This is due to Purkinje shift. At scotopic conditions, we are more sensitive to blue than to red.

Size: px
Start display at page:

Download "This is due to Purkinje shift. At scotopic conditions, we are more sensitive to blue than to red."

Transcription

1 1. We know that the color of a light/object we see depends on the selective transmission or reflections of some wavelengths more than others. Based on this fact, explain why the sky on earth looks blue, but the same sky on moon looks black. Why? The wavelengths of light transmitted or reflected by the moon s atmosphere is different than those of the earth s atmosphere. Moon s atmosphere probably transmits more of the longer wavelength and hence the red appearance. 2. Your carpet is stained and you are trying to clean it. Often you will find yourself concentrating on the edges of the stain and trying to remove it rather then the whole strain. And it works. A casual viewer finds it difficult to locate the stain when the edge is removed. Why? Visual system is more sensitive to edges. We have edge feature detectors. So, when the edge is removed it is difficult to see it. Also, our contrast sensitivity function is less sensitive to both very low and high frequencies. 3. The preferred color of the runway lights (used usually for nighttime landing and taking off) is usually blue, and not red. Why? This is due to Purkinje shift. At scotopic conditions, we are more sensitive to blue than to red. 4. Cataracts are tissues that develop clouding the eye s lenses. Cataracts mostly happen in the old age. But there are also juvenile cataracts that occur in babies and often are existent from birth. In 1960s, when the art of cataract removal perfected, they operated on old people and cured them. They also operated on a bunch of young men, who had juvenile cataracts. But this did not cure the cataracts. Why? The cataract in older people was probably due to age. So, these people had in their earlier life spend some time without cataract and learnt how to see with them. But the juvenile patients essentially were never exposed, and as we know from selective adaptation experiments with kittens that they became selectively adapted to seeing a skewed view of the world with the cataracts. 5. The response, R, of human eye to intensity of light, I, can be described as R = I 1/2. The following experiment is used to correct the gamma of any display. Create a image with rows of gratings of the form Sin 2 (x) with increasing values of x along the vertical axis. Display this image on your monitor. You will be seeing some interference patterns if your gamma is not correct. These are called Moire patterns. Adjust your gamma until the moiré patterns disappear. This is the correct gamma setting for your display. Explain this phenomenon. (Hint: Think about linear systems and how they behave).

2 A linear system passes sine waves without changing its phase or frequency. The square of a sine wave is related to the sin(2x) linearly. You want the combination of your display and your eye to be linear. Till you get that correct combination, the sin waves will be distorted in frequency creating interference patterns. When you find the correct gamma suited for you, the linear system will pass them correctly and the Moire patterns will disappear. This is actually a test used to correct the gamma of the display in the image production industry. 6. The picture on the left appears like ridges in the sand. Now, invert page and look at the same image, it will look like steps. Which perceptual phenomenon can explain it? We are used to having light from above. 7. Let the (x,y,y) representation of color C 1 be C 1 = (x 1,y 1,Y 1 ). Find the XYZ coordinate of a color C 2 that has chromaticity coordinates as half of the chromaticity coordinates of C 1 and luminance 1.5 times that of C 1. C 2 = (x 1 /2, y 1 /2, 3/2 Y 1 ) From this you can find I 2 = 3Y 1 /y 1 Hence, x 1 /2 = X 2 /I 2 From this, X 2 = 3x 1 Y 1 /2y 1 Z 2 = I 2 -X 2-3/2Y 1 = 3/2Y 1 (1/y 1 -x 1 /y 1-1) 8. C 1 and C 2 are colors with XYZ coordinates (50,75,10) and (25,50,100) respectively. Find the XYZ coordinate of a color C 3 with same luminance as C 1 and chromaticity coordinate half way between C 1 and C 2. How would this color look? C 1 in (I,x,y) notation is (135, 50/135, 70/135). C 2 in the same notation is (175, 25/175, 50/175) Y 3 = 75. x 3 = ½(50/135+25/135) = 0.25 y 3 = ½(70/135+50/175) = 0.4 I 3 = Y 3 /y 3 = X 3 = I 3 *x 3 = Z 3 = I 3 -X 3 -Y 3 =

3 9. What is the dominant wavelength of a color with chromaticity coordinate (0.4, 0.5)? What is the chromaticity coordinates of this wavelength? What is the chromaticity coordinates of the complement of this color? Solve this from the chromaticity diagram. The dominant wavelength is roughly between nm with chromaticity coordinates of (0.41,0.59). The complement is around ( ). 10. Look at the image on the right for 30 seconds or more and then shift your gaze to a white paper. What do you see? What is this phenomenon called and why does it happen? This is the standard afterimage phenomenon due to adaptation of the opponent color cells. 11. The image on the right shows six different objects A, B, C, D, E and F, which have different reflectance. It also shows the gray scale values at the edges. Assuming that the illumination is continuous throughout the image, find the reflectance of B,C,D,E and F with respect to A. How would you verify that the illumination is indeed continuous? Retinex theory says that we combine ratios across edges to calculate the ratios of intensities of regions which are spatially separated. So, just find a path and calculate ratios across the edges. For example, to find F with respect to A, you can use a path of A- B-C-F and that will give you: A:B = 1:3, B:C = 3:2. Hence, A:C = 1:2. Then C:F is 1:3. Hence, A:F is 1:6. Note that it will be consistent if you take a different path. For example, if you take the path of A-B-D-F, you will get 1/3 * 2/3* ¾ which is also 1/6.

4 12. The figure on the right shows an image segmented into three parts, A, B and C based on the detection of edges between them. The XYZ coordinates of the colors on the both sides of the edge between A and B are given in blue. The same for the edge between B and C is given in red. Which of these two edges do you think is due to reflectance and why? The proportions of X:Y:Z across the B-A edge is same, 1:2:2. So, most likely this is an illumination edge since the color of the object is not changing. On the other hand, for the opposite reason C-B edge is probably more likely to be a reflectance edge. 13. A person was presented an annular ring of luminance of 100cd/m 2 with a circular inset of 50cd/m 2. In an adjacent region, he was presented with a circular inset of 150cd/m 2 and asked to adjust the luminance of the annular ring surrounding it so that it creates similar perception as that of the adjacent pair. What luminance do you expect him to adjust to? In the first outside:inside = 2:1. We match the ratios. So, for an inset of 150, we will match the outside to A two month old was being very jittery and crying in a room lit by a whitish tube light. In order to pacify him, the mother suddenly puts on a very bright yellowish light. The kid suddenly finds renewed interest in everything around him and stops crying. Can you explain this? Till the kid adapts chromatically, the environment looks entirely new to him and creates interest. 15. You are going on a train. The track is lined by electric poles placed regularly along the track so that it is just a few feet away when you look out of the window. When the train just starts you can make out these poles clearly as they keep moving away from you. As the train increases speed, slowly the poles become blurred as they move away from you. Can you explain this phenomenon with CSF? Our temporal CSF has low sensitivity for high frequency. Initially, when the speed of the train is low, temporal frequency of the poles are low and hence we decipher them. As the temporal frequency increase with speed, we can no longer decipher them.

5 16. In an movie auditorium, the projection system is used with mean luminance of foot Lamberts for refresh rates of 48 Hz. However, it is said that a refresh rate has to be increased to 60 Hz for higher luminance projection system. Can you explain this with CSF? As per our temporal CSF, our sensitivity to higher frequency increases with higher luminance. So, for us not to be able to perceive a bunch of frames as a motion and not separate frames, we have to increase the temporal frequency as the light increases, so that now this raised frequency is well beyond our sensitivity. 17. Let the maximum spatial frequency detected by a human at luminance L be 30 cycles/degree of the angle subtended on the human eye. Nyquist sampling condition says that to generate a spatial pattern of a certain frequency f on a display, at least 2f number of pixels are required. From this find out the minimum display resolution needed for a person at a distance d, so that he can feel the experience of seeing a natural scene on the display. Plot the r with respect to d. We know f <= d*r*pi/180*s From here r>= 180*2*30/d*pi So, r is inversely proportional to d. It is a hyperbolic plot. 18. A bright lighthouse is not visible in the day, but is easily visible at night even though the power of the light remains unchanged. Why? This is due to Weber threshold. Due to high intensity of sunlight, the lighthouse is not sufficiently above sunlight for us to detect it. But at night, due to low surrounding light, it crosses the threshold and we detect it. 19. The image of your TV looks washed out. The technician says that the intensity response curve of the TV is linear and hence the problem. To correct the problem, he has to make it non-linear. Why? What kind of non-linear response do you think he will put in? The linearity of the TV will make the combined response of TV and eye as I A where A < 1.0. This is a compressive response and you would feel darker colors are washed out. But if you make the TV as I 1/A, then the combined will be linear, reproducing the correct grays. 20. We know that the color of a light/object we see depends on the selective transmission or reflections of some wavelengths more than others. Based on this fact, explain why sunsets and sunrises in polluted areas are found to be much more spectacular than other area. Hint: Sunlight passes through the environment before reaching the eye. Same argument as Q1.

6 21. What will be the difference of our perception of Hermann s grid if we had lateral excitation instead of lateral inhibition (i.e a center surround receptive field that has inhibition in the center and excitation in the surround)? Ish sent this to the class when we covered this part. 22. Why do we see better in the dark if we avert/skew our gaze a little? By not looking directly, we use the rods more than the cones. Rods are more sensitive in the dark. 23. Do the following experiment. Look at the above picture. Then cover your left eye with hand for 10 minutes. So, now you are looking at the image with just your right eye. After 10 minutes, uncover your left eye and cover your right eye. Compare what you see with what you were seeing with your right eye before. You will see that the blue flower looks brighter from your left eye than from your right eye. Why does this happen? Ignore this question. The experiment was designed to show the effect of Purkinje shift. But I did not explain it properly. What you are fixating at is important which was not clear from the question.

7 24. A bunch of kittens were reared from birth by seeing only vertical stripes. They were in an enclosed area with just stripes all around them. They wore neck ruffs so that they cannot turn their heads to see the vertical stripes in a different orientation. After this, they were compared with normal kittens. What difference would you expect in the sensitivity of these kittens from the normal kittens? Why? Which area of the brain is responsible for this difference and how? I think you will see selective adaptation to vertical stripes. Also, they will not learn to see other orientation of stripes. So, they will suffer in detection all kinds of orientations. This will probably take place in the visual cortex. 25. The left picture is a simple line drawing of a face while the right image is a low resolution picture. The right hand side image has a lot more information, yet we perceive the face of the man with the line drawing much better. What does it say about our visual system? What are the different areas and cells in the visual system that the left image would stimulate? We detect features, especially edges. These are probably triggering the feature detectors in the higher visual areas in the brain.

8 26. The color gamut of a printer is given by triangle ABC on the chromaticity chart where A = (0.15, 0.65), B = (0.6, 0.3) and C = (0.15, 0.125). The color gamut of a monitor is given by triangle DEF on the chromaticity chart where D = (0.2, 0.05), E = (0.55, 0.4) and F = (0.05, 0.55). How many sides does the polygon that represents all the colors that can be produced both by the printer and the monitor have? Find the coordinates of all the vertices of this polygon. Draw on the chromaticity chart. You will have the common region to be a 5 edged polygon. Finding the coordinates is essentially finding the intersection of edges between two gamuts. 27. You have difficulty in reading very small text on the screen. However, this difficulty reduces as you increase the size of the fonts. Explain this using CSF. When fonts are small, they subtend higher frequency in the eye. We are less sensitive to higher frequency as we know from CSF. As font size increase, the frequency subtended reduces increasing our sensitivity and hence legibility of the text. 28. You are working in your office which receives good sunlight in the day time. Around dusk when it is getting dark, you find that it is difficult to read the text on the book. You light your table lamp and the text is again legible again. Explain this phenomenon with CSF. At low illumination, our eye acts like a low pass filter, rather than a band pass filter, have a much lower frequency cut off. Hence, in dusk our legibility of text decresses.

9 29. In the image on the right, one X looks yellow and the other looks gray though they are the same color as you can see from the place where they are connected. What is this phenomenon and why does this happen? Simultaneous color contrast.

Hint: Think about linear systems and how they behave).

Hint: Think about linear systems and how they behave). 1. We know that the color of a light/object we see depends on the selective transmission or reflections of some wavelengths more than others. Based on this fact, explain why the sky on earth looks blue,

More information

SPATIAL VISION. ICS 280: Visual Perception. ICS 280: Visual Perception. Spatial Frequency Theory. Spatial Frequency Theory

SPATIAL VISION. ICS 280: Visual Perception. ICS 280: Visual Perception. Spatial Frequency Theory. Spatial Frequency Theory SPATIAL VISION Spatial Frequency Theory So far, we have considered, feature detection theory Recent development Spatial Frequency Theory The fundamental elements are spatial frequency elements Does not

More information

Contours, Saliency & Tone Mapping. Donald P. Greenberg Visual Imaging in the Electronic Age Lecture 21 November 3, 2016

Contours, Saliency & Tone Mapping. Donald P. Greenberg Visual Imaging in the Electronic Age Lecture 21 November 3, 2016 Contours, Saliency & Tone Mapping Donald P. Greenberg Visual Imaging in the Electronic Age Lecture 21 November 3, 2016 Foveal Resolution Resolution Limit for Reading at 18" The triangle subtended by a

More information

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation. From light to colour spaces Light and colour Advanced Graphics Rafal Mantiuk Computer Laboratory, University of Cambridge 1 2 Electromagnetic spectrum Visible light Electromagnetic waves of wavelength

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision.

We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision. LECTURE 4 SENSORY ASPECTS OF VISION We have already discussed retinal structure and organization, as well as the photochemical and electrophysiological basis for vision. At the beginning of the course,

More information

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4

Further reading. 1. Visual perception. Restricting the light. Forming an image. Angel, section 1.4 Further reading Angel, section 1.4 Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Spencer, Shirley, Zimmerman, and Greenberg. Physically-based glare effects for

More information

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016

Lecture 2 Digital Image Fundamentals. Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Lecture 2 Digital Image Fundamentals Lin ZHANG, PhD School of Software Engineering Tongji University Fall 2016 Contents Elements of visual perception Light and the electromagnetic spectrum Image sensing

More information

Visual Perception of Images

Visual Perception of Images Visual Perception of Images A processed image is usually intended to be viewed by a human observer. An understanding of how humans perceive visual stimuli the human visual system (HVS) is crucial to the

More information

Don t twinkle, little star!

Don t twinkle, little star! Lecture 16 Ch. 6. Optical instruments (cont d) Single lens instruments Eyeglasses Magnifying glass Two lens instruments Microscope Telescope & binoculars The projector Projection lens Field lens Ch. 7,

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc.

Human Vision and Human-Computer Interaction. Much content from Jeff Johnson, UI Wizards, Inc. Human Vision and Human-Computer Interaction Much content from Jeff Johnson, UI Wizards, Inc. are these guidelines grounded in perceptual psychology and how can we apply them intelligently? Mach bands:

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

Human Visual System. Prof. George Wolberg Dept. of Computer Science City College of New York

Human Visual System. Prof. George Wolberg Dept. of Computer Science City College of New York Human Visual System Prof. George Wolberg Dept. of Computer Science City College of New York Objectives In this lecture we discuss: - Structure of human eye - Mechanics of human visual system (HVS) - Brightness

More information

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science Slide 1 the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour Sir Isaac Newton (1730) Slide 2 Light

More information

Vision and Color. Reading. The lensmaker s formula. Lenses. Brian Curless CSEP 557 Autumn Good resources:

Vision and Color. Reading. The lensmaker s formula. Lenses. Brian Curless CSEP 557 Autumn Good resources: Reading Good resources: Vision and Color Brian Curless CSEP 557 Autumn 2017 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources: Reading Good resources: Vision and Color Brian Curless CSE 557 Autumn 2015 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSE 557 Autumn 2015

Vision and Color. Brian Curless CSE 557 Autumn 2015 Vision and Color Brian Curless CSE 557 Autumn 2015 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

The eye, displays and visual effects

The eye, displays and visual effects The eye, displays and visual effects Week 2 IAT 814 Lyn Bartram Visible light and surfaces Perception is about understanding patterns of light. Visible light constitutes a very small part of the electromagnetic

More information

any kind, you have two receptive fields, one the small center region, the other the surround region.

any kind, you have two receptive fields, one the small center region, the other the surround region. In a centersurround cell of any kind, you have two receptive fields, one the small center region, the other the surround region. + _ In a chromatic center-surround field, each in innervated by one class

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSEP 557 Fall Good resources: Reading Good resources: Vision and Color Brian Curless CSEP 557 Fall 2016 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSEP 557 Fall 2016

Vision and Color. Brian Curless CSEP 557 Fall 2016 Vision and Color Brian Curless CSEP 557 Fall 2016 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

The human visual system

The human visual system The human visual system Vision and hearing are the two most important means by which humans perceive the outside world. 1 Low-level vision Light is the electromagnetic radiation that stimulates our visual

More information

Image Processing Lecture 4

Image Processing Lecture 4 Image Enhancement Image enhancement aims to process an image so that the output image is more suitable than the original. It is used to solve some computer imaging problems, or to improve image quality.

More information

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5

Vision. The eye. Image formation. Eye defects & corrective lenses. Visual acuity. Colour vision. Lecture 3.5 Lecture 3.5 Vision The eye Image formation Eye defects & corrective lenses Visual acuity Colour vision Vision http://www.wired.com/wiredscience/2009/04/schizoillusion/ Perception of light--- eye-brain

More information

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections

Reading. 1. Visual perception. Outline. Forming an image. Optional: Glassner, Principles of Digital Image Synthesis, sections Reading Optional: Glassner, Principles of Digital mage Synthesis, sections 1.1-1.6. 1. Visual perception Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA, 1995. Research papers:

More information

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal IFT3355: Infographie Couleur Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal Color Appearance Visual Range Electromagnetic waves (in nanometres) γ rays X rays ultraviolet violet

More information

Vision Science I Exam 2 31 October 2016

Vision Science I Exam 2 31 October 2016 Vision Science I Exam 2 31 October 2016 1) Mr. Jack O Lantern, pictured here, had an unfortunate accident that has caused brain damage, resulting in unequal pupil sizes. Specifically, the right eye is

More information

Visibility, Performance and Perception. Cooper Lighting

Visibility, Performance and Perception. Cooper Lighting Visibility, Performance and Perception Kenneth Siderius BSc, MIES, LC, LG Cooper Lighting 1 Vision It has been found that the ability to recognize detail varies with respect to four physical factors: 1.Contrast

More information

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones.

Retina. Convergence. Early visual processing: retina & LGN. Visual Photoreptors: rods and cones. Visual Photoreptors: rods and cones. Announcements 1 st exam (next Thursday): Multiple choice (about 22), short answer and short essay don t list everything you know for the essay questions Book vs. lectures know bold terms for things that

More information

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995.

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Reading Foley, Computer graphics, Chapter 13. Color Optional Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Gerald S. Wasserman. Color Vision: An Historical ntroduction.

More information

2. Pixels and Colors. Introduction to Pixels. Chapter 2. Investigation Pixels and Digital Images

2. Pixels and Colors. Introduction to Pixels. Chapter 2. Investigation Pixels and Digital Images 2. Pixels and Colors Introduction to Pixels The term pixel is a truncation of the phrase picture element which is exactly what a pixel is. A pixel is the smallest block of color in a digital picture. The

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Lecture 15 End Chap. 6 Optical Instruments (2 slides) Begin Chap. 7 Visual Perception

Lecture 15 End Chap. 6 Optical Instruments (2 slides) Begin Chap. 7 Visual Perception Lecture 15 End Chap. 6 Optical Instruments (2 slides) Begin Chap. 7 Visual Perception Mar. 2, 2010 Homework #6, on Ch. 6, due March 4 Read Ch. 7, skip 7.10. 1 2 35 mm slide projector Field lens is used

More information

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana

Visual Effects of Light. Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Digital Image Processing

Digital Image Processing Digital Image Processing IMAGE PERCEPTION & ILLUSION Hamid R. Rabiee Fall 2015 Outline 2 What is color? Image perception Color matching Color gamut Color balancing Illusions What is Color? 3 Visual perceptual

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

Additive. Subtractive

Additive. Subtractive Physics 106 Additive Subtractive Subtractive Mixing Rules: Mixing Cyan + Magenta, one gets Blue Mixing Cyan + Yellow, one gets Green Mixing Magenta + Yellow, one gets Red Mixing any two of the Blue, Red,

More information

CS 544 Human Abilities

CS 544 Human Abilities CS 544 Human Abilities Color Perception and Guidelines for Design Preattentive Processing Acknowledgement: Some of the material in these lectures is based on material prepared for similar courses by Saul

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Visual computation of surface lightness: Local contrast vs. frames of reference

Visual computation of surface lightness: Local contrast vs. frames of reference 1 Visual computation of surface lightness: Local contrast vs. frames of reference Alan L. Gilchrist 1 & Ana Radonjic 2 1 Rutgers University, Newark, USA 2 University of Pennsylvania, Philadelphia, USA

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

Computers and Imaging

Computers and Imaging Computers and Imaging Telecommunications 1 P. Mathys Two Different Methods Vector or object-oriented graphics. Images are generated by mathematical descriptions of line (vector) segments. Bitmap or raster

More information

LECTURE III: COLOR IN IMAGE & VIDEO DR. OUIEM BCHIR

LECTURE III: COLOR IN IMAGE & VIDEO DR. OUIEM BCHIR 1 LECTURE III: COLOR IN IMAGE & VIDEO DR. OUIEM BCHIR 2 COLOR SCIENCE Light and Spectra Light is a narrow range of electromagnetic energy. Electromagnetic waves have the properties of frequency and wavelength.

More information

EC-433 Digital Image Processing

EC-433 Digital Image Processing EC-433 Digital Image Processing Lecture 2 Digital Image Fundamentals Dr. Arslan Shaukat 1 Fundamental Steps in DIP Image Acquisition An image is captured by a sensor (such as a monochrome or color TV camera)

More information

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex

Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex Lecture 4 Foundations and Cognitive Processes in Visual Perception From the Retina to the Visual Cortex 1.Vision Science 2.Visual Performance 3.The Human Visual System 4.The Retina 5.The Visual Field and

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

Limitations of the Oriented Difference of Gaussian Filter in Special Cases of Brightness Perception Illusions

Limitations of the Oriented Difference of Gaussian Filter in Special Cases of Brightness Perception Illusions Short Report Limitations of the Oriented Difference of Gaussian Filter in Special Cases of Brightness Perception Illusions Perception 2016, Vol. 45(3) 328 336! The Author(s) 2015 Reprints and permissions:

More information

Achromatic and chromatic vision, rods and cones.

Achromatic and chromatic vision, rods and cones. Achromatic and chromatic vision, rods and cones. Andrew Stockman NEUR3045 Visual Neuroscience Outline Introduction Rod and cone vision Rod vision is achromatic How do we see colour with cone vision? Vision

More information

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options?

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options? What is Color Gamut? How do we see color and why it matters for your PID options? One of the buzzwords at CES 2017 was broader color gamut. In this whitepaper, our experts unwrap this term to help you

More information

28 Color. The colors of the objects depend on the color of the light that illuminates them.

28 Color. The colors of the objects depend on the color of the light that illuminates them. The colors of the objects depend on the color of the light that illuminates them. Color is in the eye of the beholder and is provoked by the frequencies of light emitted or reflected by things. We see

More information

Vision Science I Exam 1 23 September ) The plot to the right shows the spectrum of a light source. Which of the following sources is this

Vision Science I Exam 1 23 September ) The plot to the right shows the spectrum of a light source. Which of the following sources is this Vision Science I Exam 1 23 September 2016 1) The plot to the right shows the spectrum of a light source. Which of the following sources is this spectrum most likely to be taken from? A) The direct sunlight

More information

Chapter 2: Digital Image Fundamentals. Digital image processing is based on. Mathematical and probabilistic models Human intuition and analysis

Chapter 2: Digital Image Fundamentals. Digital image processing is based on. Mathematical and probabilistic models Human intuition and analysis Chapter 2: Digital Image Fundamentals Digital image processing is based on Mathematical and probabilistic models Human intuition and analysis 2.1 Visual Perception How images are formed in the eye? Eye

More information

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1 Chapter 12 Color Models and Color Applications 12-1 12.1 Overview Color plays a significant role in achieving realistic computer graphic renderings. This chapter describes the quantitative aspects of color,

More information

Vision Basics Measured in:

Vision Basics Measured in: Vision Vision Basics Sensory receptors in our eyes transduce light into meaningful images Light = packets of waves Measured in: Brightness amplitude of wave (high=bright) Color length of wave Saturation

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 3 Digital Image Fundamentals ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

Reading. Lenses, cont d. Lenses. Vision and color. d d f. Good resources: Glassner, Principles of Digital Image Synthesis, pp

Reading. Lenses, cont d. Lenses. Vision and color. d d f. Good resources: Glassner, Principles of Digital Image Synthesis, pp Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Vision and color Wandell. Foundations of Vision. 1 2 Lenses The human

More information

The Science Seeing of process Digital Media. The Science of Digital Media Introduction

The Science Seeing of process Digital Media. The Science of Digital Media Introduction The Human Science eye of and Digital Displays Media Human Visual System Eye Perception of colour types terminology Human Visual System Eye Brains Camera and HVS HVS and displays Introduction 2 The Science

More information

Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg

Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg Color evokes a mood; it creates contrast and enhances the beauty in an image. It can make a dull

More information

6 Color Image Processing

6 Color Image Processing 6 Color Image Processing Angela Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2009 Fall Outline Color fundamentals Color models Pseudocolor image

More information

OPTICAL ILLUSIONS. Matyas Molnar

OPTICAL ILLUSIONS. Matyas Molnar OPTICAL ILLUSIONS Matyas Molnar More info, examples, sources Mohit Gupta: Understanding optical illusions https://www.eyebuydirect.com/understanding-perception-optical-illusions https://www.rd.com/culture/optical-illusions/

More information

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones Light and Color Eye perceives EM radiation of different wavelengths as different colors. Sensitive only to the range 4nm - 7 nm This is a narrow piece of the entire electromagnetic spectrum. Comparing

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Human Vision, Color and Basic Image Processing

Human Vision, Color and Basic Image Processing Human Vision, Color and Basic Image Processing Connelly Barnes CS4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Psych 333, Winter 2008, Instructor Boynton, Exam 1

Psych 333, Winter 2008, Instructor Boynton, Exam 1 Name: Class: Date: Psych 333, Winter 2008, Instructor Boynton, Exam 1 Multiple Choice There are 35 multiple choice questions worth one point each. Identify the letter of the choice that best completes

More information

PERCEIVING COLOR. Functions of Color Vision

PERCEIVING COLOR. Functions of Color Vision PERCEIVING COLOR Functions of Color Vision Object identification Evolution : Identify fruits in trees Perceptual organization Add beauty to life Slide 2 Visible Light Spectrum Slide 3 Color is due to..

More information

Introduction. The Spectral Basis for Color

Introduction. The Spectral Basis for Color Introduction Color is an extremely important part of most visualizations. Choosing good colors for your visualizations involves understanding their properties and the perceptual characteristics of human

More information

FEATURE. Adaptive Temporal Aperture Control for Improving Motion Image Quality of OLED Display

FEATURE. Adaptive Temporal Aperture Control for Improving Motion Image Quality of OLED Display Adaptive Temporal Aperture Control for Improving Motion Image Quality of OLED Display Takenobu Usui, Yoshimichi Takano *1 and Toshihiro Yamamoto *2 * 1 Retired May 217, * 2 NHK Engineering System, Inc

More information

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct

Visual Effects of. Light. Warmth. Light is life. Sun as a deity (god) If sun would turn off the life on earth would extinct Visual Effects of Light Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light is life If sun would turn off the life on earth would

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Digital Image Processing

More information

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ)

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ) COLOR Elements of color Angel, 4th ed. 1, 2.5, 7.13 excerpt from Joakim Lindblad Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra How is color perceived?

More information

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 20 Oct 25 th, 2018 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

Multiscale model of Adaptation, Spatial Vision and Color Appearance

Multiscale model of Adaptation, Spatial Vision and Color Appearance Multiscale model of Adaptation, Spatial Vision and Color Appearance Sumanta N. Pattanaik 1 Mark D. Fairchild 2 James A. Ferwerda 1 Donald P. Greenberg 1 1 Program of Computer Graphics, Cornell University,

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

WORKING WITH COLOR Monitor Placement Place the monitor at roughly right angles to a window. Place the monitor at least several feet from any window

WORKING WITH COLOR Monitor Placement Place the monitor at roughly right angles to a window. Place the monitor at least several feet from any window WORKING WITH COLOR In order to work consistently with color printing, you need to calibrate both your monitor and your printer. The basic steps for doing so are listed below. This is really a minimum approach;

More information

icam06, HDR, and Image Appearance

icam06, HDR, and Image Appearance icam06, HDR, and Image Appearance Jiangtao Kuang, Mark D. Fairchild, Rochester Institute of Technology, Rochester, New York Abstract A new image appearance model, designated as icam06, has been developed

More information

Hello, welcome to the video lecture series on Digital Image Processing.

Hello, welcome to the video lecture series on Digital Image Processing. Digital Image Processing. Professor P. K. Biswas. Department of Electronics and Electrical Communication Engineering. Indian Institute of Technology, Kharagpur. Lecture-33. Contrast Stretching Operation.

More information

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye Digital Image Processing 2 Digital Image Fundamentals Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Those who wish to succeed must ask the right preliminary questions Aristotle Images

More information

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye

Digital Image Fundamentals. Digital Image Processing. Human Visual System. Contents. Structure Of The Human Eye (cont.) Structure Of The Human Eye Digital Image Processing 2 Digital Image Fundamentals Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall,

More information

Sensation and Perception

Sensation and Perception Sensation and Perception PSY 100: Foundations of Contemporary Psychology Basic Terms Sensation: the activation of receptors in the various sense organs Perception: the method by which the brain takes all

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Digital Imaging Fundamentals Christophoros Nikou cnikou@cs.uoi.gr Images taken from: R. Gonzalez and R. Woods. Digital Image Processing, Prentice Hall, 2008. Digital Image Processing

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot

iris pupil cornea ciliary muscles accommodation Retina Fovea blind spot Chapter 6 Vision Exam 1 Anatomy of vision Primary visual cortex (striate cortex, V1) Prestriate cortex, Extrastriate cortex (Visual association coretx ) Second level association areas in the temporal and

More information

Color and perception Christian Miller CS Fall 2011

Color and perception Christian Miller CS Fall 2011 Color and perception Christian Miller CS 354 - Fall 2011 A slight detour We ve spent the whole class talking about how to put images on the screen What happens when we look at those images? Are there any

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Color vision and representation

Color vision and representation Color vision and representation S M L 0.0 0.44 0.52 Mark Rzchowski Physics Department 1 Eye perceives different wavelengths as different colors. Sensitive only to 400nm - 700 nm range Narrow piece of the

More information

Adapted from the Slides by Dr. Mike Bailey at Oregon State University

Adapted from the Slides by Dr. Mike Bailey at Oregon State University Colors in Visualization Adapted from the Slides by Dr. Mike Bailey at Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place

More information