Physics 1230 Light and Color

Size: px
Start display at page:

Download "Physics 1230 Light and Color"

Transcription

1 Physics 1230 Light and Color phys1230_sm15/ Dr. Ka'e Hinko Office: JILA A502

2 Agenda, Day 11: Ques'ons and Paper Topic (5 min) Finish Module 4 Prac'ce Ray Tracing (10 min) Wrap up (10 min) Start Module 5 Cameras (30 min) Eyes (30 min) RE #4 is due right now HW #5 is due tomorrow

3 10 Class Modules Each equal to about one week in regular term 1. How does light travel? 2. How do we see things that don t emit light? 3. Does light always travel in a straight line? 4. How do lenses make things look different than they are? 5. How does our eye see light? 6. How does our brain process light? 7. How is yellow between red and blue? 8. Why is there no pink light? 9. What use is light we can t see? 10. How does a laser work? Or, is light really a wave?

4 Concave and convex lenses utilize refraction by shaping glass to focus light -> lens converging lens bi-convex has two convex surfaces diverging lens bi-concave has two concave surfaces

5 Variety of lenses utilize refraction by shaping glass to focus light -> lens

6 Ac'vity 12: PhET Lab

7 Different focal lengths create images at different loca'ons Short focal length = fat lens And smaller image Like a larger droplet Long focal length = thin lens This is related to the power of the lens. Which would you say is more powerful? And larger image Like a larger droplet

8 Two ways to tell where the image is: 1. Lens equa'on will tell you the distances = 1 d O d I F 2. Principle rays will help you locate it graphically

9 Ray Tracing for lenses: Rule #1: Rays aimed at center pass straight through the lens Rule #2: Rays aimed parallel to axis con'nue through the focal point (on the other side) Rule #3: Rays aimed through focal point (on one side) con'nue out parallel (on the other side) Image 9

10 Case 1: Object distance x o Image distance x i So this makes a real, smaller, upside down image. Focal length F 10

11 Now you prac'ce! Use a ruler! If you finish, check your answers with lens equa'on Rule #1: Rays aimed at center pass straight through the lens Rule #2: Rays aimed parallel to axis con'nue through the focal point (on the other side) Rule #3: Rays aimed through focal point (on one side) con'nue out parallel (on the other side) Which one(s) is a magnifying glass? Which one(s) is like the water droplet? 11

12 So this is a virtual, larger image. i.e, magnifying glass. Rule #1: Rays aimed at center pass straight through the lens Rule #2: Rays aimed parallel to axis con'nue through the focal point (on the other side) Rule #3: Rays aimed through focal point (on one side) con'nue out parallel (on the other side)

13 Power of a lens: diopters Definition of diopter P in terms of f:!p (in diopters) = 1/f (in meters) - positive for convergent lenses (positive f), negative for diverging lenses (negative f) Meaning of P: - P is a measure of the ray bending power of the lens - eyeglasses and contact lens prescription is given in diopters, P

14 clicker question Diopters Q: What is the focal length of eyeglasses with prescription of -2.0 diopters? a) (a) 1 meter b) (b) meter c) 0.5 meter d) meter (c) 0.5 meters (d) -0.5 meters!p (in diopters) = 1/f (in meters) A: -2.0 diopters = 1/f -> f = 1/(-2.0 diopters) -> f = -0.5 meters

15 Combining lenses using diopters Diopters power of a multi-lens combination? P AB = P A + P B Example: - lens A, f A = 0.5 m - lens B, f B = -1 m - What is the power of combined lens? - What is the focal length f AB of combined lens? Solution: - power of lens A is 1/(0.5) = 2 diopters - power of lens B is 1/(-1) = -1 diopters - combined lens P AB = P A + P B = 2 + (-1) = 1 diopters - focal length of a combined lens, f AB = 1/P AB = 1 m - only valid for touching thin lenses

16 As you make the index of refracmon of the lens greater, what happens to the posimon of the image? A. The image remains where it is B. The image moves closer to the lens C. The image moves further from the lens. Answer is B: Higher n = more bending power PhET, guides U2L06 16

17 What is effect of increasing n? Remember, as you increased n of lens, light bent more So the greater the difference in n between the materials, the more light will bend as it goes through lens

18 Light bends more when the difference in n is greater. So consider: A converging lens is made of glass (n glass = 1.6). The glass is placed in air (n=1), rays converge at the focal point, as shown. When the lens is placed in water (n water = 1.33), will the rays converge: A) At the same point B) At a further distance from the lens C) At a closer distance to the lens Focus op'cal axis PhET f

19 n (glass) = 1.5 n (air) = 1.0 n (water) = 1.3

20 n (glass) = 1.5 n (air) = 1.0 n (water) = 1.3 So answer is B This is why you can t see clearly underwater! The lens of your eye isn t focusing the light where it usually would (the re'na)

21 Diverging, or concave lens Diverging Lens: f < 0

22 Lens equa'on: 1 d o + 1 d i = 1 f Diverging Lens: f < 0 An object is placed is placed near a diverging lens, but the object is further from the lens than the focal length of the lens. The image formed is virtual.

23 An object is placed is placed near a diverging lens, but the object is further from the lens than the focal length of the lens. The image formed is.. A) Real B) Virtual C) there is no image.

24 Diverging (concave) lenses Rule #1: Rays aimed at center pass straight Rule #2: Rays aimed through the lens parallel to axis con'nue through the focal point (on the other side) Rule #3: Rays aimed through focal point (on opposite side) con'nue out parallel 24

25 Diverging (concave) lens What do you no'ce?

26 Which person is wearing a convex (converging) lens? A) The one on the lek B) one on right C) Both D)??? Convex: Object close to lens appears magnified Object far away looks small and upside down Reading glasses are convex! The concave lens makes things look small, no maler how close the object is! Farsighted glasses are concave!

27 Summary: Converging (convex) and Converging: diverging (concave) lenses Nearby object appears magnified (and virtual) Far away object is smaller (and real) Diverging Far away object looks closer (and smaller, and virtual)

28 Summary of the meaning of negative number in the lens and magnification equations Negative focal length, f, means the lens is diverging. Otherwise it is converging. Negative magnification, M, or negative image height, S o, means the image is upside down (inverted) relative to the object. Negative image distance, x I, means the image is on the same side of the lens as the object (a virtual image; rays don t really come from that place. Otherwise, image is real) 1/f = 1/x i + 1/x o M = -x i /x o

Converging and Diverging Surfaces. Lenses. Converging Surface

Converging and Diverging Surfaces. Lenses. Converging Surface Lenses Sandy Skoglund 2 Converging and Diverging s AIR Converging If the surface is convex, it is a converging surface in the sense that the parallel rays bend toward each other after passing through the

More information

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses

2015 EdExcel A Level Physics EdExcel A Level Physics. Lenses 2015 EdExcel A Level Physics 2015 EdExcel A Level Physics Topic Topic 5 5 Lenses Types of lenses Converging lens bi-convex has two convex surfaces Diverging lens bi-concave has two concave surfaces Thin

More information

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1)

Complete the diagram to show what happens to the rays. ... (1) What word can be used to describe this type of lens? ... (1) Q1. (a) The diagram shows two parallel rays of light, a lens and its axis. Complete the diagram to show what happens to the rays. (2) Name the point where the rays come together. (iii) What word can be

More information

King Saud University College of Science Physics & Astronomy Dept.

King Saud University College of Science Physics & Astronomy Dept. King Saud University College of Science Physics & Astronomy Dept. PHYS 111 (GENERAL PHYSICS 2) CHAPTER 36: Image Formation LECTURE NO. 9 Presented by Nouf Saad Alkathran 36.1 Images Formed by Flat Mirrors

More information

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction

Geometric Optics. Ray Model. assume light travels in straight line uses rays to understand and predict reflection & refraction Geometric Optics Ray Model assume light travels in straight line uses rays to understand and predict reflection & refraction General Physics 2 Geometric Optics 1 Reflection Law of reflection the angle

More information

Lab 11: Lenses and Ray Tracing

Lab 11: Lenses and Ray Tracing Name: Lab 11: Lenses and Ray Tracing Group Members: Date: TA s Name: Materials: Ray box, two different converging lenses, one diverging lens, screen, lighted object, three stands, meter stick, two letter

More information

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge).

Converging Lenses. Parallel rays are brought to a focus by a converging lens (one that is thicker in the center than it is at the edge). Chapter 30: Lenses Types of Lenses Piece of glass or transparent material that bends parallel rays of light so they cross and form an image Two types: Converging Diverging Converging Lenses Parallel rays

More information

Mirrors, Lenses &Imaging Systems

Mirrors, Lenses &Imaging Systems Mirrors, Lenses &Imaging Systems We describe the path of light as straight-line rays And light rays from a very distant point arrive parallel 145 Phys 24.1 Mirrors Standing away from a plane mirror shows

More information

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses

PHYSICS 289 Experiment 8 Fall Geometric Optics II Thin Lenses PHYSICS 289 Experiment 8 Fall 2005 Geometric Optics II Thin Lenses Please look at the chapter on lenses in your text before this lab experiment. Please submit a short lab report which includes answers

More information

Physics 132: Lecture Fundamentals of Physics

Physics 132: Lecture Fundamentals of Physics Physics 132: Lecture Fundamentals of Physics II Agenda for Today Mirrors Concave Convex e Mirror equation Physics 201: Lecture 1, Pg 1 Curved mirrors A Spherical Mirror: section of a sphere. R light ray

More information

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35

CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 CH. 23 Mirrors and Lenses HW# 6, 7, 9, 11, 13, 21, 25, 31, 33, 35 Mirrors Rays of light reflect off of mirrors, and where the reflected rays either intersect or appear to originate from, will be the location

More information

EXPERIMENT 10 Thin Lenses

EXPERIMENT 10 Thin Lenses Objectives ) Measure the power and focal length of a converging lens. ) Measure the power and focal length of a diverging lens. EXPERIMENT 0 Thin Lenses Apparatus A two meter optical bench, a meter stick,

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #8: Thin Lenses NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #8: Thin Lenses Lab Writeup Due: Mon/Wed/Thu/Fri, April 2/4/5/6, 2018 Background In the previous lab

More information

Optics Practice. Version #: 0. Name: Date: 07/01/2010

Optics Practice. Version #: 0. Name: Date: 07/01/2010 Optics Practice Date: 07/01/2010 Version #: 0 Name: 1. Which of the following diagrams show a real image? a) b) c) d) e) i, ii, iii, and iv i and ii i and iv ii and iv ii, iii and iv 2. A real image is

More information

Chapter 36. Image Formation

Chapter 36. Image Formation Chapter 36 Image Formation Real and Virtual Images Real images can be displayed on screens Virtual Images can not be displayed onto screens. Focal Length& Radius of Curvature When the object is very far

More information

Physics 208 Spring 2008 Lab 2: Lenses and the eye

Physics 208 Spring 2008 Lab 2: Lenses and the eye Name Section Physics 208 Spring 2008 Lab 2: Lenses and the eye Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly explain

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 Algebra Based Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

LAB 12 Reflection and Refraction

LAB 12 Reflection and Refraction Cabrillo College Physics 10L Name LAB 12 Reflection and Refraction Read Hewitt Chapters 28 and 29 What to learn and explore Please read this! When light rays reflect off a mirror surface or refract through

More information

Experiment 7. Thin Lenses. Measure the focal length of a converging lens. Investigate the relationship between power and focal length.

Experiment 7. Thin Lenses. Measure the focal length of a converging lens. Investigate the relationship between power and focal length. Experiment 7 Thin Lenses 7.1 Objectives Measure the focal length of a converging lens. Measure the focal length of a diverging lens. Investigate the relationship between power and focal length. 7.2 Introduction

More information

Name: Lab Partner: Section:

Name: Lab Partner: Section: Chapter 10 Thin Lenses Name: Lab Partner: Section: 10.1 Purpose In this experiment, the formation of images by concave and convex lenses will be explored. The application of the thin lens equation and

More information

Instructions. To run the slideshow:

Instructions. To run the slideshow: Instructions To run the slideshow: Click: view full screen mode, or press Ctrl +L. Left click advances one slide, right click returns to previous slide. To exit the slideshow press the Esc key. Optical

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website:

Thin Lenses. Lecture 25. Chapter 23. Ray Optics. Physics II. Course website: Lecture 25 Chapter 23 Physics II Ray Optics Thin Lenses Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsii Lecture Capture: http://echo360.uml.edu/danylov201415/physics2spring.html

More information

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing.

PHYS 160 Astronomy. When analyzing light s behavior in a mirror or lens, it is helpful to use a technique called ray tracing. Optics Introduction In this lab, we will be exploring several properties of light including diffraction, reflection, geometric optics, and interference. There are two sections to this lab and they may

More information

CHAPTER 18 REFRACTION & LENSES

CHAPTER 18 REFRACTION & LENSES Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 18 REFRACTION & LENSES Day Plans for the day Assignments for the day 1 18.1 Refraction of Light o Snell

More information

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images

Notation for Mirrors and Lenses. Chapter 23. Types of Images for Mirrors and Lenses. More About Images Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses Sections: 4, 6 Problems:, 8, 2, 25, 27, 32 The object distance is the distance from the object to the mirror or lens Denoted by p The image

More information

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014

Spherical Mirrors. Concave Mirror, Notation. Spherical Aberration. Image Formed by a Concave Mirror. Image Formed by a Concave Mirror 4/11/2014 Notation for Mirrors and Lenses Chapter 23 Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

Physics 132: Lecture Fundamentals of Physics II

Physics 132: Lecture Fundamentals of Physics II Physics 132: Lecture Fundamentals of Physics II Mirrors Agenda for Today Concave Convex Mirror equation Curved mirrors A Spherical Mirror: section of a sphere. R light ray C Concave mirror principal axis

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 27 Geometric Optics Spring 205 Semester Matthew Jones Sign Conventions > + = Convex surface: is positive for objects on the incident-light side is positive for

More information

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc.

Chapter 24 Geometrical Optics. Copyright 2010 Pearson Education, Inc. Chapter 24 Geometrical Optics Lenses convex (converging) concave (diverging) Mirrors Ray Tracing for Mirrors We use three principal rays in finding the image produced by a curved mirror. The parallel ray

More information

Where should the fisherman aim? The fish is not moving.

Where should the fisherman aim? The fish is not moving. Where should the fisherman aim? The fish is not moving. When a wave hits a boundary it can Reflect Refract Reflect and Refract Be Absorbed Refraction The change in speed and direction of a wave Due to

More information

Lenses. Not in your text book

Lenses. Not in your text book Lenses Not in your text book Objectives: 1. Students will be able to draw a ray diagram for a lens 2. Students will be able to explain the difference between a real and a virtual image Different Lenses,

More information

Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

More information

Determination of Focal Length of A Converging Lens and Mirror

Determination of Focal Length of A Converging Lens and Mirror Physics 41 Determination of Focal Length of A Converging Lens and Mirror Objective: Apply the thin-lens equation and the mirror equation to determine the focal length of a converging (biconvex) lens and

More information

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66.

Algebra Based Physics. Reflection. Slide 1 / 66 Slide 2 / 66. Slide 3 / 66. Slide 4 / 66. Slide 5 / 66. Slide 6 / 66. Slide 1 / 66 Slide 2 / 66 lgebra ased Physics Geometric Optics 2015-12-01 www.njctl.org Slide 3 / 66 Slide 4 / 66 Table of ontents lick on the topic to go to that section Reflection Refraction and Snell's

More information

Part 1 Investigating Snell s Law

Part 1 Investigating Snell s Law Geometric Optics with Lenses PURPOSE: To observe the refraction of light off through lenses; to investigate the relationship between objects and images; to study the relationship between object distance,

More information

LECTURE 17 MIRRORS AND THIN LENS EQUATION

LECTURE 17 MIRRORS AND THIN LENS EQUATION LECTURE 17 MIRRORS AND THIN LENS EQUATION 18.6 Image formation with spherical mirrors Concave mirrors Convex mirrors 18.7 The thin-lens equation Sign conventions for lenses and mirrors Spherical mirrors

More information

Image Formation by Lenses

Image Formation by Lenses Image Formation by Lenses Bởi: OpenStaxCollege Lenses are found in a huge array of optical instruments, ranging from a simple magnifying glass to the eye to a camera s zoom lens. In this section, we will

More information

REFLECTION THROUGH LENS

REFLECTION THROUGH LENS REFLECTION THROUGH LENS A lens is a piece of transparent optical material with one or two curved surfaces to refract light rays. It may converge or diverge light rays to form an image. Lenses are mostly

More information

Chapter 2 - Geometric Optics

Chapter 2 - Geometric Optics David J. Starling Penn State Hazleton PHYS 214 The human eye is a visual system that collects light and forms an image on the retina. The human eye is a visual system that collects light and forms an image

More information

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses

Chapter 29/30. Wave Fronts and Rays. Refraction of Sound. Dispersion in a Prism. Index of Refraction. Refraction and Lenses Chapter 29/30 Refraction and Lenses Refraction Refraction the bending of waves as they pass from one medium into another. Caused by a change in the average speed of light. Analogy A car that drives off

More information

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors

Light: Lenses and. Mirrors. Test Date: Name 1ÿ-ÿ. Physics. Light: Lenses and Mirrors Name 1ÿ-ÿ Physics Light: Lenses and Mirrors i Test Date: "Shadows cannot see themselves in the mirror of the sun." -Evita Peron What are lenses? Lenses are made from transparent glass or plastice and refract

More information

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson

Astronomy 80 B: Light. Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Astronomy 80 B: Light Lecture 9: curved mirrors, lenses, aberrations 29 April 2003 Jerry Nelson Sensitive Countries LLNL field trip 2003 April 29 80B-Light 2 Topics for Today Optical illusion Reflections

More information

Gaussian Ray Tracing Technique

Gaussian Ray Tracing Technique Gaussian Ray Tracing Technique Positive Lenses. A positive lens has two focal points one on each side of the lens; both are at the same focal distance f from the lens. Parallel rays of light coming from

More information

Readings: Hecht, Chapter 24

Readings: Hecht, Chapter 24 5. GEOMETRIC OPTICS Readings: Hecht, Chapter 24 Introduction In this lab you will measure the index of refraction of glass using Snell s Law, study the application of the laws of geometric optics to systems

More information

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light

Test Review # 8. Physics R: Form TR8.17A. Primary colors of light Physics R: Form TR8.17A TEST 8 REVIEW Name Date Period Test Review # 8 Light and Color. Color comes from light, an electromagnetic wave that travels in straight lines in all directions from a light source

More information

General Physics II. Optical Instruments

General Physics II. Optical Instruments General Physics II Optical Instruments 1 The Thin-Lens Equation 2 The Thin-Lens Equation Using geometry, one can show that 1 1 1 s+ =. s' f The magnification of the lens is defined by For a thin lens,

More information

Refraction, Lenses, and Prisms

Refraction, Lenses, and Prisms CHAPTER 16 14 SECTION Sound and Light Refraction, Lenses, and Prisms KEY IDEAS As you read this section, keep these questions in mind: What happens to light when it passes from one medium to another? How

More information

Physics 222, October 25

Physics 222, October 25 Physics 222, October 25 Key Concepts: Image formation by refraction Thin lenses The eye Optical instruments A single flat interface Images can be formed by refraction, when light traverses a boundary between

More information

Name. Light Chapter Summary Cont d. Refraction

Name. Light Chapter Summary Cont d. Refraction Page 1 of 17 Physics Week 12(Sem. 2) Name Light Chapter Summary Cont d with a smaller index of refraction to a material with a larger index of refraction, the light refracts towards the normal line. Also,

More information

Ch 24. Geometric Optics

Ch 24. Geometric Optics text concept Ch 24. Geometric Optics Fig. 24 3 A point source of light P and its image P, in a plane mirror. Angle of incidence =angle of reflection. text. Fig. 24 4 The blue dashed line through object

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Notation for Mirrors and Lenses The object distance is the distance from the object to the mirror or lens Denoted by p The image distance is the distance from the image to

More information

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building

mirrors and lenses PHY232 Remco Zegers Room W109 cyclotron building mirrors and lenses PHY232 Remco Zegers zegers@nscl.msu.edu Room W109 cyclotron building http://www.nscl.msu.edu/~zegers/phy232.html quiz (extra credit) a ray of light moves from air to a material with

More information

Optics: Lenses & Mirrors

Optics: Lenses & Mirrors Warm-Up 1. A light ray is passing through water (n=1.33) towards the boundary with a transparent solid at an angle of 56.4. The light refracts into the solid at an angle of refraction of 42.1. Determine

More information

19. Ray Optics. S. G. Rajeev. April 2, 2009

19. Ray Optics. S. G. Rajeev. April 2, 2009 9. Ray Optics S. G. Rajeev April 2, 2009 When the wave length is small light travels along straightlines called rays. Ray optics (also called geometrical optics) is the study of this light in this situation.

More information

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 27. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 27 Physics, 4 th Edition James S. Walker Chapter 27 Optical Instruments Units of Chapter 27 The Human Eye and the Camera Lenses in Combination and Corrective Optics The Magnifying

More information

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol:

CHAPTER 3LENSES. 1.1 Basics. Convex Lens. Concave Lens. 1 Introduction to convex and concave lenses. Shape: Shape: Symbol: Symbol: CHAPTER 3LENSES 1 Introduction to convex and concave lenses 1.1 Basics Convex Lens Shape: Concave Lens Shape: Symbol: Symbol: Effect to parallel rays: Effect to parallel rays: Explanation: Explanation:

More information

30 Lenses. Lenses change the paths of light.

30 Lenses. Lenses change the paths of light. Lenses change the paths of light. A light ray bends as it enters glass and bends again as it leaves. Light passing through glass of a certain shape can form an image that appears larger, smaller, closer,

More information

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments

Lecture 17. Image formation Ray tracing Calculation. Lenses Convex Concave. Mirrors Convex Concave. Optical instruments Lecture 17. Image formation Ray tracing Calculation Lenses Convex Concave Mirrors Convex Concave Optical instruments Image formation Laws of refraction and reflection can be used to explain how lenses

More information

Chapter 23. Mirrors and Lenses

Chapter 23. Mirrors and Lenses Chapter 23 Mirrors and Lenses Mirrors and Lenses The development of mirrors and lenses aided the progress of science. It led to the microscopes and telescopes. Allowed the study of objects from microbes

More information

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

Final Reg Optics Review SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Final Reg Optics Review 1) How far are you from your image when you stand 0.75 m in front of a vertical plane mirror? 1) 2) A object is 12 cm in front of a concave mirror, and the image is 3.0 cm in front

More information

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010

Introduction. The Human Eye. Physics 1CL OPTICAL INSTRUMENTS AND THE EYE SPRING 2010 Introduction Most of the subject material in this lab can be found in Chapter 25 of Serway and Faughn. In this lab, you will make images of images using lenses and the optical bench (Experiment A). IT

More information

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices.

Geometric Optics. Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Geometric Optics Objective: To study the basics of geometric optics and to observe the function of some simple and compound optical devices. Apparatus: Pasco optical bench, mounted lenses (f= +100mm, +200mm,

More information

LENSES. a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses.

LENSES. a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses. Purpose Theory LENSES a. To study the nature of image formed by spherical lenses. b. To study the defects of spherical lenses. formation by thin spherical lenses s are formed by lenses because of the refraction

More information

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses.

Physics 228 Lecture 3. Today: Spherical Mirrors Lenses. Physics 228 Lecture 3 Today: Spherical Mirrors Lenses www.physics.rutgers.edu/ugrad/228 a) Santa as he sees himself in a mirrored sphere. b) Santa as he sees himself in a flat mirror after too much eggnog.

More information

Chapter 18 Optical Elements

Chapter 18 Optical Elements Chapter 18 Optical Elements GOALS When you have mastered the content of this chapter, you will be able to achieve the following goals: Definitions Define each of the following terms and use it in an operational

More information

Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror.

Geometric Optics Practice Problems. Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. Geometric Optics Practice Problems Ray Tracing - Draw at least two principle rays and show the image created by the lens or mirror. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Practice Problems - Mirrors Classwork

More information

AP Physics Problems -- Waves and Light

AP Physics Problems -- Waves and Light AP Physics Problems -- Waves and Light 1. 1974-3 (Geometric Optics) An object 1.0 cm high is placed 4 cm away from a converging lens having a focal length of 3 cm. a. Sketch a principal ray diagram for

More information

Converging Lens. Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image.

Converging Lens. Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image. Converging Lens Goal: To measure the focal length of a converging lens using various methods and to study how a converging lens forms a real image. Lab Preparation The picture on the screen in a movie

More information

Chapter 23. Light Geometric Optics

Chapter 23. Light Geometric Optics Chapter 23. Light Geometric Optics There are 3 basic ways to gather light and focus it to make an image. Pinhole - Simple geometry Mirror - Reflection Lens - Refraction Pinhole Camera Image Formation (the

More information

Geometric Optics. PSI AP Physics 2. Multiple-Choice

Geometric Optics. PSI AP Physics 2. Multiple-Choice Geometric Optics PSI AP Physics 2 Name Multiple-Choice 1. When an object is placed in front of a plane mirror the image is: (A) Upright, magnified and real (B) Upright, the same size and virtual (C) Inverted,

More information

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

Lenses. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. PHYSICS NOTES ON A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of There are two types of basic lenses. (1.)

More information

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis

Assignment X Light. Reflection and refraction of light. (a) Angle of incidence (b) Angle of reflection (c) principle axis Assignment X Light Reflection of Light: Reflection and refraction of light. 1. What is light and define the duality of light? 2. Write five characteristics of light. 3. Explain the following terms (a)

More information

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK

BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK BHARATIYA VIDYA BHAVAN S V M PUBLIC SCHOOL, VADODARA QUESTION BANK Ch Light : Reflection and Refraction One mark questions Q1 Q3 What happens when a ray of light falls normally on the surface of a plane

More information

28 Thin Lenses: Ray Tracing

28 Thin Lenses: Ray Tracing 28 Thin Lenses: Ray Tracing A lens is a piece of transparent material whose surfaces have been shaped so that, when the lens is in another transparent material (call it medium 0), light traveling in medium

More information

Unit 5.B Geometric Optics

Unit 5.B Geometric Optics Unit 5.B Geometric Optics Early Booklet E.C.: + 1 Unit 5.B Hwk. Pts.: / 18 Unit 5.B Lab Pts.: / 25 Late, Incomplete, No Work, No Units Fees? Y / N Essential Fundamentals of Geometric Optics 1. Convex surfaces

More information

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles

Physics 102: Lecture 19 Lenses and your EYE Ciliary Muscles Physics 02: Lecture 9 Lenses and your EYE Ciliary Muscles Physics 02: Lecture 9, Slide 3 Cases for Converging Lenses Object Past 2F Image Inverted Reduced Real Object Between F & 2F Image Inverted Enlarged

More information

LENSES. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved.

LENSES. A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. 1 LENSES A lens is any glass, plastic or transparent refractive medium with two opposite faces, and at least one of the faces must be curved. Types of Lenses There are two types of basic lenses: Converging/

More information

Chapter 26. The Refraction of Light: Lenses and Optical Instruments

Chapter 26. The Refraction of Light: Lenses and Optical Instruments Chapter 26 The Refraction of Light: Lenses and Optical Instruments 26.1 The Index of Refraction Light travels through a vacuum at a speed c=3. 00 10 8 m/ s Light travels through materials at a speed less

More information

PHYS 1020 LAB 7: LENSES AND OPTICS. Pre-Lab

PHYS 1020 LAB 7: LENSES AND OPTICS. Pre-Lab PHYS 1020 LAB 7: LENSES AND OPTICS Note: Print and complete the separate pre-lab assignment BEFORE the lab. Hand it in at the start of the lab. Pre-Lab Start by reading the entire prelab and lab write-up.

More information

Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend.

Lenses. Light refracts at both surfaces. Non-parallel surfaces results in net bend. Lenses Light refracts at both surfaces. Non-parallel surfaces results in net bend. Lenses Focusing power of the lens is function of radius of curvature of each surface and index of refraction of lens.

More information

Division C Optics KEY Captains Exchange

Division C Optics KEY Captains Exchange Division C Optics KEY 2017-2018 Captains Exchange 1.) If a laser beam is reflected off a mirror lying on a table and bounces off a nearby wall at a 30 degree angle, what was the angle of incidence of the

More information

Dr. Todd Satogata (ODU/Jefferson Lab) Monday, April

Dr. Todd Satogata (ODU/Jefferson Lab)  Monday, April University Physics 227N/232N Mirrors and Lenses Homework Optics 2 due Friday AM Quiz Friday Optional review session next Monday (Apr 28) Bring Homework Notebooks to Final for Grading Dr. Todd Satogata

More information

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS

PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS PHYS 202 OUTLINE FOR PART III LIGHT & OPTICS Electromagnetic Waves A. Electromagnetic waves S-23,24 1. speed of waves = 1/( o o ) ½ = 3 x 10 8 m/s = c 2. waves and frequency: the spectrum (a) radio red

More information

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses

Department of Physics & Astronomy Undergraduate Labs. Thin Lenses Thin Lenses Reflection and Refraction When light passes from one medium to another, part of the light is reflected and the rest is transmitted. Light rays that are transmitted undergo refraction (bending)

More information

Unit 3: Energy On the Move

Unit 3: Energy On the Move 14 14 Table of Contents Unit 3: Energy On the Move Chapter 14: Mirrors and Lenses 14.1: Mirrors 14.2: Lenses 14.3: Optical Instruments 14.1 Mirrors How do you use light to see? When light travels from

More information

WAVES: LENSES QUESTIONS

WAVES: LENSES QUESTIONS WAVES: LENSES QUESTIONS LIGHT (2016;1) Tim was looking into a convex mirror ball in his garden. Standing behind a small plant, he noticed that when he looked at the reflection of the plant in the convex

More information

13. Optical Instruments*

13. Optical Instruments* 13. Optical Instruments* Objective: Here what you have been learning about thin lenses is applied to make a telescope. In the process you encounter general optical instrument design concepts. The learning

More information

Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class

Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class Physics 4L Spring 2010 Problem set 1 Due Tuesday 26 January in class From Wolfson: Chapter 30 problem 36 (the flashlight beam comes out of the water some distance from the edge of the lake; the figure

More information

UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date:

UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date: UNIT SUMMARY: Electromagnetic Spectrum, Color, & Light Name: Date: Topics covered in the unit: 1. Electromagnetic Spectrum a. Order of classifications and respective wavelengths b. requency, wavelength,

More information

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3)

PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) 1 PHYS:1200 LECTURE 31 LIGHT AND OPTICS (3) In lecture 30, we applied the law of reflection to understand how images are formed using plane and curved mirrors. In this lecture we will use the law of refraction

More information

=, where f is focal length of a lens (positive for convex. Equations: Lens equation

=, where f is focal length of a lens (positive for convex. Equations: Lens equation Physics 1230 Light and Color : Exam #1 Your full name: Last First & middle General information: This exam will be worth 100 points. There are 10 multiple choice questions worth 5 points each (part 1 of

More information

Lenses. Images. Difference between Real and Virtual Images

Lenses. Images. Difference between Real and Virtual Images Linear Magnification (m) This is the factor by which the size of the object has been magnified by the lens in a direction which is perpendicular to the axis of the lens. Linear magnification can be calculated

More information

Physics 2310 Lab #6: Multiple Thin Lenses Dr. Michael Pierce (Univ. of Wyoming)

Physics 2310 Lab #6: Multiple Thin Lenses Dr. Michael Pierce (Univ. of Wyoming) Physics 2310 Lab #6: Multiple Thin Lenses Dr. Michael Pierce (Univ. of Wyoming) Purpose: The purpose of this lab is to investigate the properties of multiple thin lenses. The primary goals are to understand

More information

Making Images with Lenses and Mirrors

Making Images with Lenses and Mirrors Imaging Assumptions Thin Lens approximation Diameter of lens/mirror is much larger than the wavelength of light This lets us do ray approximations We ll discuss what happens if this isn t true later Aberrations

More information

Ch. 18 Notes 3/28/16

Ch. 18 Notes 3/28/16 Section 1 Light & Color: Vocabulary Transparent material: transmits most of the light that strikes it. Light passes through without being scattered, so you can see clearly what is on the other side. Ex.

More information

Chapter 34 Geometric Optics

Chapter 34 Geometric Optics Chapter 34 Geometric Optics Lecture by Dr. Hebin Li Goals of Chapter 34 To see how plane and curved mirrors form images To learn how lenses form images To understand how a simple image system works Reflection

More information

Physics 1230: Light and Color. Exam 2. No Online or Written HW this week. Project suggestions by Friday

Physics 1230: Light and Color. Exam 2. No Online or Written HW this week. Project suggestions by Friday Physics 230: Light and Color Chuck Rogers, Charles.Rogers@colorado.edu Ryan Henley, Valyria McFarland, Peter Siegfried physicscourses.colorado.edu/phys230 Exam 2 Scores and solutions are on D2L. PLEASE

More information

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope

Lenses. A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope SNC2D Lenses A transparent object used to change the path of light Examples: Human eye Eye glasses Camera Microscope Telescope Reading stones used by monks, nuns, and scholars ~1000 C.E. Lenses THERE ARE

More information

Activity 6.1 Image Formation from Spherical Mirrors

Activity 6.1 Image Formation from Spherical Mirrors PHY385H1F Introductory Optics Practicals Day 6 Telescopes and Microscopes October 31, 2011 Group Number (number on Intro Optics Kit):. Facilitator Name:. Record-Keeper Name: Time-keeper:. Computer/Wiki-master:..

More information