Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Size: px
Start display at page:

Download "Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color"

Transcription

1 Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1

2 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy -- intensity and luminance psychological sense (perceived intensity) -- brightness Intensity and Brightness They are related but are not the same. Checkout the 3- way switch, you will go from 50watt to 100, and 100 to 150, but the brightness are levels are not even. 2

3 Gamma correction Characteristic of the eye: it is sensitive to ratios of intensity levels rather than to absolute values of intensity. On a brightness scale, the differences between intensities of 0.1 and 0.11 and of 0.5 and 0.55 are equal. Brightness is called perceived intensity. Sometimes, without confusion, simply intensity. 3

4 To find 256 perceived intensities starting from lowest I 0 to a maximum of 1: I r 0 I 0 (1/, I I 0 1 ) ri 1/ 255 0, I, I j 2 r ri j I 1 0 r I 2 I 0,, I (255 j)/ r 255 I 0 1 And in general for n+1 intensities: r 1/ n j ( 1/ I0), I j r I0, j log r ( I j / I0) The minimum attainable intensity I 0 for a CRT is anywhere from about 1/200 to 1/40 of the maximum intensity of

5 Dynamic range -- the ratio between the maximum and minimum intensities (1/I 0 ), the bigger the better. The intensity is related to the number of electrons N in a CRT I = kn g where k & g are constants; g is between 2.2 to 2.5 N is proportional to V (the control-grid voltage), so for another constant K: I = KV g 5

6 Given a desired intensity I, we can determine the voltage (intensity) needed in the hardware: r (1/I 1/n j 0),I j r I0 And we know that I = KV g ; V = (I/K) 1/g, Therefore, gamma correction means: 1 / g V j = ROUND((I j /K) ) 6

7 The values of K, g, and I 0 depend on the CRT in use, so in practice the look-up table is loaded by a method based on actual measurement of intensities. Use of the look-up table in this general manner is also called gamma correction. If the display has hardware gamma correction, then I j rather than V j is placed in entry j of the look-up table or refresh buffer. 7

8 How many intensities are enough? when r < 1.01, the eye cannot distinguish between intensities I j,i j+1. Thus the appropriate value for n, the number of intensity levels: r = 1.01 = (1/ I 0 ) 1/n It depends on the lowest intensity value I 0. If I 0 = 1/200, n = log = 532 8

9 Halftone Approximation Spatial integration -- if we view a very small area from a sufficiently large viewing distance, our eyes average fine detail within the area and record only the overall intensity. An n*n group of bi-level pixels can provide n 2 +1 intensity levels using halftoning technique. It is a trade-off between spatial resolution and intensity resolution. 9

10 The pixel patterns to approximate the halftones must be designed not to introduce visual artifacts in an area of identical intensity values: a) form a growth sequence so that any pixel intensified for intensity level j is also intensified for all levels k>j. b) The patterns must grow outward from the center. c) For certain hardware system, all pixels that are on must be adjacent to other on pixels. 1 0

11 Dither matrix: to display an intensity I, 2 we turn on all pixels whose values are < I Halftone approximation is not limited to bilevel displays. For each point, we can have Multiple level of intensities. Error diffusion: the error is added to the values of the four image-array pixels to the right of and below the pixel in question (7/16 of the error to the pixel to the right, 3/16 to the pixel below and to the left, 5/16 to the pixel immediately below, and 1/16 to the pixel below and to the right.) 11

12 CHROMATIC LIGHT Discussions of color perception: Hue -- distinguishes among colors such as red, green, and yellow. Saturation -- refers to how far color is from a gray of equal intensity. Red is highly saturated; pink is relatively unsaturated; unsaturated colors include more white light than do the vivid, saturated colors. Brightness (Lightness) -- perceived intensity In graphic design profession, colors are specified by matching to printed color samples. 1 2

13 Artists often specify color as different tints, shades, and tones of saturated, or pure, pigments (subjective). tints -- results from adding white pigment to a pure pigment shade -- comes from adding a black pigment to a pure pigment tone -- is the consequence of adding both black and white pigments to a pure pigment White tints Pure color Grays Shades Black The percentage of pigments that must be mixed to match a color can be used as a color specification. 1 3

14 Psychophysics The above color specifications are subjective: human observers judgements, the lighting, the size of the sample, the surrounding color, etc. Light is electromagnetic energy in the 400- to 700-nm wavelength part of the spectrum, which is perceived as the colors from violet through indigo, blue, green, yellow, and orange to red. The amount of energy present at each wavelength is represented by a spectral energy distribution. 1 4

15 A quantitative way of specifying color: colorimetry Dominant wavelength -- is the wavelength of the color we see ; corresponds to the perceptual notion of hue Excitation purity -- corresponds to the saturation of the color Luminance -- corresponds to the intensity (brightness, lightness) The above wavelength and energy distribution corresponds to a light. The distribution represents an infinity of numbers, one for each wavelength in the visible spectrum. A pure color is 100% saturated, containing no white light. White light and grays are 0% saturated, containing no color of any dominant wavelength.) 1 5

16 We can describe the visual effect of any spectral distribution by dominant wavelength, excitation purity, and luminance. Two spectral energy distributions that look the same are called metamers. e1=e2: excitation purity=0; e1=0: excitation purity=100%. The dominant wavelength may not be the one whose component in the spectral distribution is largest. 1 6

17 Tristimulus theory of color perception: the retina has 3 kinds of color sensors (cones), with peak sensitivity to R, G, or B lights 1 7

18 Tristimulus theory of color perception: the retina has 3 kinds of color sensors (cones), with peak sensitivity to R, G, or B lights The luminous-efficiency function, the eye s response to light of constant luminance, as the dominant wavelength is varied from 400 to 700: our peak sensitivity is to yellow-green light of wavelength around

19 Colors can be specified by positively weighted sums of red, green, and blue (the so-called primary colors). This notion is almost true. A negative value means if one of the primaries is added to the color sample, the sample (after addition) can then be matched by a mixture of the other two primaries. 1 9

20 Certain colors cannot be produced by RGB mixes, and hence cannot be shown on an CRT. Our eye can distinguish side-by-side colors. When colors differ only in hue, the wavelength between just noticeably different colors varies (mostly within 4 nm) Dl(nm) Can t tell the difference Very distinguishable 400 Wavelength 700 l (nm) 2 0

21 Color Measurement Any color can be matched using a combination of three primaries. C rr gg bb The primaries are not necessarily red, green, and blue. Any three different colors can be used. The range of colors that can be produced from a given set of primaries is the gamut.

22 The CIE Chromaticity Diagram In 1931, the Commission Internationale de l Eclairage (CIE) defined three matching primaries, called X, Y, Z, to replace the RGB. 2 2

23 Color standard CIE (Commission Internationale d Éclairage) Primaries chosen for mathematical properties: do not actually correspond to colors. These virtual colors X, Y, and Z are called tristimulus values. Y is the same as luminance

24 The primaries can be used to match, with only positive weights, all the colors we can see. Y matches the luminous-efficiency function The amounts of X, Y, and Z primaries needed to match a color with a spectral energy distribution P(l), are: X k P( l) x l dl Y k P( l) y l d l Z k P( l) z l d l k is a constant chosen according to the engery distribution P The CIE chromaticity diagram, the projection onto the (X,Y) plane of the X+Y+Z=1 plane Chromaticity values depend only on dominant wavelength and saturation, and are independent of the amount of luminous energy (luminance). 2 4

25 For every wavelength in spectrum, calculate (X,Y,Z) from CIE color matching functions From (X,Y,Z), calculate (x, y) x X X Y Z y Y X Y Z Plot (x,y) for all wavelengths in spectrum Generates a horseshoe shaped diagram All physical colors lie inside the horseshoe

26 Chromaticity Diagram

27 Artist s Rendition of Chromaticity Diagram All physical colors inside or on boundary White light near (x, y) = (1/3, 1/3) Monochromatic wavelengths on boundary

28 Barycentric Color System I.e., center of gravity 2 colors: P and Q Combine P and Q in different amounts Can generate any color on straight line connecting P and Q

29 Dominant Wavelength and Purity Dominant wavelength Draw line from white point through the (x,y) point Extend line to boundary l D Purity Percentage of distance from white point to edge. Purity is 0% at white point Purity is 100% at boundary

30 Dominant Wavelength Example White point at (0.33, 0.33) (x,y) = (0.2, 0.6) Draw line from white point through point Extend it to boundary l D = 515 nm Purity 55% 45% white light + 55% 515 nm light

31 Complementary Wavelength P and Q are complementary Line passes through white point I.e., combination of light from P and Q can give white

32 Color Gamuts Any three colors form a triangle Combinations of 3 colors must lie inside triangle. Why? 1 Physical Region 2 3

33 Color Gamuts and Color Reproduction Best color reproduction Use biggest color gamut True for all media, print, monitor, film, slides No 3 primaries can reproduce human vision Human Vision

34 The interior and boundary of the horseshoe-shaped region represent all visible chromaticity values. (All perceivable colors in 3D with the same chromaticity but different luminances map into the same point within this region in 2D.) The 100% spectrally pure colors of the spectrum are on the curved part of the boundary. A standard white light, meant to approximate sunlight, is formally defined by a light source illuminant C, marked by the center dot. 3 4

35 The CIE chromaticity diagram is useful in many ways: It allows us to measure the dominant wavelength and excitation purity of any color by matching the color with a mixture of the three CIE primaries. A=B+C; AC/BC is the excitation purity of A; B is the dominant wavelength Complementary colors are those that can be mixed to produce white light (D and E). 3 5

36 The CIE chromaticity diagram is useful in many ways: Nonspectral F, no dominant wavelength; B is the complement dominant wavelength. CF/CG is the excitation purity. Take a flat spectral distribution and delete some of the light at frequency B, the resulting color will be perceived as F. 3 6

37 The CIE chromaticity diagram is useful in many ways: Color gamuts (ranges), show the effect of adding colors together. I and J can be added to produce color between I and J; A third color K can be used with I and J to produce the gamut of all colors in triangle IJK. 3 7

38 Examples of Gamuts

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light Chapter 9: Color What is color? Color mixtures Intensity-distribution curves Additive Mixing Partitive Mixing Specifying colors RGB Color Chromaticity What is Color? Wavelength is a property of an electromagnetic

More information

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies Image formation World, image, eye Light Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies intensity wavelength Visible light is light with wavelength from

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

PERCEIVING COLOR. Functions of Color Vision

PERCEIVING COLOR. Functions of Color Vision PERCEIVING COLOR Functions of Color Vision Object identification Evolution : Identify fruits in trees Perceptual organization Add beauty to life Slide 2 Visible Light Spectrum Slide 3 Color is due to..

More information

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 20 Oct 25 th, 2018 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 6. Color Image Processing Computer Engineering, Sejong University Category of Color Processing Algorithm Full-color processing Using Full color sensor, it can obtain the image

More information

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner CS6640 Computational Photography 6. Color science for digital photography 2012 Steve Marschner 1 What visible light is One octave of the electromagnetic spectrum (380-760nm) NASA/Wikimedia Commons 2 What

More information

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1 Chapter 12 Color Models and Color Applications 12-1 12.1 Overview Color plays a significant role in achieving realistic computer graphic renderings. This chapter describes the quantitative aspects of color,

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Color vision and representation

Color vision and representation Color vision and representation S M L 0.0 0.44 0.52 Mark Rzchowski Physics Department 1 Eye perceives different wavelengths as different colors. Sensitive only to 400nm - 700 nm range Narrow piece of the

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

What is Color? Chapter 9: Color. Color Mixtures. Color Mixtures 10/29/2012. What is color? Color vocabulary

What is Color? Chapter 9: Color. Color Mixtures. Color Mixtures 10/29/2012. What is color? Color vocabulary What is color? Color vocabulary Chapter 9: Color Color mixtures Intensity-distribution curves Specifying colors Hue, saturation and brightness Color trees RGB color specification Chromaticity What is Color?

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones Light and Color Eye perceives EM radiation of different wavelengths as different colors. Sensitive only to the range 4nm - 7 nm This is a narrow piece of the entire electromagnetic spectrum. Comparing

More information

Digital Image Processing Color Models &Processing

Digital Image Processing Color Models &Processing Digital Image Processing Color Models &Processing Dr. Hatem Elaydi Electrical Engineering Department Islamic University of Gaza Fall 2015 Nov 16, 2015 Color interpretation Color spectrum vs. electromagnetic

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Introduction. The Spectral Basis for Color

Introduction. The Spectral Basis for Color Introduction Color is an extremely important part of most visualizations. Choosing good colors for your visualizations involves understanding their properties and the perceptual characteristics of human

More information

Computer Graphics Si Lu Fall /27/2016

Computer Graphics Si Lu Fall /27/2016 Computer Graphics Si Lu Fall 2017 09/27/2016 Announcement Class mailing list https://groups.google.com/d/forum/cs447-fall-2016 2 Demo Time The Making of Hallelujah with Lytro Immerge https://vimeo.com/213266879

More information

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors.

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors. Computer Assisted Image Analysis TF 3p and MN1 5p Color Image Processing Lecture 14 GW 6 (suggested problem 6.25) How does the human eye perceive color? How can color be described using mathematics? Different

More information

6 Color Image Processing

6 Color Image Processing 6 Color Image Processing Angela Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2009 Fall Outline Color fundamentals Color models Pseudocolor image

More information

Color Image Processing EEE 6209 Digital Image Processing. Outline

Color Image Processing EEE 6209 Digital Image Processing. Outline Outline Color Image Processing Motivation and Color Fundamentals Standard Color Models (RGB/CMYK/HSI) Demosaicing and Color Filtering Pseudo-color and Full-color Image Processing Color Transformation Tone

More information

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1 Color Fredo Durand Many slides by Victor Ostromoukhov Color Vision 1 Today: color Disclaimer: Color is both quite simple and quite complex There are two options to teach color: pretend it all makes sense

More information

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer. Test 1: Example #2 Paul Avery PHY 3400 Feb. 15, 1999 Note: * indicates the correct answer. 1. A red shirt illuminated with yellow light will appear (a) orange (b) green (c) blue (d) yellow * (e) red 2.

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L COLOR Elements of color Angel 1.4, 2.4, 7.12 J. Lindblad 2001-11-01 Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra. How is color perceived? Visible spectrum

More information

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ)

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ) COLOR Elements of color Angel, 4th ed. 1, 2.5, 7.13 excerpt from Joakim Lindblad Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra How is color perceived?

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

A World of Color. Session 4 Color Spaces. OLLI at Illinois Spring D. H. Tracy

A World of Color. Session 4 Color Spaces. OLLI at Illinois Spring D. H. Tracy A World of Color Session 4 Color Spaces OLLI at Illinois Spring 2018 D. H. Tracy Course Outline 1. Overview, History and Spectra 2. Nature and Sources of Light 3. Eyes and Color Vision 4. Color Spaces

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T1227, Mo, 11-12 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 1 2. General Introduction Schedule

More information

Image Processing. Michael Kazhdan ( /657) HB Ch FvDFH Ch. 13.1

Image Processing. Michael Kazhdan ( /657) HB Ch FvDFH Ch. 13.1 Image Processing Michael Kazhdan (600.457/657) HB Ch. 14.4 FvDFH Ch. 13.1 Outline Human Vision Image Representation Reducing Color Quantization Artifacts Basic Image Processing Human Vision Model of Human

More information

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995.

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Reading Foley, Computer graphics, Chapter 13. Color Optional Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Gerald S. Wasserman. Color Vision: An Historical ntroduction.

More information

Color Computer Vision Spring 2018, Lecture 15

Color Computer Vision Spring 2018, Lecture 15 Color http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 15 Course announcements Homework 4 has been posted. - Due Friday March 23 rd (one-week homework!) - Any questions about the

More information

Digital Image Processing

Digital Image Processing Digital Image Processing IMAGE PERCEPTION & ILLUSION Hamid R. Rabiee Fall 2015 Outline 2 What is color? Image perception Color matching Color gamut Color balancing Illusions What is Color? 3 Visual perceptual

More information

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Lecture 8: Color Image Processing 04.11.2017 Dr. Mohammed Abdel-Megeed Salem Media

More information

Lecture Color Image Processing. by Shahid Farid

Lecture Color Image Processing. by Shahid Farid Lecture Color Image Processing by Shahid Farid What is color? Why colors? How we see objects? Photometry, Radiometry and Colorimetry Color measurement Chromaticity diagram Shahid Farid, PUCIT 2 Color or

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Color Image Processing Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering 2 Color Image Processing It is only after years

More information

Introduction to Color

Introduction to Color Introduction to Color Andries van Dam October 3, 2006 Introduction to Color 1/88 All You Need to Know About Color in CS123 Andries van Dam October 3, 2006 Introduction to Color 2/88 Achromatic and Colored

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

Fig Color spectrum seen by passing white light through a prism.

Fig Color spectrum seen by passing white light through a prism. 1. Explain about color fundamentals. Color of an object is determined by the nature of the light reflected from it. When a beam of sunlight passes through a glass prism, the emerging beam of light is not

More information

Color Image Processing. Jen-Chang Liu, Spring 2006

Color Image Processing. Jen-Chang Liu, Spring 2006 Color Image Processing Jen-Chang Liu, Spring 2006 For a long time I limited myself to one color as a form of discipline. Pablo Picasso It is only after years of preparation that the young artist should

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options?

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options? What is Color Gamut? How do we see color and why it matters for your PID options? One of the buzzwords at CES 2017 was broader color gamut. In this whitepaper, our experts unwrap this term to help you

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

Color Image Processing

Color Image Processing Color Image Processing Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Color Used heavily in human vision. Visible spectrum for humans is 400 nm (blue) to 700

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color.

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016 Tamara Munzner Color http://www.ugrad.cs.ubc.ca/~cs314/vjan2016 Vision/Color 2 RGB Color triple (r, g, b) represents colors with amount

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

What is Color. Color is a fundamental attribute of human visual perception.

What is Color. Color is a fundamental attribute of human visual perception. Color What is Color Color is a fundamental attribute of human visual perception. By fundamental we mean that it is so unique that its meaning cannot be fully appreciated without direct experience. How

More information

Unit 8: Color Image Processing

Unit 8: Color Image Processing Unit 8: Color Image Processing Colour Fundamentals In 666 Sir Isaac Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colours The

More information

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013.

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013 Tamara Munzner Vision/Color Reading for Color RB Chap Color FCG Sections 3.2-3.3 FCG Chap 20 Color FCG Chap 21.2.2 Visual Perception

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

University of British Columbia CPSC 414 Computer Graphics

University of British Columbia CPSC 414 Computer Graphics University of British Columbia CPSC 414 Computer Graphics Color 2 Week 10, Fri 7 Nov 2003 Tamara Munzner 1 Readings Chapter 1.4: color plus supplemental reading: A Survey of Color for Computer Graphics,

More information

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling CSCU9N5: Multimedia and HCI 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Cunliffe & Elliott,

More information

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading:

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Announcements Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Chapter 3: Color CSE 252A Lecture 18 Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Multimedia Systems and Technologies

Multimedia Systems and Technologies Multimedia Systems and Technologies Faculty of Engineering Master s s degree in Computer Engineering Marco Porta Computer Vision & Multimedia Lab Dipartimento di Ingegneria Industriale e dell Informazione

More information

Introduction to Computer Vision CSE 152 Lecture 18

Introduction to Computer Vision CSE 152 Lecture 18 CSE 152 Lecture 18 Announcements Homework 5 is due Sat, Jun 9, 11:59 PM Reading: Chapter 3: Color Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information

Human Vision, Color and Basic Image Processing

Human Vision, Color and Basic Image Processing Human Vision, Color and Basic Image Processing Connelly Barnes CS4810 University of Virginia Acknowledgement: slides by Jason Lawrence, Misha Kazhdan, Allison Klein, Tom Funkhouser, Adam Finkelstein and

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 4: Colour Graphics Lecture 4: Slide 1 Ways of looking at colour 1. Physics 2. Human visual receptors 3. Subjective assessment Graphics Lecture 4: Slide 2 The physics

More information

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow! Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Colour Lecture (2 lectures)! Richardson, Chapter

More information

Digital Image Processing (DIP)

Digital Image Processing (DIP) University of Kurdistan Digital Image Processing (DIP) Lecture 6: Color Image Processing Instructor: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan,

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 4: Color Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 4 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture!

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture! Colour Lecture! ITNP80: Multimedia 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Richardson,

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

Chapter Objectives. Color Management. Color Management. Chapter Objectives 1/27/12. Beyond Design

Chapter Objectives. Color Management. Color Management. Chapter Objectives 1/27/12. Beyond Design 1/27/12 Copyright 2009 Fairchild Books All rights reserved. No part of this presentation covered by the copyright hereon may be reproduced or used in any form or by any means graphic, electronic, or mechanical,

More information

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015

Computer Graphics. Si Lu. Fall er_graphics.htm 10/02/2015 Computer Graphics Si Lu Fall 2017 http://www.cs.pdx.edu/~lusi/cs447/cs447_547_comput er_graphics.htm 10/02/2015 1 Announcements Free Textbook: Linear Algebra By Jim Hefferon http://joshua.smcvt.edu/linalg.html/

More information

Lecture 8. Color Image Processing

Lecture 8. Color Image Processing Lecture 8. Color Image Processing EL512 Image Processing Dr. Zhu Liu zliu@research.att.com Note: Part of the materials in the slides are from Gonzalez s Digital Image Processing and Onur s lecture slides

More information

Image Representations, Colors, & Morphing. Stephen J. Guy Comp 575

Image Representations, Colors, & Morphing. Stephen J. Guy Comp 575 Image Representations, Colors, & Morphing Stephen J. Guy Comp 575 Procedural Stuff How to make a webpage Assignment 0 grades New office hours Dinesh Teaching Next week ray-tracing Problem set Review Overview

More information

The Science Seeing of process Digital Media. The Science of Digital Media Introduction

The Science Seeing of process Digital Media. The Science of Digital Media Introduction The Human Science eye of and Digital Displays Media Human Visual System Eye Perception of colour types terminology Human Visual System Eye Brains Camera and HVS HVS and displays Introduction 2 The Science

More information

any kind, you have two receptive fields, one the small center region, the other the surround region.

any kind, you have two receptive fields, one the small center region, the other the surround region. In a centersurround cell of any kind, you have two receptive fields, one the small center region, the other the surround region. + _ In a chromatic center-surround field, each in innervated by one class

More information

The basic tenets of DESIGN can be grouped into three categories: The Practice, The Principles, The Elements

The basic tenets of DESIGN can be grouped into three categories: The Practice, The Principles, The Elements Vocabulary The basic tenets of DESIGN can be grouped into three categories: The Practice, The Principles, The Elements 1. The Practice: Concept + Composition are ingredients that a designer uses to communicate

More information

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38 Images CS 4620 Lecture 38 w/ prior instructor Steve Marschner 1 Announcements A7 extended by 24 hours w/ prior instructor Steve Marschner 2 Color displays Operating principle: humans are trichromatic match

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 1 st, 2018 Pranav Mantini Acknowledgment: Slides from Pourreza Projects Project team and topic assigned Project proposal presentations : Nov 6 th

More information

Geography 360 Principles of Cartography. April 24, 2006

Geography 360 Principles of Cartography. April 24, 2006 Geography 360 Principles of Cartography April 24, 2006 Outlines 1. Principles of color Color as physical phenomenon Color as physiological phenomenon 2. How is color specified? (color model) Hardware-oriented

More information

Reading instructions: Chapter 6

Reading instructions: Chapter 6 Lecture 8 in Computerized Image Analysis Digital Color Processing Hamid Sarve hamid@cb.uu.se Reading instructions: Chapter 6 Electromagnetic Radiation Visible light (for humans) is electromagnetic radiation

More information

Graphics and Image Processing Basics

Graphics and Image Processing Basics EST 323 / CSE 524: CG-HCI Graphics and Image Processing Basics Klaus Mueller Computer Science Department Stony Brook University Julian Beever Optical Illusion: Sidewalk Art Julian Beever Optical Illusion:

More information

MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin

MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin Facebook, Blogs and Wiki tools for sharing ideas or presenting work Using Facebook as a tool to ask questions - discussion on GIMP

More information

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575

Sampling and Reconstruction. Today: Color Theory. Color Theory COMP575 and COMP575 Today: Finish up Color Color Theory CIE XYZ color space 3 color matching functions: X, Y, Z Y is luminance X and Z are color values WP user acdx Color Theory xyy color space Since Y is luminance,

More information

Color Image Processing

Color Image Processing Color Image Processing Color Fundamentals 2/27/2014 2 Color Fundamentals 2/27/2014 3 Color Fundamentals 6 to 7 million cones in the human eye can be divided into three principal sensing categories, corresponding

More information

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation. From light to colour spaces Light and colour Advanced Graphics Rafal Mantiuk Computer Laboratory, University of Cambridge 1 2 Electromagnetic spectrum Visible light Electromagnetic waves of wavelength

More information

Colorimetry and Color Modeling

Colorimetry and Color Modeling Color Matching Experiments 1 Colorimetry and Color Modeling Colorimetry is the science of measuring color. Color modeling, for the purposes of this Field Guide, is defined as the mathematical constructs

More information

05 Color. Multimedia Systems. Color and Science

05 Color. Multimedia Systems. Color and Science Multimedia Systems 05 Color Color and Science Imran Ihsan Assistant Professor, Department of Computer Science Air University, Islamabad, Pakistan www.imranihsan.com Lectures Adapted From: Digital Multimedia

More information

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models Introduction to computer vision In general, computer vision covers very wide area of issues concerning understanding of images by computers. It may be considered as a part of artificial intelligence and

More information

Physics 1230: Light and Color. If you do not have a telescope, please come get the parts on front table. Useful for Written_HW12.

Physics 1230: Light and Color. If you do not have a telescope, please come get the parts on front table. Useful for Written_HW12. Physics 1230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys1230 If you do not have a telescope, please come

More information

Chapter 6: Color Image Processing. Office room : 841

Chapter 6: Color Image Processing.   Office room : 841 Chapter 6: Color Image Processing Lecturer: Jianbing Shen Email : shenjianbing@bit.edu.cn Office room : 841 http://cs.bit.edu.cn/shenjianbing cn/shenjianbing It is only after years of preparation that

More information