To Wear or Not to Wear: Do Colors Affect how Warm a Person Becomes?

Size: px
Start display at page:

Download "To Wear or Not to Wear: Do Colors Affect how Warm a Person Becomes?"

Transcription

1 To Wear or Not to Wear: Do Colors Affect how Warm a Person Becomes? Submitted by :P12 Date: 9 May 2018 Science Division: Physical

2 1 Table of Contents Topic Page Research 1-4 Purpose.. 5 Hypothesis. 5 Materials. 5 Procedure Results and Analysis Conclusion Work Cited 13 Acknowledgements 14

3 2 To Wear or Not to Wear: Do Colors Affect How Warm a Person Becomes? Research: Visible light is the part of the electromagnetic spectrum that is visible to the eye. It consists of electromagnetic waves with wavelengths between 400 nm and 700 nm. Wavelength is an important characteristic of light, especially when talking about colors, because the wavelength determines the color. When visible light, also called white light, passes through a prism it is broken into seven major colors of light. These colors are red, orange, yellow, green, blue, indigo, and violet. Each color has its own unique frequency as well as wavelength (Rogers et al., 216). The primary colors of light are red, green, and blue. To create secondary colors of light, the process of additive mixing is used. This is when different combinations of red, green, and blue light are mixed together to form the secondary colors, cyan, magenta, and yellow. Mixing other combinations of red, blue and green create all of the other colors of light. Complimentary colors are formed when any two colors are mixed together and form white light (Rogers, et al., 216). The color that an object appears is the color of light that it is reflecting. A material absorbs all colors except the color that it appears; this color is reflected by the material. Each colored object contains pigments. The three primary colors of pigments are yellow, magenta, and cyan. These colors can be mixed together to form any visible color (Biggs, et al., 668). Pigments absorb certain wavelengths of colors so an orange shirt would absorb all light except orange light. It would reflect orange light. White reflects all light, and black absorbs all light. White and black are achromatic colors, which means without color (Rogers et al., 217).

4 3 The definition of heat is a form of energy that flows from one place to another because of a difference in temperature. (Rogers, et al. 110). Temperature is a measure of how fast the molecules in an object are moving. The faster the particles are moving, the hotter the object is. When a substance absorbs light, its internal energy is increased (Rogers, et al. 110). The first law of thermodynamics states that energy cannot be lost or gained: it is only changed from one form to the other. When light hits an object, the energy has to go somewhere, so it is changed into heat energy. The energy causes the molecules to move faster resulting in an increase in temperature (Color vs. Heat). The more light that is absorbed by an object, the more light energy that is transformed into heat energy. There are three types of heat transfer; convection, conduction, and radiation. In convection, heat is transferred in gases and liquids. When a gas or a liquid is heated, the part closest to the heat source will expand. This causes the material to become less dense, therefore causing it to rise. The denser and cooler liquid or gas at the top would then sink. This rising and sinking motion causes convection currents (Rogers, et al., 112). In conduction, heat is transferred in solids. Conduction works because the energy of the particles closest to the heat source increase, causing them to vibrate. This causes the particles to pass their energy to other particles by bumping into them. Heat energy is spread throughout the solid by a chain reaction of particles bumping into each other (Rogers, et al., 113). In radiation, energy moves in the form of electromagnetic waves. The Sun sends out infrared radiation, which is absorbed by darker colors causing them to gain heat and reflected by lighter colors allowing them to stay cooler (Rogers, et al., 113). Radiation occurs because the Sun s temperature is

5 4 higher than the Earth s temperature. If two objects with different temperatures are put next to each other, the heat will flow from the hotter object to the cooler object in order to reach equilibrium (Giancoli, 241).

6 5 Purpose: Do different colors of clothing absorb heat differently? Hypothesis: If darker colors absorb more light than lighter colored fabrics, then the darker colored fabrics will become the warmest and the lighter colored fabrics will be cooler. Red, orange and yellow fabric will absorb the least amount of heat because they are lighter colors and therefore reflect more light. Green, blue and violet cloth will gain more heat because they are darker colors and therefore absorb more light. The black fabric will become the hottest because it absorbs all visible light waves and the white fabric will be the coolest because it reflects all visible light waves. Materials: Cotton fabric (1 meter each) in black, white, red, orange, yellow, green, blue and violet 100 watt halogen floodlight bulb and lamp Wireless remote thermometer 30 cm x 30 cm piece of cardboard Tape String to suspend lamp over fabric Stopwatch, clock or timer

7 6 Procedure: Independent variable: Color of fabric Dependent variable: temperature under fabric Constants: same size fabric, same type of fabric, same thickness of fabric, same length of light exposure, same type of light and light holder, same distance of fabric from light, same distance of thermometer from light and fabric, same thermometer, same environment Control: no fabric 1. Insert halogen bulb into lamp. 2. Choose a flat area to use while testing fabrics. 3. Tape thermometer probe or sensor to piece of cardboard (be sure not to tape over the probe tip or sensor). 4. Place cardboard on the flat surface. 5. Tie a string on the lamp handle and suspend bulb 45 cm directly above the thermometer probe or sensor. 6. Fold white piece of fabric until it is eight (8) layers thick. 7. Lay fabric over the thermometer. 8. Record the starting temperature. 9. Turn on the lamp and measure and record the temperature after five (5) and ten (10) minutes. 10. Turn off the lamp.

8 7 11. Calculate the temperature gained after five (5) and ten (10) minutes by subtracting the initial temperature from the five (5) and ten (10) minute temperature readings. 12. Allow thermometer to cool to room temperature. 13. Repeat steps six (6) through twelve (12) two (2) more times. 14. Remove fabric. 15. Repeat steps six (6) through fourteen (14) with black, red, orange, yellow, green, blue, and violet fabrics. 16. Repeat steps eight (8) through eleven (11) without any fabric over the thermometer as the control.

9 8 Results and Analysis: Fabric Color and Temperature Gained Temperature ( C) Average Fabric Color Temperature Gained ( C) After Before 5 minutes 10 minutes 5 min 10 min Red Trial Trial Trial Orange-Trial Trial Trial Yellow - Trial Trial Trial White- Trial Trial Trial Green - Trial Trial Trial Blue-- Trial Trial Trial Violet- Trial Trial Trial Black- Trial Trial Trial Control-Trial Trial Trial Avg.Temp. Gained = (Temp. after Trial 1 before temp) + (Temp. after Trial 2 before temp) + (Temp. after Trial 3 before temp) 3

10 9 Average Temp. Gained (Celsius) Temperature Gained vs. Fabric Color Fabric Color Legend Temp after 5 min (solid bar without border) Temp. after 10 min (solid bar with blue border) The red, orange, yellow and white fabric heated up less than the green, blue, violet and black fabric. The black fabric absorbed the most heat.

11 10 Conclusion: The results partially support the hypothesis in that the temperature under the lighter colors (red, orange and yellow) was cooler than under the darker colors (blue, green and violet) and the temperature under the black fabric was the highest. The hypothesis was incorrect for the white fabric, the temperature under the white fabric was not the lowest temperature, it was the same temperature as the red, orange and yellow fabrics. The average temperature gained for the lighter colors after five minutes was about five degrees Celsius, and after ten minutes, it was between six and seven degrees Celsius. The average temperature gained for the darker colors was about eight to ten degrees Celsius, and after ten minutes it was about ten to thirteen degrees Celsius. The lighter colors did not gain as much heat because they reflected most of the longer wavelength light rays. There was almost no difference between the temperature gain in red, orange and yellow fabrics so the minor differences in the wavelengths of light being reflected by these colors did not affect the temperature. The darker colors gained more heat because they absorbed most of the longer light rays and reflected the shorter wavelength rays. Again, there was very little difference between green, violet and blue fabrics so the minor differences in the wavelengths of the light absorbed did not affect the temperature. Black, which absorbs all light showed the highest increase in temperature. Infrared light, which is heat energy, is a longer wavelength similar to the red, orange and yellow wavelengths. The red, yellow and orange fabric reflected the longer wavelengths so that may be why those fabrics absorbed less heat. The blue, violet and green fabrics reflected the shorter wavelengths but absorbed the longer wavelengths so that may be the reason they became warmer.

12 11 Two different temperatures were tested for each trial. Five and ten minutes were chosen because they provided accurate temperatures. After five minutes, the temperature was towards the middle of the total temperature gained. After ten minutes, the temperature had pretty much reached the highest temperature the fabric would gain. Longer times were tested while the procedure was being developed that indicated there was no further temperature gain beyond ten minutes. The temperature increased mainly because light energy was converted into heat energy. Visible light waves carry energy. When a light ray hits an object, the energy has to go somewhere according to the first law of thermodynamics. The more light that is absorbed, and the longer the wavelength absorbed, the more heat that is generated. As a result, the darker colors that absorbed more of the longer wavelengths of light became warmer. In an experiment such as this, there isn t pure visible light. There might be infrared or possibly UV rays depending on the light source. A halogen lamp was used because it reduces the amount of infrared and UV rays and emits mostly visible light rays. As a control, the temperature gain for the thermometer alone (no fabric covering it) was determined by placing the thermometer under the lamp at the same distance as for the samples and reading it after five and ten minutes. According to the results, a lighter colored shirt would reflect more light and keep a person cooler, while a darker colored shirt would absorb more light and cause a person to become warmer. It follows that red, orange, yellow and white shirts would be best for summer and green, blue, black and violet shirts would be better for winter. An improvement on the lab procedure would be to replace the halogen lamp with the Sun

13 12 so the results are more relevant to wearing clothes outside. It would also be interesting to compare the temperature increase for different fabric types.

14 13 Work Cited Biggs, Alton, et al. Glencoe Science: Level Green. New York: Glencoe/McGraw-Hill, Print. Color vs. Heat. Web. 5 May < Giancoli, Douglas C. Physics. Engelwood Cliffs: Prentice-Hall, Inc., Print. Residential Energy Bookshelf. Web. 7 May < Rogers, Kersteen, et al. The Usborne Internet-Linked Science Encyclopedia. Saffron Hill, London: Usborne Publishing Ltd., Print.

15 14 Acknowledgements I would like to thank my mom and dad for helping me with the experimentation and for putting up with my constant procrastination. I wouldn t have been able to carry out my experiment if they hadn t spent their time (and money) on my experiment and supplies.

Black is the absence of all visible light. Black is NOT a color!!!

Black is the absence of all visible light. Black is NOT a color!!! Black is the absence of all visible light. Black is NOT a color!!! This is why white colored clothing is cooler in summer. White fabric re emits light, while black fabric absorbs light. Why do we see this

More information

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism.

Chapter 9: Light, Colour and Radiant Energy. Passed a beam of white light through a prism. Chapter 9: Light, Colour and Radiant Energy Where is the colour in sunlight? In the 17 th century (1600 s), Sir Isaac Newton conducted a famous experiment. Passed a beam of white light through a prism.

More information

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks

ELECTROMAGNETIC WAVES AND LIGHT. Physics 5 th Six Weeks ELECTROMAGNETIC WAVES AND LIGHT Physics 5 th Six Weeks What are Electromagnetic Waves Electromagnetic Waves Sound and water waves are examples of waves resulting from energy being transferred from particle

More information

Light waves interact with materials.

Light waves interact with materials. Page of 7 KEY CONCEPT Light waves interact with materials. BEFORE, you learned Mechanical waves respond to a change in medium Visible light is made up of EM waves EM waves interact with a new medium in

More information

Section 18.3 Behavior of Light

Section 18.3 Behavior of Light Light and Materials When light hits an object it can be Section 18.3 Behavior of Light Light and Materials Objects can be classified as Transparent Translucent Opaque Transparent, Translucent, Opaque Transparent

More information

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound Type of wave Travel in Vacuum? Speed Speed vs. Medium Light Sound vs. Sound Longitudinal No, Mechanical wave ~340 m/s (in air) 1,100 feet per second More elastic/denser medium = Greater speed of sound

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum Wave - Review Waves are oscillations that transport energy. 2 Types of waves: Mechanical waves that require a medium to travel through (sound, water, earthquakes) Electromagnetic

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS 4.1 Describe the measurable properties of waves (velocity, frequency, wavelength, amplitude, period)

More information

Physics, P1 Energy for the Home

Physics, P1 Energy for the Home Radiotherapy uses gamma rays to kill cancer cells All waves move energy from place to place. Physics, P1 Energy for the Home Transverse Waves These are caused by shaking. Examples are (1) Waves in a string,

More information

color & dye chemisty Explore in a scientific way! Learn how and why we see color, and how dye chemically reacts with fabric!

color & dye chemisty Explore in a scientific way! Learn how and why we see color, and how dye chemically reacts with fabric! for ages 12-17 color & dye chemisty Explore in a scientific way! Learn how and why we see color, and how dye chemically reacts with fabric! objectives and materials what is color? types of color how reactive

More information

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points

LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points WRITE ON SCANTRON WITH NUMBER 2 PENCIL DO NOT WRITE ON THIS TEST LlIGHT REVIEW PART 2 DOWNLOAD, PRINT and submit for 100 points Multiple Choice Identify the choice that best completes the statement or

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 27: COLOR This lecture will help you understand: Color in Our World Selective Reflection Selective Transmission Mixing Colored Light Mixing Colored Pigments Why

More information

Form 4: Integrated Science Notes TOPIC NATURAL AND ARTIFICIAL LIGHTING

Form 4: Integrated Science Notes TOPIC NATURAL AND ARTIFICIAL LIGHTING Form 4: Integrated Science Notes TOPIC NATURAL AND ARTIFICIAL LIGHTING OBJECTIVES: 1. Define natural and artificial lighting. 2. Use of fluorescent and filament lamps. 3. Investigation of white light and

More information

Lesson Title: The Science of Light and Photography Subject Grade Level Timeline. Physical Science minutes. Objectives

Lesson Title: The Science of Light and Photography Subject Grade Level Timeline. Physical Science minutes. Objectives Lesson Title: The Science of Light and Photography Subject Grade Level Timeline Physical Science 5-12 60-90 minutes Objectives This lesson explores some of the ways in which light can be manipulated to

More information

Section Electromagnetic Waves and the Electromagnetic Spectrum

Section Electromagnetic Waves and the Electromagnetic Spectrum Section 17.6 Electromagnetic Waves and the Electromagnetic Spectrum Electromagnetic Waves Can you name all the colors of the rainbow? Red, Orange, Yellow, Green, Blue, Indigo, Violet Electromagnetic Waves

More information

Ch 16: Light. Do you see what I see?

Ch 16: Light. Do you see what I see? Ch 16: Light Do you see what I see? Light Fundamentals What is light? How do we see? A stream of particles emitted by a source? Wavelike behavior as it bends and reflects Today we know light is dual in

More information

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen?

11. What happens if two complementary colors are projected together at the correct intensities onto a white screen? PreAP Physics Review Chapter 14 & 15 09 Name: Date: Period: _ Use the diagram to answer questions 1 13. The diagram represents three overlapping circles of equally intense light of different pure colors.

More information

Additive and Subtractive Color Lab On Line PreAP

Additive and Subtractive Color Lab On Line PreAP Name Additive and Subtractive Color Lab On Line PreAP Period 1. Go to Explorelearning.com and try to LOG IN with your name. Your user name should be your name: First_LastAHS (example Sally_StudentAHS).

More information

Physics for Kids. Science of Light. What is light made of?

Physics for Kids. Science of Light. What is light made of? Physics for Kids Science of Light What is light made of? This is not an easy question. Light has no mass and is not really considered matter. So does it even exist? Of course it does! We couldn't live

More information

PHYSICS - Chapter 16. Light and Color and More

PHYSICS - Chapter 16. Light and Color and More PHYSICS - Chapter 16 Light and Color and More LIGHT-fundamentals 16.1 Light is the visible part of the electromagnetic spectrum. The electromagnetic spectrum runs from long Radio and TV waves to short

More information

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History

Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History Lecture 6 6 Color, Waves, and Dispersion Reading Assignment: Read Kipnis Chapter 7 Colors, Section I, II, III 6.1 Overview and History In Lecture 5 we discussed the two different ways of talking about

More information

Chapter: Sound and Light

Chapter: Sound and Light Table of Contents Chapter: Sound and Light Section 1: Sound Section 2: Reflection and Refraction of Light Section 3: Mirrors, Lenses, and the Eye Section 4: Light and Color 1 Sound Sound When an object

More information

How can we "see" using the Infrared?

How can we see using the Infrared? The Infrared Infrared light lies between the visible and microwave portions of the electromagnetic spectrum. Infrared light has a range of wavelengths, just like visible light has wavelengths that range

More information

Color Studies for Kids

Color Studies for Kids Color Studies for Kids By C.L. Swanner 2011 C.L. Swanner All rights reserved. Special Thanks To: God, who designed me with a great love for His creation and gave me the ability to explore His creation

More information

Exercises The Color Spectrum (pages ) 28.2 Color by Reflection (pages )

Exercises The Color Spectrum (pages ) 28.2 Color by Reflection (pages ) Exercises 28.1 The Spectrum (pages 555 556) 1. was the first person to do a systematic study of color. 2. Circle the letter of each statement that is true about Newton s study of color. a. He studied sunlight.

More information

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer. Test 1: Example #2 Paul Avery PHY 3400 Feb. 15, 1999 Note: * indicates the correct answer. 1. A red shirt illuminated with yellow light will appear (a) orange (b) green (c) blue (d) yellow * (e) red 2.

More information

Green Team Science - Mrs. Ferdinand

Green Team Science - Mrs. Ferdinand Date: Homework: May 15, 2018 Waves Study Guide: start reviewing NOW Reminders: Unit Test: Friday, May 18 Unit Test Review: Thursday Turn In Activity 9: Wave Refraction Challenge Question None Agenda /

More information

Life Science Chapter 2 Study Guide

Life Science Chapter 2 Study Guide Key concepts and definitions Waves and the Electromagnetic Spectrum Wave Energy Medium Mechanical waves Amplitude Wavelength Frequency Speed Properties of Waves (pages 40-41) Trough Crest Hertz Electromagnetic

More information

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES Do not need matter to transfer energy. Made by vibrating electric charges. When an electric charge vibrates,

More information

28 Color. The colors of the objects depend on the color of the light that illuminates them.

28 Color. The colors of the objects depend on the color of the light that illuminates them. The colors of the objects depend on the color of the light that illuminates them. Color is in the eye of the beholder and is provoked by the frequencies of light emitted or reflected by things. We see

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 13: LIGHT WAVES This lecture will help you understand: Electromagnetic Spectrum Transparent and Opaque Materials Color Why the Sky is Blue, Sunsets are Red, and

More information

Light waves. VCE Physics.com. Light waves - 2

Light waves. VCE Physics.com. Light waves - 2 Light waves What is light? The electromagnetic spectrum Waves Wave equations Light as electromagnetic radiation Polarisation Colour Colour addition Colour subtraction Interference & structural colour Light

More information

Light. Light: Rainbow colors: F. Y. I. A type of energy that travels as a wave Light Experiments.notebook. May 19, 2015

Light. Light: Rainbow colors: F. Y. I. A type of energy that travels as a wave Light Experiments.notebook. May 19, 2015 Light Light: A type of energy that travels as a wave F. Y. I. Light is different from other kinds of waves. Other kinds of waves, such as sound waves must travel through matter. Light waves do not need

More information

Chapter 16 Light Waves and Color

Chapter 16 Light Waves and Color Chapter 16 Light Waves and Color Lecture PowerPoint Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. What causes color? What causes reflection? What causes color?

More information

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter

Waves. A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves and Optics Waves A wave is a disturbance which travels through a vacuum or medium (air, water, etc) that contains matter A wave transports ENERGY not matter Waves Some waves do not need a medium

More information

Vocabulary. Unit 9 Forms of Energy. ENERGY: The capacity for doing work.

Vocabulary. Unit 9 Forms of Energy. ENERGY: The capacity for doing work. Unit 9 Forms of Energy Main Idea: There are many forms of energy, including radiant energy and chemical energy. Energy can change form. ENERGY: The capacity for doing work. Heat, Light and Radiant Energy

More information

Science Expo Report: Chemical Reaction Rates in Ultraviolet Beads. Josh Taylor, Ryan Gamboa. Mrs. Wolbach. Physical Science 2nd Period.

Science Expo Report: Chemical Reaction Rates in Ultraviolet Beads. Josh Taylor, Ryan Gamboa. Mrs. Wolbach. Physical Science 2nd Period. Science Expo Report: Chemical Reaction Rates in Ultraviolet Beads Josh Taylor, Ryan Gamboa Mrs. Wolbach Physical Science 2nd Period March 2016 Introduction Ultraviolet is a type of wave that has a higher

More information

Hue Do You Think Hue Are?

Hue Do You Think Hue Are? Hue Do You Think Hue Are? The Properties of Color There are three fundamental properties by which color is characterized: hue, value and chroma. We ve been discussing value. Now Introducing Hue! Who What

More information

In a physical sense, there really is no such thing as color, just light waves of different wavelengths.

In a physical sense, there really is no such thing as color, just light waves of different wavelengths. Color Concept Basis Color Concept What is Color? In a physical sense, there really is no such thing as color, just light waves of different wavelengths. Color comes from light. The human eye can distinguish

More information

Introduction to Color Theory

Introduction to Color Theory Introduction to Color Theory This overview will give you an essential primer on the definition of color, from its origins to current day definitions. It provides a deeper understanding of the printing

More information

ID: A. Optics Review Package Answer Section TRUE/FALSE

ID: A. Optics Review Package Answer Section TRUE/FALSE Optics Review Package Answer Section TRUE/FALSE 1. T 2. F Reflection occurs when light bounces off a surface Refraction is the bending of light as it travels from one medium to another. 3. T 4. F 5. T

More information

Electromagnetic Waves & the Electromagnetic Spectrum

Electromagnetic Waves & the Electromagnetic Spectrum Electromagnetic Waves & the Electromagnetic Spectrum longest wavelength shortest wavelength The Electromagnetic Spectrum The name given to a group of energy waves that are mostly invisible and can travel

More information

Art 177 :: Creative Photography. Color & Color Theory

Art 177 :: Creative Photography. Color & Color Theory Art 177 :: Creative Photography Color & Color Theory Color I never met a color I didn t like. Dale Chihuly Color [electromagnetic spectrum] The electromagnetic spectrum is made up of all forms of electromagnetic

More information

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola

LIGHT AND LIGHTING FUNDAMENTALS. Prepared by Engr. John Paul Timola LIGHT AND LIGHTING FUNDAMENTALS Prepared by Engr. John Paul Timola LIGHT a form of radiant energy from natural sources and artificial sources. travels in the form of an electromagnetic wave, so it has

More information

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17

Fill in the blanks. Reading Skill: Compare and Contrast - questions 3, 17 Light and Color Lesson 9 Fill in the blanks Reading Skill: Compare and Contrast - questions 3, 17 How Do You Get Color From White Light? 1 A(n) is a triangular piece of polished glass that refracts white

More information

17-1 Electromagnetic Waves

17-1 Electromagnetic Waves 17-1 Electromagnetic Waves transfers energy called electromagnetic radiation no medium needed transverse some electrical, some magnetic properties speed is 300,000,000 m/s; nothing is faster; at this speed

More information

WAVES & EM SPECTRUM. Chapters 10 & 15

WAVES & EM SPECTRUM. Chapters 10 & 15 WAVES & EM SPECTRUM Chapters 10 & 15 What s a wave? repeating disturbance transfers energy through matter or space Oscillation back & forth movement carries energy w/o transporting matter can travel through

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction

Light. In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Light In this unit: 1) Electromagnetic Spectrum 2) Properties of Light 3) Reflection 4) Colors 5) Refraction Part 1 Electromagnetic Spectrum and Visible Light Remember radio waves are long and gamma rays

More information

Thursday, May 19, 16. Color Theory

Thursday, May 19, 16. Color Theory Color Theory Which colours is white light made of? Did you know?! Your eyes have only 3 types of cells that can recognize millions of colours.! When you observe a colour, it is because different combinations

More information

UBT128X Colour theory

UBT128X Colour theory UBT128X Colour theory Unit reference number: L/507/5481 Level: 3 Guided Learning (GL) hours: 25 Overview This unit is about exploring the concepts and theories of colour. Learners will develop the knowledge

More information

$100 $400 $400 $400 $500

$100 $400 $400 $400 $500 $100 $100 $100 $100 $100 $200 $200 $200 $200 $200 $300 $300 $300 $300 $300 $400 $400 $400 $400 $400 $500 $500 $500 $500 $500 MOVING IN WAVES PURE ENERGY! WHAT S THE FREQUENCY, KENNETH? USE IT OR LOSE IT

More information

Light, Color, Spectra 05/30/2006. Lecture 17 1

Light, Color, Spectra 05/30/2006. Lecture 17 1 What do we see? Light Our eyes can t t detect intrinsic light from objects (mostly infrared), unless they get red hot The light we see is from the sun or from artificial light When we see objects, we see

More information

Color Temperature Color temperature is distinctly different from color and also it is different from the warm/cold contrast described earlier.

Color Temperature Color temperature is distinctly different from color and also it is different from the warm/cold contrast described earlier. Color Temperature Color temperature is distinctly different from color and also it is different from the warm/cold contrast described earlier. Color temperature describes the actual temperature of a black

More information

Unit 6 Electromagnetic Radiation:

Unit 6 Electromagnetic Radiation: Unit 6 Electromagnetic Radiation: Electromagnetic Radiation is a wave. Electromagnetic Radiation is not a mechanical wave. Does not need a medium. Can travel through empty space Examples of Electromagnetic

More information

Wavelength and Frequency Lab

Wavelength and Frequency Lab Name Wavelength and Frequency Lab Purpose: To discover and verify the relationship between Wavelength and Frequency of the Electromagnetic Spectrum. Background Information: Visible light is Electromagnetic

More information

Section 1: Sound. Sound and Light Section 1

Section 1: Sound. Sound and Light Section 1 Sound and Light Section 1 Section 1: Sound Preview Key Ideas Bellringer Properties of Sound Sound Intensity and Decibel Level Musical Instruments Hearing and the Ear The Ear Ultrasound and Sonar Sound

More information

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays.

Lens: Lenses are usually made of and have 2 curved surfaces. Draw figure 5.23 on Page 191. Label it clearly and use a ruler for the light rays. 5.3 Lenses We have seen lenses in our microscopes, cameras or eyeglasses. Lens: Lenses are usually made of and have 2 curved surfaces. Concave lens: A lens curved inward Thinner at the centre than at the

More information

ORIENTATION LAB. Directions

ORIENTATION LAB. Directions ORIENTATION LAB Directions You will be participating in an Orientation Lab that is designed to: Introduce you to the physics laboratory Cover basic observation and data collection techniques Explore interesting

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page Content: Physical Science The Electromagnetic Spectrum Grade Level: High School Creator:

More information

Active Wear. Math Objectives: Create, interpret and analyze graphs of data, Relate slope to rate of change

Active Wear. Math Objectives: Create, interpret and analyze graphs of data, Relate slope to rate of change 10 Adventure Active Wear Math Objectives: Create, interpret and analyze graphs of data, Relate slope to rate of change Science Objectives: Time: 2 class periods Suggested grade levels: 6-8 Understand which

More information

Optics Review (Chapters 11, 12, 13)

Optics Review (Chapters 11, 12, 13) Optics Review (Chapters 11, 12, 13) Complete the following questions in preparation for your test on FRIDAY. The notes that you need are in italics. Try to answer it on your own first, then check with

More information

Motion Lab : Relative Speed. Determine the Speed of Each Car - Gathering information

Motion Lab : Relative Speed. Determine the Speed of Each Car - Gathering information Motion Lab : Introduction Certain objects can seem to be moving faster or slower based on how you see them moving. Does a car seem to be moving faster when it moves towards you or when it moves to you

More information

LASERS. & Protective Glasses. Your guide to Lasers and the Glasses you need to wear for protection.

LASERS. & Protective Glasses. Your guide to Lasers and the Glasses you need to wear for protection. LASERS & Protective Glasses Your guide to Lasers and the Glasses you need to wear for protection. FACTS Light & Wavelengths Light is a type of what is called electromagnetic radiation. Radio waves, x-rays,

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 13 13 Table of Contents Unit 3: Energy On the Move Chapter 13: Light 13.1: The Behavior of Light 13.2: Light and Color 13.3: Producing Light 13.4: Using Light 13.1 The Behavior of Light Light and Matter

More information

Image from:

Image from: A. Light 4.P.4A. Conceptual Understanding: Light, as a form of energy, has specific properties including color and brightness. Light travels in a straight line until it strikes an object. The way light

More information

Energy in Photons. Light, Energy, and Electron Structure

Energy in Photons. Light, Energy, and Electron Structure elearning 2009 Introduction Energy in Photons Light, Energy, and Electron Structure Publication No. 95007 Students often confuse the concepts of intensity of light and energy of light. This demonstration

More information

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014 STUDENT LEARNING GOALS PHYSICAL SCIENCE ELECTROMAGNETISM SC.912.P.10.18 CHAPTER 17 AND 18 Electromagnetic Spectrum, Light, and Sound Goal: Explore the theory of electromagnetism by comparting and contrasting

More information

Waves. Electromagnetic & Mechanical Waves

Waves. Electromagnetic & Mechanical Waves Waves Electromagnetic & Mechanical Waves Wave Definition: A disturbance that transfers energy from place to place. Molecules pass energy to neighboring molecules who pass energy to neighboring molecules

More information

INTRODUCTION. 5. Electromagnetic Waves

INTRODUCTION. 5. Electromagnetic Waves INTRODUCTION An electric current produces a magnetic field, and a changing magnetic field produces an electric field Because of such a connection, we refer to the phenomena of electricity and magnetism

More information

Properties of Waves, Magnetism, & Electricity Unit 4 Summative Assessment

Properties of Waves, Magnetism, & Electricity Unit 4 Summative Assessment 1. When a sound wave travels through a medium, what is being transmitted in the direction of the movement of the wave? density mass energy velocity 2. An iron rod changes colors when heated in a hot flame.

More information

Uses of Electromagnetic Waves

Uses of Electromagnetic Waves Uses of Electromagnetic Waves 1 of 42 Boardworks Ltd 2016 Uses of Electromagnetic Waves 2 of 42 Boardworks Ltd 2016 What are radio waves? 3 of 42 Boardworks Ltd 2016 The broadcast of every radio and television

More information

Unit 8: Light and Optics

Unit 8: Light and Optics Objectives Unit 8: Light and Optics Explain why we see colors as combinations of three primary colors. Explain the dispersion of light by a prism. Understand how lenses and mirrors work. Explain thermal

More information

Experiment P-40 Colors of Light

Experiment P-40 Colors of Light 1 Experiment P-40 Colors of Light Objectives To learn what happens to colored light, when it passes through color filters. To investigate the additive color theory. To observe a stereoscopic image. Modules

More information

Chapter 18 The Electromagnetic Spectrum and Light

Chapter 18 The Electromagnetic Spectrum and Light Chapter 18 Sections 18.1 Electromagnetic Waves 18.2 The 18.3 Behavior of Light 18.4 Color 18.5 Sources of Light Chapter 18 The and Light Section 18.1 Electromagnetic Waves To review: mechanical waves require

More information

Wave Behavior and The electromagnetic Spectrum

Wave Behavior and The electromagnetic Spectrum Wave Behavior and The electromagnetic Spectrum What is Light? We call light Electromagnetic Radiation. Or EM for short It s composed of both an electrical wave and a magnetic wave. Wave or particle? Just

More information

Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors.

Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors. Section 2: Light waves of different wavelengths or combinations of wavelengths cause the human eye to detect different colors. K What I Know W What I Want to Find Out L What I Learned Essential Questions

More information

Physical Science Physics

Physical Science Physics Name Physical Science Physics C/By Due Date Code Period Earned Points PSP 5W4 Seeing Problems (divide by 11) Multiple Choice Identify the letter of the choice that best completes the statement or answers

More information

DESIGNING FLOWER BEDS with

DESIGNING FLOWER BEDS with DESIGNING FLOWER BEDS with Good flower bed designs incorporate many different features Relative surface feel or look On plants, texture comes from Leaves Twigs Bark Texture also comes from Rocks Pavement

More information

Plasma in the ionosphere Ionization and Recombination

Plasma in the ionosphere Ionization and Recombination Plasma in the ionosphere Ionization and Recombination Jamil Muhammad Supervisor: Professor kjell Rönnmark 1 Contents: 1. Introduction 3 1.1 History.3 1.2 What is the ionosphere?...4 2. Ionization and recombination.5

More information

Answers to Chapter 11

Answers to Chapter 11 Answers to Chapter 11 11.1 What is Light? #1 Radiation (light) does NOT need a medium to travel through. Conduction needs a solid medium and convection needs liquid or gas medium to travel through. #2

More information

Lighten up!

Lighten up! Lighten up! - - - - - - - - - - - - - - - - - - - - - - - - - - Light is all around us, illuminating our world. It is colourful, bendy, bouncy, and can pack some pretty intense energy. Explore the funny

More information

This chapter will cover the following topics: Colour terminology. The colour spectrum. The colour wheel. Organisation of colour.

This chapter will cover the following topics: Colour terminology. The colour spectrum. The colour wheel. Organisation of colour. What would the world be like without colour? Colour brings vitality to everything it touches, be it the clothes we wear or the homes we live in and as a painter and decorator, you need to understand colour,

More information

Psy 280 Fall 2000: Color Vision (Part 1) Oct 23, Announcements

Psy 280 Fall 2000: Color Vision (Part 1) Oct 23, Announcements Announcements 1. This week's topic will be COLOR VISION. DEPTH PERCEPTION will be covered next week. 2. All slides (and my notes for each slide) will be posted on the class web page at the end of the week.

More information

Wave & Electromagnetic Spectrum Notes

Wave & Electromagnetic Spectrum Notes Wave & Electromagnetic Spectrum Notes December 17, 2011 I.) Properties of Waves A) Wave: A periodic disturbance in a solid, liquid or gas as energy is transmitted through a medium ( Waves carry energy

More information

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve

Human Retina. Sharp Spot: Fovea Blind Spot: Optic Nerve I am Watching YOU!! Human Retina Sharp Spot: Fovea Blind Spot: Optic Nerve Human Vision Optical Antennae: Rods & Cones Rods: Intensity Cones: Color Energy of Light 6 10 ev 10 ev 4 1 2eV 40eV KeV MeV Energy

More information

THE EFFECTS OF AEROSOLS ON PHOTOSYNTHESIS

THE EFFECTS OF AEROSOLS ON PHOTOSYNTHESIS THE EFFECTS OF AEROSOLS ON PHOTOSYNTHESIS JULY 29, 2011 Abstract The purpose of our study was to observe how scattering caused by aerosols affects photosynthesis. There are two types of scattering. In

More information

Note 2 Electromagnetic waves N2/EMWAVES/PHY/XII/CHS2012

Note 2 Electromagnetic waves N2/EMWAVES/PHY/XII/CHS2012 ELECTROMAGNETIC SPECTRUM Electromagnetic waves include visible light waves, X-rays, gamma rays, radio waves, microwaves, ultraviolet and infrared waves. The classification of em waves according to frequency

More information

LIGHT BOX & OPTICAL SET CAT NO. PH0615

LIGHT BOX & OPTICAL SET CAT NO. PH0615 LIGHT BOX & OPTICAL SET CAT NO. PH0615 Experiment Guide ACTIVITIES INCLUDED: Diffraction Angle of Reflection Using a Plane Mirror Refraction of Different Shaped Prisms Refraction (Snell's Law) Index of

More information

KS3 revision booklet Physics

KS3 revision booklet Physics NAME KS3 revision booklet Physics Use this booklet to help you revise the physics you have studied in Key Stage 3. There are some ideas about how you can test yourself in the back of this booklet. Why

More information

ecoschoolsproject Which light is right? fluorescent or incandescent light? grade 8 science Greater Essex County District School Board

ecoschoolsproject Which light is right? fluorescent or incandescent light? grade 8 science Greater Essex County District School Board Which light is right? Greater Essex County District School Board fluorescent or incandescent grade 8 science light? ecoschoolsproject Which light is right? 1 Grade 8 Science Which light is right? Kit Two

More information

Objective: Use the process of dying fabrics to illustrate chemical reactions, equilibrium, chemical bonding, and ph.

Objective: Use the process of dying fabrics to illustrate chemical reactions, equilibrium, chemical bonding, and ph. Tie Dye Chemistry Objective: Use the process of dying fabrics to illustrate chemical reactions, equilibrium, chemical bonding, and ph. Tie Dye Chemistry Lab Resources Video LINK #1 - Chem of Natural Dyes

More information

Make a Refractor Telescope

Make a Refractor Telescope Make a Refractor Telescope In this activity students will build, and observe with, simple refractory telescope providing an interactive introduction to light, lenses and refraction. LEARNING OBJECTIVES

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 13 Electromagnetic Waves 13.1 Gamma Rays Gamma rays have a very short wavelength and are very penetrating. They are produced by radioactive substances and are very dangerous to humans unless used

More information

Waves, Sound and Light. Grade 10 physics Robyn Basson

Waves, Sound and Light. Grade 10 physics Robyn Basson Waves, Sound and Light Grade 10 physics Robyn Basson Heartbeat Flick in hose pipe What is a pulse? A single disturbance that moves through a medium. Stone in water Other? moving Transverse pulse: A pulse

More information

GraspIT Questions AQA GCSE Physics Waves

GraspIT Questions AQA GCSE Physics Waves A Waves in air, fluids and solids 1. The diagrams below show two types of wave produced on a slinky spring. A B a. Which one is a transverse wave? (1) Wave B b. What is the name of the other type of wave?

More information

GRAPHICS TECHNOLOGY II

GRAPHICS TECHNOLOGY II GRAPHICS TECHNOLOGY II COLORS ARE PART OF OUR LIFE From the clothes we wear, to the things around us, the food we eat, the things we use- everything. Colors are said to activate the right brain for emotions.

More information

Harmonic Motion. start A B 0:02.0. Ex: A pendulum has a frequency of 4 Hz. Find its period. f = 4 Hz T = 40º. Amplitude = 20 o More energy

Harmonic Motion. start A B 0:02.0. Ex: A pendulum has a frequency of 4 Hz. Find its period. f = 4 Hz T = 40º. Amplitude = 20 o More energy Harmonic Motion Unit 10: 1 Harmonic Motion is motion that repeats itself, oscillating back and forth. Eventually it will lose energy (called dampening) and come to rest in the middle, known as its equilibrium

More information

THE SCIENCE OF COLOUR

THE SCIENCE OF COLOUR THE SCIENCE OF COLOUR Colour can be described as a light wavelength coming from a light source striking the surface of an object which in turns reflects the incoming light from were it is received by the

More information