Phase Noise Influence on Single Carrier and OFDM Modulations Vitor Fialho,2, Fernando Fortes 2,3, and Manuela Vieira,2 Universidade Nova de Lisboa Faculdade de Ciências e Tecnologia DEE

More information

Transmitting Multiple HD Video Streams over UWB Links

Transmitting Multiple HD Video Streams over UWB Links MITSUBISHI ELECTRIC RESEARCH LABORATORIES http://www.merl.com Transmitting Multiple HD Video Streams over UWB Links C. Duan, G. Pekhteryev, J. Fang, Y-P Nakache, J. Zhang, K. Tajima, Y. Nishioka, H. Hirai

More information

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1

Physical Layer: Modulation, FEC. Wireless Networks: Guevara Noubir. S2001, COM3525 Wireless Networks Lecture 3, 1 Wireless Networks: Physical Layer: Modulation, FEC Guevara Noubir Noubir@ccsneuedu S, COM355 Wireless Networks Lecture 3, Lecture focus Modulation techniques Bit Error Rate Reducing the BER Forward Error

More information

Chapter 0 Outline. NCCU Wireless Comm. Lab

Chapter 0 Outline. NCCU Wireless Comm. Lab Chapter 0 Outline Chapter 1 1 Introduction to Orthogonal Frequency Division Multiplexing (OFDM) Technique 1.1 The History of OFDM 1.2 OFDM and Multicarrier Transmission 1.3 The Applications of OFDM 2 Chapter

More information

5G 무선통신시스템설계 : WLAN/LTE/5G

5G 무선통신시스템설계 : WLAN/LTE/5G 1 5G 무선통신시스템설계 : WLAN/LTE/5G 김종남 Application Engineer 2017 The MathWorks, Inc. 2 Agenda Innovations in Mobile Communications Waveform Generation and End-to-end Simulation WLAN, LTE, 5G (FBMC, UFMC) RF

More information

Symbol Timing Detection for OFDM Signals with Time Varying Gain

Symbol Timing Detection for OFDM Signals with Time Varying Gain International Journal of Control and Automation, pp.4-48 http://dx.doi.org/.4257/ijca.23.6.5.35 Symbol Timing Detection for OFDM Signals with Time Varying Gain Jihye Lee and Taehyun Jeon Seoul National

More information

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access

Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access NTT DoCoMo Technical Journal Vol. 8 No.1 Field Experiments of 2.5 Gbit/s High-Speed Packet Transmission Using MIMO OFDM Broadband Packet Radio Access Kenichi Higuchi and Hidekazu Taoka A maximum throughput

More information

Field Experiment on 5-Gbit/s Ultra-high-speed Packet Transmission Using MIMO Multiplexing in Broadband Packet Radio Access

Field Experiment on 5-Gbit/s Ultra-high-speed Packet Transmission Using MIMO Multiplexing in Broadband Packet Radio Access Fourth-Generation Mobile Communications MIMO High-speed Packet Transmission Field Experiment on 5-Gbit/s Ultra-high-speed Packet Transmission Using MIMO Multiplexing in Broadband Packet Radio Access An

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY 2 RX Nonlinearity Issues, Demodulation RX nonlinearities (parts of 2.2) System Nonlinearity Sensitivity

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

More information

UNDERSTANDING LTE WITH MATLAB

UNDERSTANDING LTE WITH MATLAB UNDERSTANDING LTE WITH MATLAB FROM MATHEMATICAL MODELING TO SIMULATION AND PROTOTYPING Dr Houman Zarrinkoub MathWorks, Massachusetts, USA WILEY Contents Preface List of Abbreviations 1 Introduction 1.1

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON ELEC6014W1 SEMESTER II EXAMINATIONS 2007/08 RADIO COMMUNICATION NETWORKS AND SYSTEMS Duration: 120 mins Answer THREE questions out of FIVE. University approved calculators may

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Synchronization of Legacy a/g Devices Operating in IEEE n Networks

Synchronization of Legacy a/g Devices Operating in IEEE n Networks Synchronization of Legacy 802.11a/g Devices Operating in IEEE 802.11n Networks Roger Pierre Fabris Hoefel and André Michielin Câmara Department of Electrical Engineering, Federal University of Rio Grande

More information

Performance Evaluation of different α value for OFDM System

Performance Evaluation of different α value for OFDM System Performance Evaluation of different α value for OFDM System Dr. K.Elangovan Dept. of Computer Science & Engineering Bharathidasan University richirappalli Abstract: Orthogonal Frequency Division Multiplexing

More information

Performance Analysis of OFDM System with QPSK for Wireless Communication

Performance Analysis of OFDM System with QPSK for Wireless Communication IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 11, Issue 3, Ver. I (May-Jun.2016), PP 33-37 www.iosrjournals.org Performance Analysis

More information

TSTE17 System Design, CDIO Lecture 7. Additional information resources. Testing. Check timing of the IP blocks Testing

TSTE17 System Design, CDIO Lecture 7. Additional information resources. Testing. Check timing of the IP blocks Testing TSTE17 System Design, CDIO Lecture 7 1 Project hints 2 Check timing of the IP blocks Testing FFT/IFFT, Viterbi block IP Data rates, setup time, average throughput Hints RF Selection of block and its parameters

More information

Nutaq OFDM Reference

Nutaq OFDM Reference Nutaq OFDM Reference Design FPGA-based, SISO/MIMO OFDM PHY Transceiver PRODUCT SHEET QUEBEC I MONTREAL I NEW YORK I nutaq.com Nutaq OFDM Reference Design SISO/2x2 MIMO Implementation Simulation/Implementation

More information

Index. Cambridge University Press Fundamentals of Wireless Communication David Tse and Pramod Viswanath. Index.

Index. Cambridge University Press Fundamentals of Wireless Communication David Tse and Pramod Viswanath. Index. ad hoc network 5 additive white Gaussian noise (AWGN) 29, 30, 166, 241 channel capacity 167 capacity-achieving AWGN channel codes 170, 171 packing spheres 168 72, 168, 169 channel resources 172 bandwidth

More information

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM

UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM UNIFIED DIGITAL AUDIO AND DIGITAL VIDEO BROADCASTING SYSTEM USING ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING (OFDM) SYSTEM 1 Drakshayini M N, 2 Dr. Arun Vikas Singh 1 drakshayini@tjohngroup.com, 2 arunsingh@tjohngroup.com

More information

Multipath signal Detection in CDMA System

Multipath signal Detection in CDMA System Chapter 4 Multipath signal Detection in CDMA System Chapter 3 presented the implementation of CDMA test bed for wireless communication link. This test bed simulates a Code Division Multiple Access (CDMA)

More information

An FPGA Case Study: Narrowband COFDM Video Transceiver for Drones, UAV, and UGV. Produced by EE Times

An FPGA Case Study: Narrowband COFDM Video Transceiver for Drones, UAV, and UGV. Produced by EE Times An FPGA Case Study: Narrowband COFDM Video Transceiver for Drones, UAV, and UGV #eelive Produced by EE Times An FPGA Case Study System Definition Implementation Verification and Validation CNR1 Narrowband

More information

Project: IEEE P Working Group for Wireless Personal Area Networks N

Project: IEEE P Working Group for Wireless Personal Area Networks N Project: IEEE P802.15 Working Group for Wireless Personal Area Networks N (WPANs) Title: [The Scalability of UWB PHY Proposals] Date Submitted: [July 13, 2004] Source: [Matthew Welborn] Company [Freescale

More information

I-Q transmission. Lecture 17

I-Q transmission. Lecture 17 I-Q Transmission Lecture 7 I-Q transmission i Sending Digital Data Binary Phase Shift Keying (BPSK): sending binary data over a single frequency band Quadrature Phase Shift Keying (QPSK): sending twice

More information

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection

Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Realization of Peak Frequency Efficiency of 50 Bit/Second/Hz Using OFDM MIMO Multiplexing with MLD Based Signal Detection Kenichi Higuchi (1) and Hidekazu Taoka (2) (1) Tokyo University of Science (2)

More information

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr.

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr. Lecture #2 EE 471C / EE 381K-17 Wireless Communication Lab Professor Robert W. Heath Jr. Preview of today s lecture u Introduction to digital communication u Components of a digital communication system

More information

Modern Quadrature Amplitude Modulation Principles and Applications for Fixed and Wireless Channels

Modern Quadrature Amplitude Modulation Principles and Applications for Fixed and Wireless Channels 1 Modern Quadrature Amplitude Modulation Principles and Applications for Fixed and Wireless Channels W.T. Webb, L.Hanzo Contents PART I: Background to QAM 1 Introduction and Background 1 1.1 Modulation

More information

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation

Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation J. Bangladesh Electron. 10 (7-2); 7-11, 2010 Performance Analysis of OFDM for Different Digital Modulation Schemes using Matlab Simulation Md. Shariful Islam *1, Md. Asek Raihan Mahmud 1, Md. Alamgir Hossain

More information

Laboratory 5: Spread Spectrum Communications

Laboratory 5: Spread Spectrum Communications Laboratory 5: Spread Spectrum Communications Cory J. Prust, Ph.D. Electrical Engineering and Computer Science Department Milwaukee School of Engineering Last Update: 19 September 2018 Contents 0 Laboratory

More information

An OFDM Transmitter and Receiver using NI USRP with LabVIEW

An OFDM Transmitter and Receiver using NI USRP with LabVIEW An OFDM Transmitter and Receiver using NI USRP with LabVIEW Saba Firdose, Shilpa B, Sushma S Department of Electronics & Communication Engineering GSSS Institute of Engineering & Technology For Women Abstract-

More information

Computational Complexity of Multiuser. Receivers in DS-CDMA Systems. Syed Rizvi. Department of Electrical & Computer Engineering

Computational Complexity of Multiuser. Receivers in DS-CDMA Systems. Syed Rizvi. Department of Electrical & Computer Engineering Computational Complexity of Multiuser Receivers in DS-CDMA Systems Digital Signal Processing (DSP)-I Fall 2004 By Syed Rizvi Department of Electrical & Computer Engineering Old Dominion University Outline

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 3: 802.11 PHY and OFDM Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Reference 1. OFDM Tutorial online: http://home.iitj.ac.in/~ramana/ofdmtutorial.pdf 2. OFDM Wireless

More information