For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

Size: px
Start display at page:

Download "For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing"

Transcription

1 For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1

2 Preview Motive - Color is a powerful descriptor that often simplifies object identification and extraction from a scene. - Human can discern thousands of color shades and intensities, compared to about only two dozen shades of gray. 2

3 3

4 Color Fundamentals Light Light is fundamental for color vision Unless there is a source of light, there is nothing to see! What do we see? We do not see objects, but the light that has been reflected by or objects transmitted through the 4

5 Color Fundamentals The experiment of Sir Isaac Newton, in when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colors 5

6 Color Fundamentals Light and EM waves Light is an electromagnetic wave If its wavelength is comprised between 400 and 700 nm (visible spectrum), the wave can be detected by the human eye and is called monochromatic light 6

7 Color Fundamentals Visible light Chromatic light span the electromagnetic spectrum (EM) from 400 to 700 nm 7

8 What is color? It is an attribute of objects (like texture, shape, smoothness, etc.) It depends on: 1) spectral characteristics of the light source(s) (e.g., sunlight) illuminating the objects (relative spectral power distribution(s) SPD) 2) spectral properties of objects (reflectance) 3) spectral characteristics of the sensors of the imaging device (e.g., the human eye or a digital camera) 8

9 Color fundamentals The color that human perceive in an object = the light reflected from the object scene Illumination source Colours Absorbed eye reflection 9

10 Color Fundamentals Basic quantities to describe the quality of light source: Radiance: Total amount of energy that flows from the light source (in W). Luminance: A measure of the amount of energy an observer perceives from the light source (in lm) Far infrared light: high radiance, but 0 luminance Brightness: A subjective descriptor that embodies the achromatic notion of intensity and is practical impossible to measure. 10

11 How human eyes sense light? 6~7M Cones are the sensors in the eye 3 principal sensing categories in eyes Red light 65%, green light 33%, and blue light 2% Absorption curves for the different cones have been determined experimentally 11

12 Primary and Secondary Colors Due to the different absorption curves of the cones, colors are seen as variable combinations of the socalled primary colors: red, green, and blue Their wavelengths were standardized by the CIE in 1931: red=700 nm, green=546.1 nm, and blue=435.8 nm The primary colors can be added to produce the secondary colors of light, magenta (R+B), cyan (G+B), and yellow (R+G) 12

13 13

14 Primary colors of light v.s. primary colors of pigments Primary color of pigments Color that subtracts or absorbs a primary color of light and reflects or transmits the other two Color of light: R G B Color of pigments: absorb R absorb G absorb B Cyan Magenta Yellow C= 1-R, M= 1-G, Y= 1- B 14

15 Color Characteristics The characteristics generally used to distinguish one color from another are Brightness, Hue, and Saturation. Brightness: a subjective (practically unmeasurable) notion that embodies the intensity of light Hue: Represents dominant color as perceive by an observer. Saturation: Relative purity or the amount of white light mixed with a hue The pure colors are fully saturated (Red) Pink =(Red + White) which is less saturated So the degree of saturation being inversely proportional to the amount of white light added Hue and saturation taken together are called Chromaticity, and therefore, a color may be characterized by its Brightness and Chromaticity. 15

16 Tri-stimulus values: The amount of Red, Green and Blue needed to form any particular color Denoted by: X, Y and Z Z Y X X x Z Y X Y y Z Y X Z z 1 z y x Tri-chromatic coefficient: Where x,y,z : are called as Chromatic coefficient 16

17 Chromaticity Diagram 17

18 Specifying colors systematically can be achieved using the CIE chromaticity diagram. This is a special diagram which specifying any color as function of Red (x) and green(y). On this diagram the x-axis represents the proportion of red the y-axis represents the proportion of red used The proportion of blue used in a colour is calculated as: z = 1 (x + y) Green: 62% green, 25% red and 13% blue Red: 32% green, 67% red and 1% blue 18

19 Any color located on the boundary of the chromaticity chart is fully saturated i.e. if we move away from boundary the color becomes less and less saturated. The point of equal energy has equal amounts of each color and is the CIE standard for pure white Any straight line joining two points in the diagram defines all of the different colors that can be obtained by combining these two colors additively x y All possible mixture of these two colors can create all the colors which are lying on the straight line segment. 19

20 Similarly if we three points and make a triangle inside chromaticity chart then some color on the boundary or inside the triangle can be produced by various combinations of three initials colors. This means the entire color range cannot be displayed based on any three colors The triangle shows the typical color gamut produced by RGB monitors The strange shape is the gamut achieved by high quality color printers 20

21 Color Gamut produced by RGB monitors Color Gamut produced by high quality color printing device 21

22 If we take any boundary point and dray a line joining to white that gives all shades of colors that can be possible by adding white light to the fully saturated boundary color Applications of Chromaticity Diagram To specify any color Useful for color mixing Useful for high quality printing devices. 22

23 Colors in computer graphics and vision Color Models The purpose of a color model (also called color space or color system) is to facilitate the specification of colors in some standard, generally accept way. RGB (red,green,blue) : monitor, video camera. CMY(cyan,magenta,yellow),CMYK (CMY, black) model for color printing. and HSI model,which corresponds closely with the way humans describe and interpret color. 23

24 Color models Color model, color space, color system Specify colors in a standard way A coordinate system that each color is represented by a single point RGB model CYM model CYMK model HSI model Suitable for hardware or applications - match the human description 24

25 RGB color model 25

26 RGB color model In the RGB model each color appears in its primary spectral components of red, green and blue The model is based on a Cartesian coordinate system RGB values are at 3 corners Cyan magenta and yellow are at three other corners Black is at the origin White is the corner furthest from the origin Different colors are points on or inside the cube represented by RGB vectors 26

27 Pixel depth Pixel depth: the number of bits used to represent each pixel in RGB space Full-color image: 24-bit RGB color image (R, G, B) = (8 bits, 8 bits, 8 bits) The RGB Color Model If R,G, and B are represented with 8 bits (24-bit RGB image), the total number of colors is (28 )3=16,777,216 27

28 Images represented in the RGB color model consist of three component images one for each primary color When fed into a monitor these images are combined to create a composite color image 28

29 RGB is great for color generation RGB is useful for hardware implementations and is serendipitously related to the way in which the human visual system works Application Color camera Color monotors However, RGB is not a particularly intuitive way in which to describe colors 29

30 The CMY Color Model Cyan, Magenta and Yellow are the secondary colors of light CMY model is Substractive Complementary to RGB: Most devices that deposit colored pigments on paper, such as color printers and copiers, require CMY data input. B G R Y M C

31 CMYK color model CMYK K is for black Save on color inks, by using black ink preferably K = min(c,m,y) C = C-K M = M-K Y = Y-K 31

32 HSI color model Will you describe a color using its R, G, B components? Human describe a color by its hue, saturation, and brightness Hue: color attribute Saturation: purity of color (white->0, primary color- >1) Brightness: achromatic notion of intensity RGB, CMY, and the like are hardware-oriented color spaces (suited for image acquisition and display) The HSI (Hue, Saturation, Intensity) is a perceptive color space (suited for image description and interpretation) 32

33 HSI color model The HSI model uses three measures to describe colors: Hue: A color attribute that describes a pure color (pure yellow, orange or red) Saturation: Gives a measure of how much a pure color is diluted with white light Intensity: Brightness is nearly impossible to measure because it is so subjective. Instead we use intensity. Intensity is the same achromatic notion that we have seen in grey level images 33

34 HSI color model RGB -> HSI model Intensity line Colors on this triangle Have the same hue saturation 34

35 Consider if we look straight down at the RGB cube as it was arranged previously We would see a hexagonal shape with each primary color separated by 120 and secondary colors at 60 from the primaries HSI Color Model So the HSI model is composed of a vertical intensity axis and the locus of color points that lie on planes perpendicular to that axis 35

36 HSI Color Model To the right we see a hexagonal shape and an arbitrary color point The hue is determined by an angle from a reference point, usually red The saturation is the distance from the origin to the point The intensity is determined by how far up the vertical intensity axis this hexagonal plane sits (not apparent from this diagram 36

37 HSI Color Model Because the only important things are the angle and the length of the saturation vector this plane is also often represented as a circle or a triangle 37

38 HSI Model Examples 38

39 39

40 HSI component images R,G,B Hue saturation intensity 40

41 Converting colors from RGB to HSI G B if 360 G B if H 2 1/ 2 1 )] )( ( ) [( )] ( ) [( 2 1 cos B G B R G R B R G R )],, [min( ) ( 3 1 B G R B G R S ) ( 3 1 B G R I The HSI Color Models 41

42 Converting colors from HIS to RGB RG sector : The HSI Color Models 0 H 120 B I( 1 S) R I1 ScosH cos( 60 H) G 3I ( R B) 42

43 Converting colors from HIS to RGB GB sector : The HSI Color Models H H H 240 R G I( 1 S) I1 ScosH cos( 60 H) B 3I ( R G ) 43

44 Converting colors from HIS to RGB BR sector : The HSI Color Models H G B I1 240 H 360 H 240 I( 1 S ) ScosH cos( 60 H) R 3I ( G B) 44

45 Pseudo color Image Processing Pseudo color (also called false color) image processing consists of assigning colors to grey values based on a specific criterion The principle use of pseudo color image processing is for human visualization Humans can discern between thousands of color shades and intensities, compared to only about two dozen or so shades of grey 45

46 Pseudo Color Image Processing Intensity Slicing-- Intensity slicing and color coding is one of the simplest kinds of pseudo color image processing First we consider an image as a 3D function mapping spatial coordinates to intensities (that we can consider heights) Now consider placing planes at certain levels parallel to the coordinate plane If a value is one side of such a plane it is rendered in one color, and a different color if on the other side 46

47 Intensity slicing 3-D view of intensity image Color 1 Color 2 Image plane 47

48 Intensity slicing In general intensity slicing can be summarized as: Let [0, L-1] represent the grey scale Let l 0 represent black [f(x, y) = 0] and let l L-1 represent white [f(x, y) = L-1] Suppose P planes perpendicular to the intensity axis are defined at levels l 1, l 2,, l p Assuming that 0 < P < L-1 then the P planes partition the grey scale into P + 1 intervals V 1, V 2,,V P+1 48

49 Grey level color assignments can then be made according to the relation: f (x, y) c k if f (x, y) V k where ck is the color associated with the k th intensity level V k defined by the partitioning planes at l = k 1 and l = k 49

50 Application 1 H.R. Pourreza 50

51 Application 2 Rainfall statistics 51

52 Gray level to color transformation Intensity slicing: piecewise linear transformation General Gray level to color transformation 52

53 Gray level to color transformation 53

54 Application 1 54

55 Combine several monochrome images Example: multi-spectral images 55

56 Washington D.C. R G B Near Infrared (sensitive to biomass) R+G+B near-infrared+g+b 56

57 57 B G R c c c c B G R Let c represent an arbitrary vector in RGB color space ), ( ), ( ), ( ), ( ), ( ), ( ), ( y x B y x G y x R y x c y x c y x c y x c B G R For an image of size M*N, Basic of Full Color Image Processing

58 Basic of Full Color Image Processing 58

59 Basic of Full-Color Image Processing Color Transformation Processing the components of a color image within the context of a single color model. g( x, y) T f ( x, y) r, r r 2,,, i 1,2 n si Ti 1 n,..., Color components of g Color components of f Color mapping functions 59

60 Full-Color Image Processing Color Transformation CMYK RGB Some difficulty in interpreting the HUE: Discontinuity where 0 and 360 º meet. HSI Hue is undefined for a saturation 0 60

61 Full-Color Image Processing Color Transformation: Color Complement 61

62 Full-Color Image Processing Color Transformation: Color Slicing Motive: Highlighting a specific range of colors in an image Basic Idea: Display the color of interest so that they stand out from background Use the region defined by the colors as a mask for further processing W 0.5 if rj aj s i 2, i 1,2,..., n any1 jn ri otherwise 62

63 63 Full-Color Image Processing Color Transformation: Color Slicing n i otherwise r W a r if s i n j any j j i 1,2,...,, Colors of interest are enclosed by cube (or hypercube for n>3) 2. Colors of interest are enclosed by Sphere n i otherwise r R a r if s i n j j j i 1,2,...,, ) (

64 Full-Color Image Processing Color Transformation: Color Slicing Cube Sphere 64

Digital Image Processing (DIP)

Digital Image Processing (DIP) University of Kurdistan Digital Image Processing (DIP) Lecture 6: Color Image Processing Instructor: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan,

More information

Fig Color spectrum seen by passing white light through a prism.

Fig Color spectrum seen by passing white light through a prism. 1. Explain about color fundamentals. Color of an object is determined by the nature of the light reflected from it. When a beam of sunlight passes through a glass prism, the emerging beam of light is not

More information

Unit 8: Color Image Processing

Unit 8: Color Image Processing Unit 8: Color Image Processing Colour Fundamentals In 666 Sir Isaac Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colours The

More information

Color Image Processing. Jen-Chang Liu, Spring 2006

Color Image Processing. Jen-Chang Liu, Spring 2006 Color Image Processing Jen-Chang Liu, Spring 2006 For a long time I limited myself to one color as a form of discipline. Pablo Picasso It is only after years of preparation that the young artist should

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Color Image Processing Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering 2 Color Image Processing It is only after years

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 20 Oct 25 th, 2018 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

Digital Image Processing Color Models &Processing

Digital Image Processing Color Models &Processing Digital Image Processing Color Models &Processing Dr. Hatem Elaydi Electrical Engineering Department Islamic University of Gaza Fall 2015 Nov 16, 2015 Color interpretation Color spectrum vs. electromagnetic

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

6 Color Image Processing

6 Color Image Processing 6 Color Image Processing Angela Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2009 Fall Outline Color fundamentals Color models Pseudocolor image

More information

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 1 st, 2018 Pranav Mantini Acknowledgment: Slides from Pourreza Projects Project team and topic assigned Project proposal presentations : Nov 6 th

More information

Digital Image Processing Chapter 6: Color Image Processing ( )

Digital Image Processing Chapter 6: Color Image Processing ( ) Digital Image Processing Chapter 6: Color Image Processing (6.1 6.3) 6. Preview The process followed by the human brain in perceiving and interpreting color is a physiopsychological henomenon that is not

More information

CHAPTER 6 COLOR IMAGE PROCESSING

CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6: COLOR IMAGE PROCESSING The use of color image processing is motivated by two factors: Color is a powerful descriptor that often simplifies object identification

More information

Color Image Processing EEE 6209 Digital Image Processing. Outline

Color Image Processing EEE 6209 Digital Image Processing. Outline Outline Color Image Processing Motivation and Color Fundamentals Standard Color Models (RGB/CMYK/HSI) Demosaicing and Color Filtering Pseudo-color and Full-color Image Processing Color Transformation Tone

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

Chapter 6: Color Image Processing. Office room : 841

Chapter 6: Color Image Processing.   Office room : 841 Chapter 6: Color Image Processing Lecturer: Jianbing Shen Email : shenjianbing@bit.edu.cn Office room : 841 http://cs.bit.edu.cn/shenjianbing cn/shenjianbing It is only after years of preparation that

More information

Image and video processing

Image and video processing Image and video processing Processing Colour Images Dr. Yi-Zhe Song The agenda Introduction to colour image processing Pseudo colour image processing Full-colour image processing basics Transforming colours

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T1227, Mo, 11-12 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 1 2. General Introduction Schedule

More information

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Lecture 8: Color Image Processing 04.11.2017 Dr. Mohammed Abdel-Megeed Salem Media

More information

Color Image Processing

Color Image Processing Color Image Processing Color Fundamentals 2/27/2014 2 Color Fundamentals 2/27/2014 3 Color Fundamentals 6 to 7 million cones in the human eye can be divided into three principal sensing categories, corresponding

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30)

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 11 Lecture Number 52 Conversion of one Color

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Digital Image Processing Chapter 6: Color Image Processing

Digital Image Processing Chapter 6: Color Image Processing Digital Image Processing Chapter 6: Color Image Processing Spectrum of White Light 1666 Sir Isaac Newton, 24 ear old, discovered white light spectrum. Electromagnetic Spectrum Visible light wavelength:

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models Introduction to computer vision In general, computer vision covers very wide area of issues concerning understanding of images by computers. It may be considered as a part of artificial intelligence and

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Color Image Processing II

Color Image Processing II Color Image Processing II Outline Color fundamentals Color perception and color matching Color models Pseudo-color image processing Basics of full-color image processing Color transformations Smoothing

More information

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors.

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors. Computer Assisted Image Analysis TF 3p and MN1 5p Color Image Processing Lecture 14 GW 6 (suggested problem 6.25) How does the human eye perceive color? How can color be described using mathematics? Different

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR 1. Introduction The field of digital image processing relies on mathematical and probabilistic formulations accompanied by human intuition and analysis based

More information

Color image processing

Color image processing Color image processing Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..)

More information

Color Image Processing

Color Image Processing Color Image Processing Dr. Praveen Sankaran Department of ECE NIT Calicut February 11, 2013 Winter 2013 February 11, 2013 1 / 23 Outline 1 Color Models 2 Full Color Image Processing Winter 2013 February

More information

Lecture 8. Color Image Processing

Lecture 8. Color Image Processing Lecture 8. Color Image Processing EL512 Image Processing Dr. Zhu Liu zliu@research.att.com Note: Part of the materials in the slides are from Gonzalez s Digital Image Processing and Onur s lecture slides

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1 Chapter 12 Color Models and Color Applications 12-1 12.1 Overview Color plays a significant role in achieving realistic computer graphic renderings. This chapter describes the quantitative aspects of color,

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 4: Colour Graphics Lecture 4: Slide 1 Ways of looking at colour 1. Physics 2. Human visual receptors 3. Subjective assessment Graphics Lecture 4: Slide 2 The physics

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 10 Color Image Processing ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Pseudo-Color (False Color)

More information

Introduction. The Spectral Basis for Color

Introduction. The Spectral Basis for Color Introduction Color is an extremely important part of most visualizations. Choosing good colors for your visualizations involves understanding their properties and the perceptual characteristics of human

More information

YIQ color model. Used in United States commercial TV broadcasting (NTSC system).

YIQ color model. Used in United States commercial TV broadcasting (NTSC system). CMY color model Each color is represented by the three secondary colors --- cyan (C), magenta (M), and yellow (Y ). It is mainly used in devices such as color printers that deposit color pigments. It is

More information

EECS490: Digital Image Processing. Lecture #12

EECS490: Digital Image Processing. Lecture #12 Lecture #12 Image Correlation (example) Color basics (Chapter 6) The Chromaticity Diagram Color Images RGB Color Cube Color spaces Pseudocolor Multispectral Imaging White Light A prism splits white light

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones Light and Color Eye perceives EM radiation of different wavelengths as different colors. Sensitive only to the range 4nm - 7 nm This is a narrow piece of the entire electromagnetic spectrum. Comparing

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

VC 16/17 TP4 Colour and Noise

VC 16/17 TP4 Colour and Noise VC 16/17 TP4 Colour and Noise Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Hélder Filipe Pinto de Oliveira Outline Colour spaces Colour processing

More information

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Some color images on this slide Last Lecture 2D filtering frequency domain The magnitude of the 2D DFT gives the amplitudes of the sinusoids and

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

Colors in images. Color spaces, perception, mixing, printing, manipulating...

Colors in images. Color spaces, perception, mixing, printing, manipulating... Colors in images Color spaces, perception, mixing, printing, manipulating... Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

More information

Lecture Color Image Processing. by Shahid Farid

Lecture Color Image Processing. by Shahid Farid Lecture Color Image Processing by Shahid Farid What is color? Why colors? How we see objects? Photometry, Radiometry and Colorimetry Color measurement Chromaticity diagram Shahid Farid, PUCIT 2 Color or

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

Color Image Processing

Color Image Processing Color Image Processing Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Color Used heavily in human vision. Visible spectrum for humans is 400 nm (blue) to 700

More information

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy Color Used heavily in human vision Color is a pixel property, making some recognition problems easy Visible spectrum for humans is 400 nm (blue) to 700 nm (red) Machines can see much more; ex. X-rays,

More information

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer. Test 1: Example #2 Paul Avery PHY 3400 Feb. 15, 1999 Note: * indicates the correct answer. 1. A red shirt illuminated with yellow light will appear (a) orange (b) green (c) blue (d) yellow * (e) red 2.

More information

Chapter 2 Fundamentals of Digital Imaging

Chapter 2 Fundamentals of Digital Imaging Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation 1 In this lecture, you will find answers to these questions What is RGB color model and how does it represent colors? What is CMY color

More information

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies Image formation World, image, eye Light Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies intensity wavelength Visible light is light with wavelength from

More information

Additive Color Synthesis

Additive Color Synthesis Color Systems Defining Colors for Digital Image Processing Various models exist that attempt to describe color numerically. An ideal model should be able to record all theoretically visible colors in the

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 4: Color Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 4 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

Color vision and representation

Color vision and representation Color vision and representation S M L 0.0 0.44 0.52 Mark Rzchowski Physics Department 1 Eye perceives different wavelengths as different colors. Sensitive only to 400nm - 700 nm range Narrow piece of the

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 6. Color Image Processing Computer Engineering, Sejong University Category of Color Processing Algorithm Full-color processing Using Full color sensor, it can obtain the image

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

Color. Some slides are adopted from William T. Freeman

Color. Some slides are adopted from William T. Freeman Color Some slides are adopted from William T. Freeman 1 1 Why Study Color Color is important to many visual tasks To find fruits in foliage To find people s skin (whether a person looks healthy) To group

More information

Imaging Process (review)

Imaging Process (review) Color Used heavily in human vision Color is a pixel property, making some recognition problems easy Visible spectrum for humans is 400nm (blue) to 700 nm (red) Machines can see much more; ex. X-rays, infrared,

More information

Color Computer Vision Spring 2018, Lecture 15

Color Computer Vision Spring 2018, Lecture 15 Color http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 15 Course announcements Homework 4 has been posted. - Due Friday March 23 rd (one-week homework!) - Any questions about the

More information

Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Color Vision

Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Color Vision Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Color Vision Color perception is due to the physical interaction between emitted light and the objects encountered en route

More information

MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin

MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin Facebook, Blogs and Wiki tools for sharing ideas or presenting work Using Facebook as a tool to ask questions - discussion on GIMP

More information

Multimedia Systems and Technologies

Multimedia Systems and Technologies Multimedia Systems and Technologies Faculty of Engineering Master s s degree in Computer Engineering Marco Porta Computer Vision & Multimedia Lab Dipartimento di Ingegneria Industriale e dell Informazione

More information

In a physical sense, there really is no such thing as color, just light waves of different wavelengths.

In a physical sense, there really is no such thing as color, just light waves of different wavelengths. Color Concept Basis Color Concept What is Color? In a physical sense, there really is no such thing as color, just light waves of different wavelengths. Color comes from light. The human eye can distinguish

More information

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light Chapter 9: Color What is color? Color mixtures Intensity-distribution curves Additive Mixing Partitive Mixing Specifying colors RGB Color Chromaticity What is Color? Wavelength is a property of an electromagnetic

More information

Introduction & Colour

Introduction & Colour Introduction & Colour Eric C. McCreath School of Computer Science The Australian National University ACT 0200 Australia ericm@cs.anu.edu.au Overview 2 Computer Graphics Uses (Chapter 1) Basic Hardware

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

Basics of Colors in Graphics Denbigh Starkey

Basics of Colors in Graphics Denbigh Starkey Basics of Colors in Graphics Denbigh Starkey 1. Visible Spectrum 2 2. Additive vs. subtractive color systems, RGB vs. CMY. 3 3. RGB and CMY Color Cubes 4 4. CMYK (Cyan-Magenta-Yellow-Black 6 5. Converting

More information

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow! Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Colour Lecture (2 lectures)! Richardson, Chapter

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 3 Digital Image Fundamentals ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

What is Color? Chapter 9: Color. Color Mixtures. Color Mixtures 10/29/2012. What is color? Color vocabulary

What is Color? Chapter 9: Color. Color Mixtures. Color Mixtures 10/29/2012. What is color? Color vocabulary What is color? Color vocabulary Chapter 9: Color Color mixtures Intensity-distribution curves Specifying colors Hue, saturation and brightness Color trees RGB color specification Chromaticity What is Color?

More information

Color. Chapter 6. (colour) Digital Multimedia, 2nd edition

Color. Chapter 6. (colour) Digital Multimedia, 2nd edition Color (colour) Chapter 6 Digital Multimedia, 2nd edition What is color? Color is how our eyes perceive different forms of energy. Energy moves in the form of waves. What is a wave? Think of a fat guy (Dr.

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling CSCU9N5: Multimedia and HCI 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Cunliffe & Elliott,

More information

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy

Color. Used heavily in human vision. Color is a pixel property, making some recognition problems easy Color Used heavily in human vision Color is a pixel property, making some recognition problems easy Visible spectrum for humans is 400 nm (blue) to 700 nm (red) Machines can see much more; ex. X-rays,

More information

any kind, you have two receptive fields, one the small center region, the other the surround region.

any kind, you have two receptive fields, one the small center region, the other the surround region. In a centersurround cell of any kind, you have two receptive fields, one the small center region, the other the surround region. + _ In a chromatic center-surround field, each in innervated by one class

More information

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture!

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture! Colour Lecture! ITNP80: Multimedia 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Richardson,

More information

PERCEIVING COLOR. Functions of Color Vision

PERCEIVING COLOR. Functions of Color Vision PERCEIVING COLOR Functions of Color Vision Object identification Evolution : Identify fruits in trees Perceptual organization Add beauty to life Slide 2 Visible Light Spectrum Slide 3 Color is due to..

More information

Color Theory. Additive Color

Color Theory. Additive Color Color Theory A primary color is a color that cannot be made from a combination of any other colors. A secondary color is a color created from a combination of two primary colors. Tertiary color is a combination

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information

Colour (1) Graphics 2

Colour (1) Graphics 2 Colour (1) raphics 2 06-02408 Level 3 10 credits in Semester 2 Professor Aleš Leonardis Slides by Professor Ela Claridge Colours and their origin - spectral characteristics - human visual perception Colour

More information

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match CIE tri-stimulus experiment diffuse reflecting screen diffuse reflecting screen 770 769 768 test light 382 381 380 observer test light 445 535 630 445 535 630 observer light intensity for visual color

More information

COLOR AS A DESIGN ELEMENT

COLOR AS A DESIGN ELEMENT COLOR COLOR AS A DESIGN ELEMENT Color is one of the most important elements of design. It can evoke action and emotion. It can attract or detract attention. I. COLOR SETS COLOR HARMONY Color Harmony occurs

More information

Introduction to Computer Vision and image processing

Introduction to Computer Vision and image processing Introduction to Computer Vision and image processing 1.1 Overview: Computer Imaging 1.2 Computer Vision 1.3 Image Processing 1.4 Computer Imaging System 1.6 Human Visual Perception 1.7 Image Representation

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

Reading instructions: Chapter 6

Reading instructions: Chapter 6 Lecture 8 in Computerized Image Analysis Digital Color Processing Hamid Sarve hamid@cb.uu.se Reading instructions: Chapter 6 Electromagnetic Radiation Visible light (for humans) is electromagnetic radiation

More information