Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini

Size: px
Start display at page:

Download "Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini"

Transcription

1 Digital Image Processing COSC 6380/4393 Lecture 20 Oct 25 th, 2018 Pranav Mantini

2 What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical property of those objects or lights (S. Palmer, Vision Science: Photons to Phenomenology) Color is the result of interaction between physical light in the environment and our visual system Wassily Kandinsky ( ), Murnau Street with Women, 1908

3 Motivation Visual Descriptor (descriptions of the visual features of the contents) 11/1/2018 3

4 Principal Descriptor Visual Descriptor (descriptions of the visual features of the contents) SHAPE 11/1/2018 4

5 Principal Descriptor Visual Descriptor (descriptions of the visual features of the contents) SHAPE 11/1/2018 5

6 Principal Descriptor Visual Descriptor (descriptions of the visual features of the contents) SHAPE COLOR 11/1/2018 6

7 Principal Descriptor H.R. Pourreza

8 Principal Descriptor H.R. Pourreza

9 Principal Descriptor Visual Descriptor (descriptions of the visual features of the contents) SHAPE COLOR Color is a powerful descriptor that often simplifies object identification and extraction from a scene. 11/1/2018 9

10 Principal Descriptor Visual Descriptor (descriptions of the visual features of the contents) SHAPE COLOR TEXTURE 11/1/

11 Principal Descriptor Visual Descriptor SHAPE COLOR TEXTURE MOTION 11/1/

12 Discerning Color ~1000 ~24

13 Motivation Color is principal descriptor Ability to discern thousands of colors 11/1/

14 Color Image Processing Two majors areas Full color processing

15 Color Image Processing Two majors areas Full color processing

16 Color Image Processing Two majors areas Full color processing Color image

17 Color Image Processing Two majors areas Full color processing Psuedocolor processing

18 Color Image Processing Two majors areas Full color processing Psuedocolor processing Intensity values Thermal Camera

19 Color Image Processing Two majors areas Full color processing Psuedocolor processing Thermal Camera

20 Color Image Processing Two majors areas Full color processing Psuedocolor processing Assign values Thermal Camera Color image

21 Color fundamentals Physical phenomenon Physical nature of color can be expressed on formal basis (using experiments and theoretical results) Physio-psychological phenomenon How human brain perceive and interpret color?

22 Color Fundamentals 1666, Isaac Newton 11/1/

23 Color Fundamentals Six broad regions, each blends into the next smoothly. 11/1/

24 Color fundamentals (cont.) The color that human perceive in an object = the light reflected from the object Illumination source scene eye reflection

25 Color fundamentals (cont.) Balanced in all visible wavelengths white Absorbs all light black Limited range of visible spectrum color shade 500 to 570 nm Green object Illumination source scene eye reflection

26 Characterization of Light Acromatic light has only intensity (or amount) (void of color) Black and white television Gray level: scalar measure of intensity Chromatic light span the electromagnetic spectrum (EM) from 400 to 700 nm

27 Physical quantities to describe a chromatic light source Radiance: total amount of energy that flow from the light source, measured in watts (W) Luminance: amount of energy an observer perceives from a light source, measured in lumens (lm) Far infrared light: high radiance, but 0 luminance Brightness: subjective descriptor that is hard to measure, similar to the achromatic notion of intensity

28 Color Fundamentals Cones are the sensors in the eye that are responsible for color vision 6 to 7 million cones in the human eye Can be divided into three principal sensing categories, corresponding roughly to red, green, and blue. 65%: red 33%: green 2%: blue (blue cones are the most sensitive) 11/1/

29 Color Fundamentals 11/1/

30 Primary colors Due to the absorption characteristics of human eye, Primary colors: Red Green Blue Color: described as a variable combination of the primary colors In 1931, CIE(International Commission on Illumination) defines specific wavelength values to the primary colors B = nm, G = nm, R = 700 nm However, we know that no single color may be called red, green, or blue

31 11/1/

32 Primary colors of light v.s. primary colors of pigments Primary color of pigments Color that subtracts or absorbs a primary color of light and reflects or transmits the other two Color of light: R G B Color of pigments: absorb R absorb G absorb B Cyan Magenta Yellow

33 11/1/

34 Application of additive nature of light Color TV colors

35 Application of subtractive color model Printers: the usual primary colors are cyan, magenta and yellow (CMY) Cyan serves as a filter that absorbs red Amount of cyan applied controls how much of the red in white light will be reflected back Cyan is completely transparent to green and blue light and has no effect on those parts of the spectrum

36 Application of subtractive color model Magenta is the complement of green, and yellow the complement of blue. Combinations of different amounts of the three can produce a wide range of colors with good saturation.

37 Color Fundamentals The characteristics generally used to distinguish one color from another are brightness, hue, and saturation brightness: the achromatic notion of intensity. hue: dominant wavelength in a mixture of light waves, represents dominant color as perceived by an observer. saturation: relative purity or the amount of white light mixed with its hue. 11/1/

38 Why specify color numerically? Accurate color reproduction is commercially valuable Many products are identified by color Few color names are widely recognized by English speakers - About 10; other languages have fewer/more, but not many more. It s common to disagree on appropriate color names. Color reproduction problems increased by prevalence of digital imaging - eg. digital libraries of art. How do we ensure that everyone sees the same color?

39 slide from T. Darrel

40 slide from T. Darrel

41 slide from T. Darrel

42 slide from T. Darrel

43 slide from T. Darrel

44 slide from T. Darrel

45 slide from T. Darrel

46 slide from T. Darrel

47 slide from T. Darrel

48 The principle of trichromacy Experimental facts: Three primaries will work for most people if we allow subtractive matching Exceptional people can match with two or only one primary. This could be caused by a variety of deficiencies. Most people make the same matches. There are some anomalous trichromats, who use three primaries but make different combinations to match.

49 Grassman s Laws Color matching is (approximately) linear symmetry: U=V <=>V=U transitivity: U=V and V=W => U=W proportionality: U=V <=> tu=tv additivity: if any two (or more) of the statements U=V, W=X, (U+W)=(V+X) are true, then so is the third These statements are as true as any biological law. They mean that color matching under these conditions is linear.

50 slide from T. Darrel

51 slide from T. Darrel

52 CIE RGB Tri-stimulus values: Color defined by three value (R,G,B) The amount of Red, Green and Blue needed to form any particular color

53 CIE XYZ New color matching functions were to be everywhere greater than or equal to zero. For the constant energy white point, it was required that x = y = z = 1/3.

54 CIE XYZ model RGB -> CIE XYZ model Normalized tristimulus values Z Y X X x Z Y X Y y Z Y X Z z B G R Z Y X => x+y+z=1. Thus, x, y (chromaticity coordinate) is enough to describe all colors

55 CIE Chromaticity Diagram It shows color composition as a function of x (red) and y (green) 11/1/

56 CIE Chromaticity Diagram 1. For any value of x, y the value of z can be obtained using z = 1 x + y 11/1/

57 CIE Chromaticity Diagram 1. For any value of x, y the value of z can be obtained using z = 1 x + y Green: 62% Red: 25% Blue: (1- (62+25))= 13% 11/1/

58 CIE Chromaticity Diagram 1. For any value of x, y the value of z can be obtained using z = 1 x + y 2. Boundary various spectrum colors (violet to red) 11/1/

59 CIE Chromaticity Diagram 1. For any value of x, y the value of z can be obtained using z = 1 x + y 2. Boundary various spectrum colors (violet to red) Pure colors 11/1/

60 CIE Chromaticity Diagram 1. For any value of x, y the value of z can be obtained using z = 1 x + y 2. Boundary various spectrum colors (violet to red) 3. Any point inside the boundary is some mixture of spectrum colors 11/1/

61 CIE Chromaticity Diagram 1. For any value of x, y the value of z can be obtained using z = 1 x + y 2. Boundary various spectrum colors (violet to red) 3. Any point inside the boundary is some mixture of spectrum colors 4. Point of equal energy (white) 11/1/

62 CIE Chromaticity Diagram 1. For any value of x, y the value of z can be obtained using z = 1 x + y 2. Boundary various spectrum colors (violet to red) 3. Any point inside the boundary is some mixture of spectrum colors 4. Point of equal energy (white) 5. Saturation Boundary to point of equal energy 11/1/

63 CIE Chromaticity Diagram Fully saturated 1. For any value of x, y the value of z can be obtained using z = 1 x + y 2. Boundary various spectrum colors (violet to red) 3. Any point inside the boundary is some mixture of spectrum colors 4. Point of equal energy (white) 5. Saturation Boundary to point of equal energy zero saturated 11/1/

64 Color mixing using CIE Chromaticity Diagram 1. Line joining two points: all possible colors possible by combining the two colors 11/1/

65 Color mixing using CIE Chromaticity Diagram 1. Line joining two points: all possible colors possible by combining the two colors 11/1/

66 Color mixing using CIE Chromaticity Diagram 1. Line joining two points: all possible colors possible by combining the two colors 2. Extend to three points: 11/1/

67 Color mixing using CIE Chromaticity Diagram 1. Line joining two points: all possible colors possible by combining the two colors 2. Extend to three points: Any color in the triangle can be obtained by combing the three vertices 11/1/

68 Color mixing using CIE Chromaticity Diagram 1. Line joining two points: all possible colors possible by combining the two colors 2. Extend to three points: Any color in the triangle can be obtained by combing the three vertices No three points that encompass the entire gamut of colors. 11/1/

69 Color mixing using CIE Chromaticity Diagram 1. Line joining two points: all possible colors possible by combining the two colors 2. Extend to three points: Any color in the triangle can be obtained by combing the three vertices No three points that encompass the entire gamut of colors. All colors cannot be created by adding R, G and B 11/1/

70 Color models Color model, color space, color system Specify colors in a standard way A coordinate system that each color is represented by a single point RGB model CYM model CYMK model HSI model Suitable for hardware or applications - match the human description

71 RGB Color Model 11/1/

72 RGB Color Model Pixel depth The total number of colors in a 24-bit RGB image is (2 8 ) 3 = 16,777,216 11/1/

73 11/1/

74 Safe RGB colors (or safe Web colors) are reproduced faithfully, reasonably independently of viewer hardware capabilities 11/1/

75 11/1/

76 CMY model (+Black = CMYK) CMY: secondary colors of light, or primary colors of pigments Used to generate hardcopy output B G R Y M C 1 1 1

77 The CMY and CMYK Color Models C 1 R M 1 G Y 1 B Equal amounts of the pigment primaries, cyan, magenta, and yellow should produce black. In practice, combining these colors for printing produces a muddy-looking black. To produce true black, the predominant color in printing, the fourth color, black, is added, giving rise to the CMYK color model. 11/1/

78 CMY vs. CMYK 11/1/

Digital Image Processing COSC 6380/4393

Digital Image Processing COSC 6380/4393 Digital Image Processing COSC 6380/4393 Lecture 21 Nov 1 st, 2018 Pranav Mantini Acknowledgment: Slides from Pourreza Projects Project team and topic assigned Project proposal presentations : Nov 6 th

More information

Color Image Processing. Jen-Chang Liu, Spring 2006

Color Image Processing. Jen-Chang Liu, Spring 2006 Color Image Processing Jen-Chang Liu, Spring 2006 For a long time I limited myself to one color as a form of discipline. Pablo Picasso It is only after years of preparation that the young artist should

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

6 Color Image Processing

6 Color Image Processing 6 Color Image Processing Angela Chih-Wei Tang ( 唐之瑋 ) Department of Communication Engineering National Central University JhongLi, Taiwan 2009 Fall Outline Color fundamentals Color models Pseudocolor image

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Fig Color spectrum seen by passing white light through a prism.

Fig Color spectrum seen by passing white light through a prism. 1. Explain about color fundamentals. Color of an object is determined by the nature of the light reflected from it. When a beam of sunlight passes through a glass prism, the emerging beam of light is not

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Digital Image Processing Color Models &Processing

Digital Image Processing Color Models &Processing Digital Image Processing Color Models &Processing Dr. Hatem Elaydi Electrical Engineering Department Islamic University of Gaza Fall 2015 Nov 16, 2015 Color interpretation Color spectrum vs. electromagnetic

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Digital Image Processing (DIP)

Digital Image Processing (DIP) University of Kurdistan Digital Image Processing (DIP) Lecture 6: Color Image Processing Instructor: Kaveh Mollazade, Ph.D. Department of Biosystems Engineering, Faculty of Agriculture, University of Kurdistan,

More information

Color Image Processing EEE 6209 Digital Image Processing. Outline

Color Image Processing EEE 6209 Digital Image Processing. Outline Outline Color Image Processing Motivation and Color Fundamentals Standard Color Models (RGB/CMYK/HSI) Demosaicing and Color Filtering Pseudo-color and Full-color Image Processing Color Transformation Tone

More information

Unit 8: Color Image Processing

Unit 8: Color Image Processing Unit 8: Color Image Processing Colour Fundamentals In 666 Sir Isaac Newton discovered that when a beam of sunlight passes through a glass prism, the emerging beam is split into a spectrum of colours The

More information

Digital Image Processing Chapter 6: Color Image Processing ( )

Digital Image Processing Chapter 6: Color Image Processing ( ) Digital Image Processing Chapter 6: Color Image Processing (6.1 6.3) 6. Preview The process followed by the human brain in perceiving and interpreting color is a physiopsychological henomenon that is not

More information

Color Image Processing

Color Image Processing Color Image Processing Color Fundamentals 2/27/2014 2 Color Fundamentals 2/27/2014 3 Color Fundamentals 6 to 7 million cones in the human eye can be divided into three principal sensing categories, corresponding

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Color Image Processing Christophoros Nikou cnikou@cs.uoi.gr University of Ioannina - Department of Computer Science and Engineering 2 Color Image Processing It is only after years

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

Chapter 6: Color Image Processing. Office room : 841

Chapter 6: Color Image Processing.   Office room : 841 Chapter 6: Color Image Processing Lecturer: Jianbing Shen Email : shenjianbing@bit.edu.cn Office room : 841 http://cs.bit.edu.cn/shenjianbing cn/shenjianbing It is only after years of preparation that

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30)

Hello, welcome to the video lecture series on Digital image processing. (Refer Slide Time: 00:30) Digital Image Processing Prof. P. K. Biswas Department of Electronics and Electrical Communications Engineering Indian Institute of Technology, Kharagpur Module 11 Lecture Number 52 Conversion of one Color

More information

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies Image formation World, image, eye Light Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies intensity wavelength Visible light is light with wavelength from

More information

CHAPTER 6 COLOR IMAGE PROCESSING

CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6 COLOR IMAGE PROCESSING CHAPTER 6: COLOR IMAGE PROCESSING The use of color image processing is motivated by two factors: Color is a powerful descriptor that often simplifies object identification

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester

Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Image Processing for Mechatronics Engineering For senior undergraduate students Academic Year 2017/2018, Winter Semester Lecture 8: Color Image Processing 04.11.2017 Dr. Mohammed Abdel-Megeed Salem Media

More information

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones Light and Color Eye perceives EM radiation of different wavelengths as different colors. Sensitive only to the range 4nm - 7 nm This is a narrow piece of the entire electromagnetic spectrum. Comparing

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors.

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors. Computer Assisted Image Analysis TF 3p and MN1 5p Color Image Processing Lecture 14 GW 6 (suggested problem 6.25) How does the human eye perceive color? How can color be described using mathematics? Different

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University

Achim J. Lilienthal Mobile Robotics and Olfaction Lab, AASS, Örebro University Achim J. Lilienthal Mobile Robotics and Olfaction Lab, Room T1227, Mo, 11-12 o'clock AASS, Örebro University (please drop me an email in advance) achim.lilienthal@oru.se 1 2. General Introduction Schedule

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

Computer Graphics Si Lu Fall /27/2016

Computer Graphics Si Lu Fall /27/2016 Computer Graphics Si Lu Fall 2017 09/27/2016 Announcement Class mailing list https://groups.google.com/d/forum/cs447-fall-2016 2 Demo Time The Making of Hallelujah with Lytro Immerge https://vimeo.com/213266879

More information

Color image processing

Color image processing Color image processing Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..)

More information

Colors in images. Color spaces, perception, mixing, printing, manipulating...

Colors in images. Color spaces, perception, mixing, printing, manipulating... Colors in images Color spaces, perception, mixing, printing, manipulating... Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

More information

Lecture 8. Color Image Processing

Lecture 8. Color Image Processing Lecture 8. Color Image Processing EL512 Image Processing Dr. Zhu Liu zliu@research.att.com Note: Part of the materials in the slides are from Gonzalez s Digital Image Processing and Onur s lecture slides

More information

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer.

Test 1: Example #2. Paul Avery PHY 3400 Feb. 15, Note: * indicates the correct answer. Test 1: Example #2 Paul Avery PHY 3400 Feb. 15, 1999 Note: * indicates the correct answer. 1. A red shirt illuminated with yellow light will appear (a) orange (b) green (c) blue (d) yellow * (e) red 2.

More information

Color Image Processing

Color Image Processing Color Image Processing Dr. Praveen Sankaran Department of ECE NIT Calicut February 11, 2013 Winter 2013 February 11, 2013 1 / 23 Outline 1 Color Models 2 Full Color Image Processing Winter 2013 February

More information

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR

MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR MODULE 4 LECTURE NOTES 1 CONCEPTS OF COLOR 1. Introduction The field of digital image processing relies on mathematical and probabilistic formulations accompanied by human intuition and analysis based

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Introduction. The Spectral Basis for Color

Introduction. The Spectral Basis for Color Introduction Color is an extremely important part of most visualizations. Choosing good colors for your visualizations involves understanding their properties and the perceptual characteristics of human

More information

PERCEIVING COLOR. Functions of Color Vision

PERCEIVING COLOR. Functions of Color Vision PERCEIVING COLOR Functions of Color Vision Object identification Evolution : Identify fruits in trees Perceptual organization Add beauty to life Slide 2 Visible Light Spectrum Slide 3 Color is due to..

More information

Visual Imaging and the Electronic Age Color Science

Visual Imaging and the Electronic Age Color Science Visual Imaging and the Electronic Age Color Science Grassman s Experiments & Trichromacy Lecture #5 September 5, 2017 Prof. Donald P. Greenberg Light as Rays Light as Waves Light as Photons What is Color

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models

Introduction to computer vision. Image Color Conversion. CIE Chromaticity Diagram and Color Gamut. Color Models Introduction to computer vision In general, computer vision covers very wide area of issues concerning understanding of images by computers. It may be considered as a part of artificial intelligence and

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

Color Image Processing

Color Image Processing Color Image Processing Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Color Used heavily in human vision. Visible spectrum for humans is 400 nm (blue) to 700

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

Lecture Color Image Processing. by Shahid Farid

Lecture Color Image Processing. by Shahid Farid Lecture Color Image Processing by Shahid Farid What is color? Why colors? How we see objects? Photometry, Radiometry and Colorimetry Color measurement Chromaticity diagram Shahid Farid, PUCIT 2 Color or

More information

Wireless Communication

Wireless Communication Wireless Communication Systems @CS.NCTU Lecture 4: Color Instructor: Kate Ching-Ju Lin ( 林靖茹 ) Chap. 4 of Fundamentals of Multimedia Some reference from http://media.ee.ntu.edu.tw/courses/dvt/15f/ 1 Outline

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Digital Image Processing

Digital Image Processing Digital Image Processing Lecture # 3 Digital Image Fundamentals ALI JAVED Lecturer SOFTWARE ENGINEERING DEPARTMENT U.E.T TAXILA Email:: ali.javed@uettaxila.edu.pk Office Room #:: 7 Presentation Outline

More information

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing

Digital Image Processing. Lecture # 6 Corner Detection & Color Processing Digital Image Processing Lecture # 6 Corner Detection & Color Processing 1 Corners Corners (interest points) Unlike edges, corners (patches of pixels surrounding the corner) do not necessarily correspond

More information

Digital Image Processing Chapter 6: Color Image Processing

Digital Image Processing Chapter 6: Color Image Processing Digital Image Processing Chapter 6: Color Image Processing Spectrum of White Light 1666 Sir Isaac Newton, 24 ear old, discovered white light spectrum. Electromagnetic Spectrum Visible light wavelength:

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 6. Color Image Processing Computer Engineering, Sejong University Category of Color Processing Algorithm Full-color processing Using Full color sensor, it can obtain the image

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin

MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin MATH 5300 Lecture 3- Summary Date: May 12, 2008 By: Violeta Constantin Facebook, Blogs and Wiki tools for sharing ideas or presenting work Using Facebook as a tool to ask questions - discussion on GIMP

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 4: Colour Graphics Lecture 4: Slide 1 Ways of looking at colour 1. Physics 2. Human visual receptors 3. Subjective assessment Graphics Lecture 4: Slide 2 The physics

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow! Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Colour Lecture (2 lectures)! Richardson, Chapter

More information

Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg

Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg Understanding Color Theory Excerpt from Fundamental Photoshop by Adele Droblas Greenberg and Seth Greenberg Color evokes a mood; it creates contrast and enhances the beauty in an image. It can make a dull

More information

Basics of Colors in Graphics Denbigh Starkey

Basics of Colors in Graphics Denbigh Starkey Basics of Colors in Graphics Denbigh Starkey 1. Visible Spectrum 2 2. Additive vs. subtractive color systems, RGB vs. CMY. 3 3. RGB and CMY Color Cubes 4 4. CMYK (Cyan-Magenta-Yellow-Black 6 5. Converting

More information

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995.

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Reading Foley, Computer graphics, Chapter 13. Color Optional Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Gerald S. Wasserman. Color Vision: An Historical ntroduction.

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

Color vision and representation

Color vision and representation Color vision and representation S M L 0.0 0.44 0.52 Mark Rzchowski Physics Department 1 Eye perceives different wavelengths as different colors. Sensitive only to 400nm - 700 nm range Narrow piece of the

More information

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture!

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture! Colour Lecture! ITNP80: Multimedia 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Richardson,

More information

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1 Chapter 12 Color Models and Color Applications 12-1 12.1 Overview Color plays a significant role in achieving realistic computer graphic renderings. This chapter describes the quantitative aspects of color,

More information

excite the cones in the same way.

excite the cones in the same way. Humans have 3 kinds of cones Color vision Edward H. Adelson 9.35 Trichromacy To specify a light s spectrum requires an infinite set of numbers. Each cone gives a single number (univariance) when stimulated

More information

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading:

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Announcements Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Chapter 3: Color CSE 252A Lecture 18 Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Introduction to Computer Vision CSE 152 Lecture 18

Introduction to Computer Vision CSE 152 Lecture 18 CSE 152 Lecture 18 Announcements Homework 5 is due Sat, Jun 9, 11:59 PM Reading: Chapter 3: Color Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling CSCU9N5: Multimedia and HCI 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Cunliffe & Elliott,

More information

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L COLOR Elements of color Angel 1.4, 2.4, 7.12 J. Lindblad 2001-11-01 Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra. How is color perceived? Visible spectrum

More information

Chapter 2 Fundamentals of Digital Imaging

Chapter 2 Fundamentals of Digital Imaging Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation 1 In this lecture, you will find answers to these questions What is RGB color model and how does it represent colors? What is CMY color

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

EECS490: Digital Image Processing. Lecture #12

EECS490: Digital Image Processing. Lecture #12 Lecture #12 Image Correlation (example) Color basics (Chapter 6) The Chromaticity Diagram Color Images RGB Color Cube Color spaces Pseudocolor Multispectral Imaging White Light A prism splits white light

More information

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ)

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ) COLOR Elements of color Angel, 4th ed. 1, 2.5, 7.13 excerpt from Joakim Lindblad Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra How is color perceived?

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Color Computer Vision Spring 2018, Lecture 15

Color Computer Vision Spring 2018, Lecture 15 Color http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 15 Course announcements Homework 4 has been posted. - Due Friday March 23 rd (one-week homework!) - Any questions about the

More information

Tratamiento de Imágenes por Computadora. Color

Tratamiento de Imágenes por Computadora. Color Tratamiento de Imágenes por Computadora Color Presentación basada en: Curso de Alessandro Rizzi Libro Digital Image Processing, Gonzalez & Woods Libro Computer Vision, A modern approach, Forsyth & Ponce

More information

In a physical sense, there really is no such thing as color, just light waves of different wavelengths.

In a physical sense, there really is no such thing as color, just light waves of different wavelengths. Color Concept Basis Color Concept What is Color? In a physical sense, there really is no such thing as color, just light waves of different wavelengths. Color comes from light. The human eye can distinguish

More information

Introduction & Colour

Introduction & Colour Introduction & Colour Eric C. McCreath School of Computer Science The Australian National University ACT 0200 Australia ericm@cs.anu.edu.au Overview 2 Computer Graphics Uses (Chapter 1) Basic Hardware

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

Multimedia Systems and Technologies

Multimedia Systems and Technologies Multimedia Systems and Technologies Faculty of Engineering Master s s degree in Computer Engineering Marco Porta Computer Vision & Multimedia Lab Dipartimento di Ingegneria Industriale e dell Informazione

More information

The Science Seeing of process Digital Media. The Science of Digital Media Introduction

The Science Seeing of process Digital Media. The Science of Digital Media Introduction The Human Science eye of and Digital Displays Media Human Visual System Eye Perception of colour types terminology Human Visual System Eye Brains Camera and HVS HVS and displays Introduction 2 The Science

More information

Additive Color Synthesis

Additive Color Synthesis Color Systems Defining Colors for Digital Image Processing Various models exist that attempt to describe color numerically. An ideal model should be able to record all theoretically visible colors in the

More information

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation. From light to colour spaces Light and colour Advanced Graphics Rafal Mantiuk Computer Laboratory, University of Cambridge 1 2 Electromagnetic spectrum Visible light Electromagnetic waves of wavelength

More information

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light Chapter 9: Color What is color? Color mixtures Intensity-distribution curves Additive Mixing Partitive Mixing Specifying colors RGB Color Chromaticity What is Color? Wavelength is a property of an electromagnetic

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options?

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options? What is Color Gamut? How do we see color and why it matters for your PID options? One of the buzzwords at CES 2017 was broader color gamut. In this whitepaper, our experts unwrap this term to help you

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Color Vision

Andrea Torsello DAIS Università Ca Foscari via Torino 155, Mestre (VE) Color Vision Andrea Torsello DAIS Università Ca Foscari via Torino 155, 30172 Mestre (VE) Color Vision Color perception is due to the physical interaction between emitted light and the objects encountered en route

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science Slide 1 the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour Sir Isaac Newton (1730) Slide 2 Light

More information

Adapted from the Slides by Dr. Mike Bailey at Oregon State University

Adapted from the Slides by Dr. Mike Bailey at Oregon State University Colors in Visualization Adapted from the Slides by Dr. Mike Bailey at Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place

More information

What is Color? Chapter 9: Color. Color Mixtures. Color Mixtures 10/29/2012. What is color? Color vocabulary

What is Color? Chapter 9: Color. Color Mixtures. Color Mixtures 10/29/2012. What is color? Color vocabulary What is color? Color vocabulary Chapter 9: Color Color mixtures Intensity-distribution curves Specifying colors Hue, saturation and brightness Color trees RGB color specification Chromaticity What is Color?

More information