Wireless Systems. Objectives of the course

Size: px
Start display at page:

Download "Wireless Systems. Objectives of the course"

Transcription

1 Wireless Systems Jerzy Dąbrowski Communication Systems Department of Electrical Engineering LinköpingUniversity Objectives of the course Understand operation principles of the wireless communication systems Learn techniques which enable wireless signal transmission in multi-user systems (coding, modulation, channel sharing, ) Understand physical limitations of the contemporary wireless systems 2 1

2 Organization of the course Lectures 9x2h Project work: Study on a modern communication standard Project presentation (VT2) Course book: Theodore S. Rappaport, Wireless Communications -Principles and Practice, Prentice Hall, 2002, ISBN: Written exam (VT2) 3 Overview of course content Wireless systems: underlying concepts and technologies Wireless communication channel Multiple access Signal modulation Equalization and diversity Speech coding Error control and source coding Case study examples (e.g. GSM, WCDMA, LTE) 4 2

3 Key invention - Radio G.Marconi, A.Popov(1895) Radio broadcasting, R.Fessenden(1906) Heterodyne, Armstrong (1918) FM radio, E.Armstrong(1933) Detector Resonant circuit 2πf 0 = 1 LC Headphones Z > 2kΩ Digital radio TRx PA RF Filter LNA LP Filter I I LO Q Q LP Filter Frequency synthesizer LP Filter ADC DAC Base-band processor 5 Wireless communication channel Information Source Transmitter Channel Receiver Information Sink Physical layer of WS Conveys bit-stream of data Channel issues: - Loss - Interference - Distortion - Time-varying nature - Noise Transmitter/Receiver: - Filtering - Amplification - Modulation - Demodulation - Synchronization - 6 3

4 OSI model 7 OSI /Data Link Layer Deals with packets of bits Provides block synchronization Detects and corrects data errors Responsible for Medium Access Control (FDMA, TDMA, CDMA, SDMA) Responsible for power control and handover (of mobile terminals) 8 4

5 OSI /Network Layer Delivers packets to their correct destination (routing) Determines QoS Controls flow in system to avoid congestions 9 OSI /Higher Layers Transport layer Provides end-to-end communication. TCP in TCP/IP belongs here. ARQ can also be used here. Session layer Opens, closes and manages a communication session. Presentation layer Translates data for communication. Application layer The actual purpose or usage. Examples: SSH, FTP, IMAP These layers are less affected by the transmission medium 10 5

6 Multiple access FDMA base-line technique TDMA N channels = band f f f N time slots = frame t t t t t t Users_operate simultanously on individual frequencies Users_share the channel in different time slots CDMA N codes in same band C1 C2 C3 Users_operate simultanously and share the channel using individual codes 11 Modulation Necessary to convert signal into radio-waves Amplitude, frequency, and phase Constant amplitude modulation Pulse shaping, MSK Quadrature carriers (sine, cosine) QAM Multiple carriers (OFDM) Sinusoidal Carrier : v C ( t) = V cos C ( ω t + φ ) Frequency Phase Amplitude Angle C C Issues: distortions, ISI, bandwidth, noise spectral efficiency vs power efficiency (advanced modulation schemes vs amp. Linearity) 12 6

7 Modulation/ M-ary QAM s QAM (t) = α i cosω c t + β i sinω c t β α High spectral efficiency, R/BW But susceptible to noise and distortion (needs linear amplification) 16-ary QAM constellation (4 bits are grouped in 1 symbol) (T S and T S > τ av ) 13 Modulation/ OFDM Multiple sub-carriers to transmit signal bits in parallel for very high throughput Spectra of different sub channels can partly overlap OFDM is usually combined with QAM or n-psk PSD f c1 f c2 f c3 Tone modulated by rectangular pulse with interval T S f Orthogonal -spaced by 1/T S BW on each carrier < channel coherence BW freq. sel. fading avoided Implementation technique: IFFT/FFT 14 7

8 Equalization and diversity Channel band limited and provides multiple signal paths ISI occurs which can be corrected by equalization filters (usually adaptive), T S < σ τ Signal impairments (fading) can be corrected by diversity (redundancy by multiple signal samples over each symbol interval) - space diversity (multiple antennas, MIMO) - frequency diversity (multiple carriers, freq. hopping) - time diversity (RAKE receiver, interleaving) - polarization diversity 15 Error control coding & Speech coding Detection and correction of errors incurred in transmission //Forward error correction (FEC) - Convolutional and Turbo codes / correction -Block codes / Error Detection -Automatic repeat request (ARQ) latency issue Support by Interleaving (splitting bursts of possible errors in single errors) To reduce data rate and save bandwidth various speech coding techniques (LPC, Vocoders, Time/frequency coders, ) 16 8

9 Lectures 1. Introduction 2. Channel model 3. Multiple access 4. Modulation techniques 5. Equalization and diversity 6. Speech coding 7. Error control coding 8. Mobile telephony /Evolution of Communication systems 9. Overview of contemporary wireless systems 17 Timeline 2016 When Wednesday, January 20 Wednesday, February 3 Friday, February 5 Weeks 6-7 Monday, February 22 Week 8 Weeks 9-15 Monday, April 18 Week 16. Weeks Monday, May 9 Friday, May 13 Week Deadline Deadline Deadline Deadline What Course start Project selection List of three topics by to Jerzy Dabrowski. Announcing project assignment Searching information, initial reading. Outline By as a PDF to your supervisor. Supervision sessions. Reading and writing. Beta version of the report as a PDF to Jerzy Dabrowski via Urkund. Supervision sessions. Reading and rewriting. Final version of the report as a PDF to Jerzy Dabrowski via Urkund. Announcing three chosen reports and publishing all reports. Presentation seminars. 4 9

Chapter 7 Multiple Division Techniques for Traffic Channels

Chapter 7 Multiple Division Techniques for Traffic Channels Introduction to Wireless & Mobile Systems Chapter 7 Multiple Division Techniques for Traffic Channels Outline Introduction Concepts and Models for Multiple Divisions Frequency Division Multiple Access

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

ISHIK UNIVERSITY Faculty of Science Department of Information Technology Fall Course Name: Wireless Networks

ISHIK UNIVERSITY Faculty of Science Department of Information Technology Fall Course Name: Wireless Networks ISHIK UNIVERSITY Faculty of Science Department of Information Technology 2017-2018 Fall Course Name: Wireless Networks Agenda Lecture 4 Multiple Access Techniques: FDMA, TDMA, SDMA and CDMA 1. Frequency

More information

Wireless Communication Fading Modulation

Wireless Communication Fading Modulation EC744 Wireless Communication Fall 2008 Mohamed Essam Khedr Department of Electronics and Communications Wireless Communication Fading Modulation Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5

More information

OFDMA Networks. By Mohamad Awad

OFDMA Networks. By Mohamad Awad OFDMA Networks By Mohamad Awad Outline Wireless channel impairments i and their effect on wireless communication Channel modeling Sounding technique OFDM as a solution OFDMA as an improved solution MIMO-OFDMA

More information

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM)

Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) Wireless Medium Access Control and CDMA-based Communication Lesson 16 Orthogonal Frequency Division Medium Access (OFDM) 1 4G File transfer at 10 Mbps High resolution 1024 1920 pixel hi-vision picture

More information

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications

Lecture LTE (4G) -Technologies used in 4G and 5G. Spread Spectrum Communications COMM 907: Spread Spectrum Communications Lecture 10 - LTE (4G) -Technologies used in 4G and 5G The Need for LTE Long Term Evolution (LTE) With the growth of mobile data and mobile users, it becomes essential

More information

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth.

UNIT- 7. Frequencies above 30Mhz tend to travel in straight lines they are limited in their propagation by the curvature of the earth. UNIT- 7 Radio wave propagation and propagation models EM waves below 2Mhz tend to travel as ground waves, These wave tend to follow the curvature of the earth and lose strength rapidly as they travel away

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc.

About Homework. The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. About Homework The rest parts of the course: focus on popular standards like GSM, WCDMA, etc. Good news: No complicated mathematics and calculations! Concepts: Understanding and remember! Homework: review

More information

Chapter 7. Multiple Division Techniques

Chapter 7. Multiple Division Techniques Chapter 7 Multiple Division Techniques 1 Outline Frequency Division Multiple Access (FDMA) Division Multiple Access (TDMA) Code Division Multiple Access (CDMA) Comparison of FDMA, TDMA, and CDMA Walsh

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Overview of Digital Mobile Communications

Overview of Digital Mobile Communications Overview of Digital Mobile Communications Dong In Kim (dikim@ece.skku.ac.kr) Wireless Communications Lab 1 Outline Digital Communications Multiple Access Techniques Power Control for CDMA IMT-2000 System

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE

Page 1. Overview : Wireless Networks Lecture 9: OFDM, WiMAX, LTE Overview 18-759: Wireless Networks Lecture 9: OFDM, WiMAX, LTE Dina Papagiannaki & Peter Steenkiste Departments of Computer Science and Electrical and Computer Engineering Spring Semester 2009 http://www.cs.cmu.edu/~prs/wireless09/

More information

EC 551 Telecommunication System Engineering. Mohamed Khedr

EC 551 Telecommunication System Engineering. Mohamed Khedr EC 551 Telecommunication System Engineering Mohamed Khedr http://webmail.aast.edu/~khedr 1 Mohamed Khedr., 2008 Syllabus Tentatively Week 1 Week 2 Week 3 Week 4 Week 5 Week 6 Week 7 Week 8 Week 9 Week

More information

Chapter 2 Overview - 1 -

Chapter 2 Overview - 1 - Chapter 2 Overview Part 1 (last week) Digital Transmission System Frequencies, Spectrum Allocation Radio Propagation and Radio Channels Part 2 (today) Modulation, Coding, Error Correction Part 3 (next

More information

Lecture 3 Cellular Systems

Lecture 3 Cellular Systems Lecture 3 Cellular Systems I-Hsiang Wang ihwang@ntu.edu.tw 3/13, 2014 Cellular Systems: Additional Challenges So far: focus on point-to-point communication In a cellular system (network), additional issues

More information

Multiple Access Schemes

Multiple Access Schemes Multiple Access Schemes Dr Yousef Dama Faculty of Engineering and Information Technology An-Najah National University 2016-2017 Why Multiple access schemes Multiple access schemes are used to allow many

More information

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques

Performance Analysis of MIMO-OFDM based IEEE n using Different Modulation Techniques IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 2 August 26 ISSN (online): 2349-784X Performance Analysis of MIMO-OFDM based IEEE 82.n using Different Modulation Techniques

More information

Introduction to Digital Communications System

Introduction to Digital Communications System Wireless Information Transmission System Lab. Introduction to Digital Communications System Institute of Communications Engineering National Sun Yat-sen University Recommended Books Digital Communications

More information

UNIT 2 DIGITAL COMMUNICATION DIGITAL COMMUNICATION-Introduction The techniques used to modulate digital information so that it can be transmitted via microwave, satellite or down a cable pair is different

More information

Mobile Radio Systems (Wireless Communications)

Mobile Radio Systems (Wireless Communications) Mobile Radio Systems (Wireless Communications) Klaus Witrisal witrisal@tugraz.at Signal Processing and Speech Communication Lab, TU Graz Lecture 1 WS2015/16 (6 October 2016) Key Topics of this Lecture

More information

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications

AM Limitations. Amplitude Modulation II. DSB-SC Modulation. AM Modifications Lecture 6: Amplitude Modulation II EE 3770: Communication Systems AM Limitations AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Lecture 6 Amplitude Modulation II Amplitude modulation is

More information

LESSON PLAN. LP-EC1451 LP Rev. No: 02 Sub Code & Name : EC1451 MOBILE COMMUNICATIONS Date: 05/12/2009. Unit: I Branch: EC Semester: VIII Page 01 of 06

LESSON PLAN. LP-EC1451 LP Rev. No: 02 Sub Code & Name : EC1451 MOBILE COMMUNICATIONS Date: 05/12/2009. Unit: I Branch: EC Semester: VIII Page 01 of 06 Unit: I Branch: EC Semester: VIII Page 01 of 06 Unit I Syllabus: Cellular Concept and System Design Fundamentals: Introduction to wireless communication: Evolution of mobile communications, mobile radio

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY

S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY VISHVESHWARAIAH TECHNOLOGICAL UNIVERSITY S.D.M COLLEGE OF ENGINEERING AND TECHNOLOGY A seminar report on Orthogonal Frequency Division Multiplexing (OFDM) Submitted by Sandeep Katakol 2SD06CS085 8th semester

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

Amplitude Modulation II

Amplitude Modulation II Lecture 6: Amplitude Modulation II EE 3770: Communication Systems Lecture 6 Amplitude Modulation II AM Limitations DSB-SC Modulation SSB Modulation VSB Modulation Multiplexing Mojtaba Vaezi 6-1 Contents

More information

SC - Single carrier systems One carrier carries data stream

SC - Single carrier systems One carrier carries data stream Digital modulation SC - Single carrier systems One carrier carries data stream MC - Multi-carrier systems Many carriers are used for data transmission. Data stream is divided into sub-streams and each

More information

EECS 380: Wireless Technologies Week 7-8

EECS 380: Wireless Technologies Week 7-8 EECS 380: Wireless Technologies Week 7-8 Michael L. Honig Northwestern University May 2018 Outline Diversity, MIMO Multiple Access techniques FDMA, TDMA OFDMA (LTE) CDMA (3G, 802.11b, Bluetooth) Random

More information

Objectives. Presentation Outline. Digital Modulation Lecture 01

Objectives. Presentation Outline. Digital Modulation Lecture 01 Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Digital Signal Analysis

Digital Signal Analysis Digital Signal Analysis Objectives - Provide a digital modulation overview - Review common digital radio impairments Digital Modulation Overview Signal Characteristics to Modify Polar Display / IQ Relationship

More information

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam. ECE 5325/6325: Wireless Communication Systems Lecture Notes, Spring 2010 Lecture 19 Today: (1) Diversity Exam 3 is two weeks from today. Today s is the final lecture that will be included on the exam.

More information

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1

Lecture 12: Summary Advanced Digital Communications (EQ2410) 1 : Advanced Digital Communications (EQ2410) 1 Monday, Mar. 7, 2016 15:00-17:00, B23 1 Textbook: U. Madhow, Fundamentals of Digital Communications, 2008 1 / 15 Overview 1 2 3 4 2 / 15 Equalization Maximum

More information

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS

SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS Dr. Ali Muqaibel SPREAD SPECTRUM (SS) SIGNALS FOR DIGITAL COMMUNICATIONS VERSION 1.1 Dr. Ali Hussein Muqaibel 1 Introduction Narrow band signal (data) In Spread Spectrum, the bandwidth W is much greater

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY An Overview of Modulation Techniques: chapter 3.1 3.3.1 2 Introduction (3.1) Analog Modulation Amplitude Modulation Phase and

More information

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia

Detection and Estimation of Signals in Noise. Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Detection and Estimation of Signals in Noise Dr. Robert Schober Department of Electrical and Computer Engineering University of British Columbia Vancouver, August 24, 2010 2 Contents 1 Basic Elements

More information

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr.

Lecture #2. EE 471C / EE 381K-17 Wireless Communication Lab. Professor Robert W. Heath Jr. Lecture #2 EE 471C / EE 381K-17 Wireless Communication Lab Professor Robert W. Heath Jr. Preview of today s lecture u Introduction to digital communication u Components of a digital communication system

More information

Multiple access techniques

Multiple access techniques Multiple access techniques Narrowband and wideband systems FDMA TDMA CDMA /FHMA SDMA Random-access techniques Summary Wireless Systems 2015 Narrowband and wideband systems Coherence BW B coh 1/σ τ σ τ

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

Channel & Modulation: Basics

Channel & Modulation: Basics ICTP-ITU-URSI School on Wireless Networking for Development The Abdus Salam International Centre for Theoretical Physics ICTP, Trieste (Italy), 6 to 24 February 2006 Channel & Modulation: Basics Ryszard

More information

Wireless Communications

Wireless Communications Wireless Communications Lecture 5: Coding / Decoding and Modulation / Demodulation Module Representive: Prof. Dr.-Ing. Hans D. Schotten schotten@eit.uni-kl.de Lecturer: Dr.-Ing. Bin Han binhan@eit.uni-kl.de

More information

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA

INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA COMM.ENG INTRODUCTION TO COMMUNICATION SYSTEMS AND TRANSMISSION MEDIA 9/9/2017 LECTURES 1 Objectives To give a background on Communication system components and channels (media) A distinction between analogue

More information

Comparisons Between USDC (IS-54) and GSM

Comparisons Between USDC (IS-54) and GSM Naresuan University Journal 2004; 12(3): 75-93 75 Comparisons Between USDC (IS-54) and GSM Surachet Kanprachar Department of Electrical and Computer Engineering, Faculty of Engineering, Naresuan University,

More information

Communications IB Paper 6 Handout 5: Multiple Access

Communications IB Paper 6 Handout 5: Multiple Access Communications IB Paper 6 Handout 5: Multiple Access Jossy Sayir Signal Processing and Communications Lab Department of Engineering University of Cambridge jossy.sayir@eng.cam.ac.uk Lent Term Jossy Sayir

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

Effects of Fading Channels on OFDM

Effects of Fading Channels on OFDM IOSR Journal of Engineering (IOSRJEN) e-issn: 2250-3021, p-issn: 2278-8719, Volume 2, Issue 9 (September 2012), PP 116-121 Effects of Fading Channels on OFDM Ahmed Alshammari, Saleh Albdran, and Dr. Mohammad

More information

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts

With a lot of material from Rich Nicholls, CTL/RCL and Kurt Sundstrom, of unknown whereabouts Signal Processing for OFDM Communication Systems Eric Jacobsen Minister of Algorithms, Intel Labs Communication Technology Laboratory/ Radio Communications Laboratory July 29, 2004 With a lot of material

More information

Adoption of this document as basis for broadband wireless access PHY

Adoption of this document as basis for broadband wireless access PHY Project Title Date Submitted IEEE 802.16 Broadband Wireless Access Working Group Proposal on modulation methods for PHY of FWA 1999-10-29 Source Jay Bao and Partha De Mitsubishi Electric ITA 571 Central

More information

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU

Part 3. Multiple Access Methods. p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Part 3. Multiple Access Methods p. 1 ELEC6040 Mobile Radio Communications, Dept. of E.E.E., HKU Review of Multiple Access Methods Aim of multiple access To simultaneously support communications between

More information

MODULATION AND MULTIPLE ACCESS TECHNIQUES

MODULATION AND MULTIPLE ACCESS TECHNIQUES 1 MODULATION AND MULTIPLE ACCESS TECHNIQUES Networks and Communication Department Dr. Marwah Ahmed Outlines 2 Introduction Digital Transmission Digital Modulation Digital Transmission of Analog Signal

More information

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27)

ECEn 665: Antennas and Propagation for Wireless Communications 131. s(t) = A c [1 + αm(t)] cos (ω c t) (9.27) ECEn 665: Antennas and Propagation for Wireless Communications 131 9. Modulation Modulation is a way to vary the amplitude and phase of a sinusoidal carrier waveform in order to transmit information. When

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation

Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation FUTEBOL Federated Union of Telecommunications Research Facilities for an EU-Brazil Open Laboratory Experimenting with Orthogonal Frequency-Division Multiplexing OFDM Modulation The content of these slides

More information

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95

ECE 476/ECE 501C/CS Wireless Communication Systems Winter Lecture 9: Multiple Access, GSM, and IS-95 ECE 476/ECE 501C/CS 513 - Wireless Communication Systems Winter 2003 Lecture 9: Multiple Access, GSM, and IS-95 Outline: Two other important issues related to multiple access space division with smart

More information

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1

OFDMA PHY for EPoC: a Baseline Proposal. Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 OFDMA PHY for EPoC: a Baseline Proposal Andrea Garavaglia and Christian Pietsch Qualcomm PAGE 1 Supported by Jorge Salinger (Comcast) Rick Li (Cortina) Lup Ng (Cortina) PAGE 2 Outline OFDM: motivation

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

OFDMA and MIMO Notes

OFDMA and MIMO Notes OFDMA and MIMO Notes EE 442 Spring Semester Lecture 14 Orthogonal Frequency Division Multiplexing (OFDM) is a digital multi-carrier modulation technique extending the concept of single subcarrier modulation

More information

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30

Chapter 5 OFDM. Office Hours: BKD Tuesday 14:00-16:00 Thursday 9:30-11:30 Chapter 5 OFDM 1 Office Hours: BKD 3601-7 Tuesday 14:00-16:00 Thursday 9:30-11:30 2 OFDM: Overview Let S 1, S 2,, S N be the information symbol. The discrete baseband OFDM modulated symbol can be expressed

More information

Chapter 4. Part 2(a) Digital Modulation Techniques

Chapter 4. Part 2(a) Digital Modulation Techniques Chapter 4 Part 2(a) Digital Modulation Techniques Overview Digital Modulation techniques Bandpass data transmission Amplitude Shift Keying (ASK) Phase Shift Keying (PSK) Frequency Shift Keying (FSK) Quadrature

More information

CH 4. Air Interface of the IS-95A CDMA System

CH 4. Air Interface of the IS-95A CDMA System CH 4. Air Interface of the IS-95A CDMA System 1 Contents Summary of IS-95A Physical Layer Parameters Forward Link Structure Pilot, Sync, Paging, and Traffic Channels Channel Coding, Interleaving, Data

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at required rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth, power requirements

More information

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont.

TSTE17 System Design, CDIO. General project hints. Behavioral Model. General project hints, cont. Lecture 5. Required documents Modulation, cont. TSTE17 System Design, CDIO Lecture 5 1 General project hints 2 Project hints and deadline suggestions Required documents Modulation, cont. Requirement specification Channel coding Design specification

More information

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization.

Simple Algorithm in (older) Selection Diversity. Receiver Diversity Can we Do Better? Receiver Diversity Optimization. 18-452/18-750 Wireless Networks and Applications Lecture 6: Physical Layer Diversity and Coding Peter Steenkiste Carnegie Mellon University Spring Semester 2017 http://www.cs.cmu.edu/~prs/wirelesss17/

More information

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday

Lecture 7: Centralized MAC protocols. Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Lecture 7: Centralized MAC protocols Mythili Vutukuru CS 653 Spring 2014 Jan 27, Monday Centralized MAC protocols Previous lecture contention based MAC protocols, users decide who transmits when in a decentralized

More information

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM

UNIVERSITY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences EECS 121 FINAL EXAM Name: UNIVERSIY OF CALIFORNIA College of Engineering Department of Electrical Engineering and Computer Sciences Professor David se EECS 121 FINAL EXAM 21 May 1997, 5:00-8:00 p.m. Please write answers on

More information

Downloaded from 1

Downloaded from  1 VII SEMESTER FINAL EXAMINATION-2004 Attempt ALL questions. Q. [1] How does Digital communication System differ from Analog systems? Draw functional block diagram of DCS and explain the significance of

More information

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model

Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model Performance Evaluation of Wireless Communication System Employing DWT-OFDM using Simulink Model M. Prem Anand 1 Rudrashish Roy 2 1 Assistant Professor 2 M.E Student 1,2 Department of Electronics & Communication

More information

ECS455: Chapter 4 Multiple Access

ECS455: Chapter 4 Multiple Access ECS455: Chapter 4 Multiple Access Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 1 Office Hours: BKD 3601-7 Tuesday 9:30-10:30 Tuesday 13:30-14:30 Thursday 13:30-14:30 ECS455: Chapter 4 Multiple

More information

MAS 160/510 Additional Notes: Modulation

MAS 160/510 Additional Notes: Modulation MAS 160/510 Additional Notes: Modulation From Amplitude Modulation to Frequency Modulation As usually implemented, FM uses much more bandwidth than AM. You ll note, for instance, that FM radio stations

More information

CDMA Tutorial April 29, Michael Souryal April 29, 2006

CDMA Tutorial April 29, Michael Souryal April 29, 2006 Michael Souryal April 29, 2006 Common Components Encoding, modulation, spreading Common Features/Functionality Power control, diversity, soft handoff System Particulars cdmaone (IS-95) cdma2000 Sources:

More information

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation. Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 8: RX Nonlinearity Issues, Demodulation Ted Johansson, EKS, ISY RX Nonlinearity Issues: 2.2, 2.4 Demodulation: not in the book 2 RX nonlinearities System Nonlinearity

More information

Broadcast Operation. Christopher Schmidt. University of Erlangen-Nürnberg Chair of Mobile Communications. January 27, 2010

Broadcast Operation. Christopher Schmidt. University of Erlangen-Nürnberg Chair of Mobile Communications. January 27, 2010 Broadcast Operation Seminar LTE: Der Mobilfunk der Zukunft Christopher Schmidt University of Erlangen-Nürnberg Chair of Mobile Communications January 27, 2010 Outline 1 Introduction 2 Single Frequency

More information

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK

OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK OFDM AS AN ACCESS TECHNIQUE FOR NEXT GENERATION NETWORK Akshita Abrol Department of Electronics & Communication, GCET, Jammu, J&K, India ABSTRACT With the rapid growth of digital wireless communication

More information

Lesson 8 Speech coding

Lesson 8 Speech coding Lesson 8 coding Encoding Information Transmitter Antenna Interleaving Among Frames De-Interleaving Antenna Transmission Line Decoding Transmission Line Receiver Information Lesson 8 Outline How information

More information

Lecture 9: Spread Spectrum Modulation Techniques

Lecture 9: Spread Spectrum Modulation Techniques Lecture 9: Spread Spectrum Modulation Techniques Spread spectrum (SS) modulation techniques employ a transmission bandwidth which is several orders of magnitude greater than the minimum required bandwidth

More information

Introduction to Amplitude Modulation

Introduction to Amplitude Modulation 1 Introduction to Amplitude Modulation Introduction to project management. Problem definition. Design principles and practices. Implementation techniques including circuit design, software design, solid

More information

Digital Communication System

Digital Communication System Digital Communication System Purpose: communicate information at certain rate between geographically separated locations reliably (quality) Important point: rate, quality spectral bandwidth requirement

More information

WCDMA Basics Chapter 2 OBJECTIVES:

WCDMA Basics Chapter 2 OBJECTIVES: WCDMA Basics Chapter 2 This chapter is designed to give the students a brief review of the WCDMA basics of the WCDMA Experimental System. This is meant as a review only as the WCDMA basics have already

More information

RF/IF Terminology and Specs

RF/IF Terminology and Specs RF/IF Terminology and Specs Contributors: Brad Brannon John Greichen Leo McHugh Eamon Nash Eberhard Brunner 1 Terminology LNA - Low-Noise Amplifier. A specialized amplifier to boost the very small received

More information

Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier

Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier Prepared for the Engineers of Samsung Electronics RF transmitter & power amplifier Changsik Yoo Dept. Electrical and Computer Engineering Hanyang University, Seoul, Korea 1 Wireless system market trends

More information

GSM and WCDMA RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology

GSM and WCDMA RADIO SYSTEMS ETIN15. Lecture no: Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 11 GSM and WCDMA Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2015-05-12 Ove Edfors - ETIN15 1 Contents (Brief) history of mobile

More information

ALi Linear n-stage t ShiftRegister output tsequence

ALi Linear n-stage t ShiftRegister output tsequence PN CODE GENERATION (cont d) ALi Linear n-stage t ShiftRegister output tsequence Modulo-2 Adder h hn-1 h hn-2 h h2 h h1 X n-1 X n-2 X 1 X 0 Output Note: hi=1 represents a closed circuit; hi=0 represents

More information

Mobile Communication Systems. Part 7- Multiplexing

Mobile Communication Systems. Part 7- Multiplexing Mobile Communication Systems Part 7- Multiplexing Professor Z Ghassemlooy Faculty of Engineering and Environment University of Northumbria U.K. http://soe.ac.uk/ocr Contents Multiple Access Multiplexing

More information

ECE513 RF Design for Wireless

ECE513 RF Design for Wireless 1 ECE513 RF Design for Wireless MODULE 1 RF Systems LECTURE 1 Modulation Techniques Chapter 1, Sections 1.1 1.3 Professor Michael Steer http://www4.ncsu.edu/~mbs 2 Module 1: RF Systems Amplifiers, Mixers

More information

Multiplexing Module W.tra.2

Multiplexing Module W.tra.2 Multiplexing Module W.tra.2 Dr.M.Y.Wu@CSE Shanghai Jiaotong University Shanghai, China Dr.W.Shu@ECE University of New Mexico Albuquerque, NM, USA 1 Multiplexing W.tra.2-2 Multiplexing shared medium at

More information

Wireless LANs/data networks

Wireless LANs/data networks RADIO SYSTEMS - ETIN15 Lecture no: 12 Wireless LANs/data networks Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se 2015-05-13 Ove Edfors - ETIN15 1 Centralized and

More information

Multiple Access Techniques

Multiple Access Techniques Multiple Access Techniques Instructor: Prof. Dr. Noor M. Khan Department of Electrical Engineering, Faculty of Engineering, Mohammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +92

More information

ECE 457 Communication Systems. Selin Aviyente Assistant Professor Electrical & Computer Engineering

ECE 457 Communication Systems. Selin Aviyente Assistant Professor Electrical & Computer Engineering ECE 457 Communication Systems Selin Aviyente Assistant Professor Electrical & Computer Engineering Announcements Class Web Page: http://www.egr.msu.edu/~aviyente/ece 457.htm M, W, F 10:20-11:10 a.m. Office

More information

Revision of Previous Six Lectures

Revision of Previous Six Lectures Revision of Previous Six Lectures Previous six lectures have concentrated on Modem, under ideal AWGN or flat fading channel condition Important issues discussed need to be revised, and they are summarised

More information

Anju 1, Amit Ahlawat 2

Anju 1, Amit Ahlawat 2 Orthogonal Frequency Division Multiplexing Anju 1, Amit Ahlawat 2 1 Hindu College of Engineering, Sonepat 2 Shri Baba Mastnath Engineering College Rohtak Abstract: OFDM was introduced in the 1950s but

More information

AM and FM MODULATION Lecture 5&6

AM and FM MODULATION Lecture 5&6 AM and FM MODULATION Lecture 5&6 Ir. Muhamad Asvial, MEng., PhD Center for Information and Communication Engineering Research Electrical Engineering Department University of Indonesia Kampus UI Depok,

More information

Wireless Communication Systems: Implementation perspective

Wireless Communication Systems: Implementation perspective Wireless Communication Systems: Implementation perspective Course aims To provide an introduction to wireless communications models with an emphasis on real-life systems To investigate a major wireless

More information

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering)

B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Code: 13A04404 R13 B.Tech II Year II Semester (R13) Supplementary Examinations May/June 2017 ANALOG COMMUNICATION SYSTEMS (Electronics and Communication Engineering) Time: 3 hours Max. Marks: 70 PART A

More information

ADVANCED WIRELESS TECHNOLOGIES. Aditya K. Jagannatham Indian Institute of Technology Kanpur

ADVANCED WIRELESS TECHNOLOGIES. Aditya K. Jagannatham Indian Institute of Technology Kanpur ADVANCED WIRELESS TECHNOLOGIES Aditya K. Jagannatham Indian Institute of Technology Kanpur Wireless Signal Fast Fading The wireless signal can reach the receiver via direct and scattered paths. As a result,

More information

Digital Modulation Schemes

Digital Modulation Schemes Digital Modulation Schemes 1. In binary data transmission DPSK is preferred to PSK because (a) a coherent carrier is not required to be generated at the receiver (b) for a given energy per bit, the probability

More information