Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems

Size: px
Start display at page:

Download "Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems"

Transcription

1 Revolutionary visible and infrared sensor detectors for the most advanced astronomical AO systems Philippe Feautrier a,b 1, Jean-Luc Gach b,c, Sylvain Guieu a, Mark Downing d, Paul Jorden e, Johan Rothman f, Eric de Borniol f, Philippe Balard b,c, Eric Stadler a,b, Christian Guillaume g, David Boutolleau b, Jerome Coussement h, Johann Kolb d, Norbert Hubin d, Sophie Derelle i, Clélia Robert i, Julien Tanchon j, Thierry Trollier j, Alain Ravex j, Gérard Zins a, Pierre Kern a, Thibaut Moulin a, Sylvain Rochat a, Alain Delboulbé a, Jean-Baptiste Lebouquin a ; a Institut de Planétologie et d'astrophysique de Grenoble, UJF-Grenoble 1, CNRS-INSU, Domaine Universitaire, 414 rue de la Piscine, BP Grenoble Cedex 9, France; b First Light Imaging, Hôtel Technoptic, Rue Marc Donadille, Marseille cedex 13, France ; c LAM, Laboratoire d'astrophysique de Marseille, Technopôle de Château-Gombert - 38, rue Frédéric Joliot-Curie Marseille, France; d ESO, Karl-Schwarzschild-Strasse 2, Garching bei München, Germany; e e2v technologies,16 Waterhouse Lane, Chelmsford, Essex, CM1 2QU, England; f CEA/LETI - Minatec Campus - 17 rue des Martyrs Grenoble Cedex 9- France ; g OHP, Observatoire de Haute Provence, 487 St.Michel l'observatoire, France; h SOFRADIR, rue Camille Pelletan, 9229 Châtenay-Malabry, France; i ONERA, Chemin de la Hunière, Palaiseau Cedex, France; j Absolut Systems, 32 rue de la Tuilerie, 3817 Seyssinet-Pariset, France. ABSTRACT Since the CCD22 and OCAM2 major success, new detector developments started in Europe. Funded by ESO and the FP7 Opticon European network, the NGSD CMOS device is fully dedicated to Natural and Laser Guide Star AO for the E-ELT with strong ESO involvement. The NGSD will be a 88x84 pixels CMOS detector with a readout noise of 3 e (goal 1e) at 7 Hz frame rate and providing digital outputs. A camera development, based on this CMOS device and also funded by the Opticon European network, is presented in this paper. Another major AO waveront sensing detector development concerns IR wavefront sensing based on Avalanche Photodiode (e-apd) arrays within the RAPID project. Developed by the SOFRADIR and CEA/LETI manufacturers, the latter offers a 32x255 8 outputs 3 microns IR array, sensitive from.4 to 3 microns, with lesse than 2 e readout noise at 16 fps. A rectangular window can also be programmed to speed up even more the frame rate in the case the full frame readout is not useful. The high QE response, in the range of 7%, is almost flat over this wavelength range. Advanced packaging with miniature cryostat using pulse tube cryocoolers was developed for this programme in order to allow use on this detector in any type of environment. The characterization results of this device are presented here. Readout noise as low as 1.7 e at 16 fps has been measured with a 3 microns wavelength cut-off and a multiplication gain of 14 obtained with a modest photodiode polarization of 8V. This device also exhibits excellent linearity, lower than 1%. The pulse tube cooling allows smart and easy cooling down to 55 K. Vibrations measurements using centroiding and FFT measurements were performed to prove that the miniature pulse tube does not induce measurable vibrations to the optical bench, allowing use of this cooled device without liquid nitrogen and with difficult environmental conditions. A successful test of this device on sky on the VLTI PIONIER 4 telescopes instrument at ESO Paranal in June 214. First Light Imaging, which will commercialize a camera system using also APD infrared arrays with the Selex Saphira device in its proprietary wavefront sensor camera platform. These programs are held with several partners, among them are the French astronomical laboratories (LAM, OHP, IPAG), the detector manufacturers (e2v technologies, Sofradir, CEA/LETI) and other partners (ESO, ONERA, IAC, 1 Contact address: philippe.feautrier@obs.ujf-grenoble.fr; phone: ; fax:

2 GTC). Funding is: Opticon FP7 from European Commission, ESO, CNRS and Université de Provence, Sofradir, ONERA, CEA/LETI the French FUI (DGCIS), the FOCUS Labex and OSEO. Keywords: Adaptive optics, Electron Multiplying CCD, EMCCD, L3Vision CCD, Avalanche photodiodes, HgCdTe, low readout noise, wavefront sensor, sub-electron noise. 1. INTRODUCTION The success of the next generation of ESO (European Southern Observatory) instrument [1] for 8 to 1-m class telescopes will depend on the ability of Adaptive Optics (AO) systems to provide excellent image quality and stability. This will be achieved by increasing the sampling and correction of the wave front error in both spatial and time domains. For example, advanced Shack Hartmann systems currently fabricated require 4x4 sub-apertures at sampling rates of khz as opposed to 14x14 sub-apertures at 5 Hz of previous AO systems. Beyond the e2v CCD5 developed for the ESO NACO instrument in the late nineties [2], new detectors of 24x24 pixels are required to provide the spatial dynamics of 5-6 pixels per sub-aperture. Higher temporal-spatial sampling implies fewer photons per pixel therefore the need for much lower read noise (<<1e-) and negligible dark current (<< 1e-/pixel/frame) to detect and centroid on a small number of photons. This detector development was jointly funded by ESO and the OPTICON European network [3] in the Joint Research Activity JRA2 [4], Fast Detectors for Adaptive Optic". e2v technologies [5] was chosen in 25 to develop a dedicated detector based on an extension of their L3Vision [6] EMCCD technology. Analysis [7] showed that the sub-electron read noise of L3Vision CCDs clearly outperformed classical CCDs even though L3Vision devices exhibit the excess noise factor F of 21/2 typical of EMCCDs [8],[9]. During these years, a revolution appeared for infrared detectors with HgCdTe avalanche photodiodes arrays providing outstanding sensitivity and speed. This paper starts to describe this infrared revolution story and one of its development, the RAPID programme. 2. THE RAPID E-APD INFRARED WAVEFRONT SENSING DETECTOR 2.1 The RAPID 32x255 pixel e-apd array presentation Infrared HgCdTe Avalanche Photo Diodes (APD) have been shown to exhibit single carrier multiplication (SCM) of electrons up to gains in the order of 1 associated with low excess noise factors F= , record high gainbandwidth product GBW>2.1THz and low dark currents. The technology used to manufacture APDs is similar to the one used for standard n on p HgCdTe diodes explaining why a high quantum efficiency (typically QE=8-95 %) is maintained from the visible wavelengths up to the infrared (IR) cut-off wavelength. They have inspired a large effort in developing focal plan arrays using HgCdTe APDs for low photon number applications such as active imaging in the range gated mode (2D) and/or with direct time of flight detection (TOF) (3D) and, more recently, passive imaging for wave front correction and fringe tracking in astronomical observations [11] funded by the RAPID programme. The RAPID programme is a 4 years R&D project funded by the French "Fonds Unique Interministériel" in 29. It includes several industrial and academic partners from the field of advanced infrared focal plane arrays fabrication (SOFRADIR, CEA-LETI) and of astronomical/defense institutes (IPAG, LAM, ONERA). The goal of this programme is to develop a fast and low noise infrared focal plane array of moderate format for astronomical fast application like adaptive optics wavefront sensing and fringe tracking for astronomical interferometers. The main characteristics of RAPID are: Pixels Format: 32 x 255 pixels 3µm pitch Technology: HgCdTe, intra-pixel CDS and CTIA, 3 to K

3 Rectangular window can be defined with the start line and the end line of the window to be read. Noise: 1.5 e- with gain x3 Frame rat: 15 Hz, up to 2 Hz Dark signal: 1 e-/s measured, limited by setup background Power consumption: 122 mw The e-apd HgCdTe technology allows to apply moderate multiplication gain without adding noise, therefore lowering the readout noise without almost no penalty. This is the only way to obtain the fast frame rates needed by wavefront sensing with readout noise lower than 2 e. This kind of performances can t be achieved by classical HgCdTe arrays, the APD technology is absolutely necessary. The ultimate goal of the RAPID development is to demonstrate operation of the 32x255 pixels 3 microns pitch infrared array at 2 fps with less than 2 e- readout noise. To achieve such readout noise and fast frame rate, APDs technology and intra-pixel Correlated Double Sampling were both needed. The floor plan of the device is shown in the Fig. 1, it includes 8 parallel outputs clocked at 2 MHz pixel rate defining 8 stripes of 4x256 pixels with one amplifier per stripe. The detector can be seen in the Fig. 2 during its integration in the pulse tube cryostat. Start line Fig. 1. the 1.6 kfps RAPID e-apd infrared detector configuration: 8 outputs 32 x 255 pixels with 3 µm pitch. A rectangular window with programmable start line and end line can be defined to speed up the frame rate. Fig. 2. the RAPID 32x255 IR APD array during integration by Sofradir in its cryostat cooled with a miniature pulse tube.

4 2.2 RAPID results The multiplication gain of the APD mainly depends on the cut-off wavelength and the reverse bias voltage of the photodiode, also but with less sensitivity depends on the detector temperature. The gain increases with the bias voltage, the cut-off wavelength and decreases with the temperature. The bias voltage of the photodiode, performed by the readout circuit, is driven by the CMOS technology used for the readout circuit. Increasing the cut-off wavelength increases the gain but also the dark signal and the need for colder temperature. A first trade-off of these constrains was to choose a cut-off wavelength of 3 to 3.3 µm with a CMOS technology well proven by SOFRADIR allowing -8V of reverse bias. The conversion gain is calibrated using the classical photon transfer curve method by plotting the variance of the signal to the square as a function of the signal. The Fig. 3 shows such a photon transfer curve of the RAPID infrared device with a photodiode reverse bias of 8V equivalent to a mean multiplication gain of x13.9. Variance (adu) 2 Variance (adu) 2 Variance (adu) 2 Variance (adu) x e/adu output Mean - Bias (adu).224 e/adu output Mean - Bias (adu).232 e/adu 1 5 output Mean - Bias (adu).224 e/adu output Mean - Bias (adu) Variance (adu) 2 Variance (adu) 2 Variance (adu) 2 Variance (adu) Mean - Bias (adu).219 e/adu Fig. 3: photon transfer curve of the RAPID infrared device with a photodiode reverse bias of -8V equivalent to a mean multiplication gain of x13.9. The multiplication gain is computed by plotting linearity curves (signal versus time) under various photodiode polarisation. At.9 V photodiode polarisation, the multiplication gain is 1 and the slope of the linearity curve is e/adu output 1 output Mean - Bias (adu).232 e/adu output Mean - Bias (adu).222 e/adu output Mean - Bias (adu)

5 measured. When the photodiode polarisation is higher than.9 V, the multiplication gain M is higher than 1. The linearity curve of the slope is also measured with this gain M. The multiplication gain is computed by dividing the 2 measured slopes, assuming that the illumination conditions did not vary during the 2 data recording. Mean level (adu) e+4 adu/s output Time (s) 3.962e+4 adu/s Mean level (adu) e+4 adu/s output Time (s) 3.469e+4 adu/s Mean level (adu) Mean level (adu) output Time (s) 3.68e+4 adu/s output Time (s) 2.339e+4 adu/s Mean level (adu) Mean level (adu) output Time (s) 2.729e+4 adu/s output Time (s) 1.769e+4 adu/s Mean level (adu) 2 1 output Time (s) Mean level (adu) output Time (s) Fig. 4: linearity curve of RAPID with a photodiode polarization of -8V. The slope of this curve is measured for each photodiode polarization for further multiplication gain M measurement.

6 Multiplication gain M Photodiode polarisation (V) Multiplication gain M Output Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output Photodiode polarisation (V) Fig. 5: multiplication gain as a function of the photodiode reverse bias for RAPID 3 m cut-off device. Up: the multiplication gain is averaged for the 8 outputs; Down: the multiplication gain is plotted for each of the 8 outputs showing a very low dispersion of the multiplication gain over the multiple outputs RAPID detector. The system noise is computed using frames of 2 images recorded in dark conditions using black cover on the cryostat window and a very small integration time (1 µs). The RMS noise is computed using the temporal variance of each pixel from the 2 frames data cube recorded in these conditions. Noise in digital units of the ADC is converted in e by using the conversion gain measured at unity gain for which the excess noise factor F is 1. Then the noise is computed input

7 referred by dividing the previous noise in e by the multiplication gain measured with the linearity slope method described above. The resulting noise histograms of the 8 detector outputs are shown in Fig. 6 at 16 fps and gain of Mean readout noise as low as 1.62 e have been measured with the RAPID IR array at 16 fps and a multiplication gain of Number of count Number of count Number of count Number of count Median noise output =1.65 e pixel value (adu) Median noise output 2 =1.67 e pixel value (adu) Median noise output 4 =1.82 e pixel value (adu) Median noise output 6 =1.37 e pixel value (adu) Number of count Number of count Number of count Number of count Median noise output 1 =1.56 e pixel value (adu) Median noise output 3 =1.63 e pixel value (adu) Median noise output 5 =1.73 e pixel value (adu) Median noise output 7 =1.56 e pixel value (adu) Fig. 6. RMS Noise histogram of 32x255 RAPID 3 m cut-off device per output at 16 fps and gain Mean RMS readout noise is 1.62 e in these conditions.

8 The readout noise variation as a function of the multiplication gain at 16 fps and a detector temperature of 75K is shown in Fig Readout noise input referred (e) Multiplication gain M Fig. 7: RMS mean readout noise as a function of the multiplication gain for RAPID 3 m cut-off device. RAPID output non linearity The linearity error of the output signal versus input irradiance is defined as the maximum discrepancy between the measured output signal and an ideal. The least squares is applied to those points. A plot of linearity error versus signal in electrons will be calculated using the following equation: % 1 where Signal x indicates the signal level and Signal x indicates the maximum signal level in e. The output non-linearity is the difference between the maximum and minimum linearity errors over the considered range. The Fig. 8 shows the output non-linearity for each of the 8 output of the RAPID device at very low signal level (-5 e range). Over this range at very low level signal, we measure an output non-linearity of 1% in average.

9 Linearity (%) Linearity (%) Linearity (%) output Mean level (e) output Mean level (e) output Mean level (e) output 6 Linearity (%) Linearity (%) Linearity (%) output Mean level (e) output Mean level (e) output Mean level (e) output 7 Linearity (%) Linearity (%) Mean level (e) Mean level (e) Fig. 8. Output non-linearity for each of the 8 output of the RAPID device at very low signal level (-5 e range). The output non-linearity is 1% in average. An important specification of our system is the ability to be used in a vibration free environment. This is why we investigated the system vibrations by imaging a 1 µm pinhole on the infrared array using a SWIR focusing objective mounted with a C-mount on the cryostat. The centroid of the pinhole image is computed as well as the jitter (in pixels) of this centroid. The FFT of this jitter allows to obtain the jitter spectrum as shown in the Fig. 9. This figure shows that no vibrations due to our 5 Hz miniature pulse tube cooler can be measured.

10 Fig. 9. jitter spectrum of the spot centroid demonstrating no vibrations induced by the 48 Hz drive pulse tube cooler. The RAPID device described in this paper will now replace the infrared PICNIC detector of the PIONIER [1] 4 telescopes visitor instrument installed on the ESO VLTI in Paranal, see Fig. 1. For the first time in the world, an APD infrared array was installed on an operating astronomical instrument on a big telescope facility. A first technical run of 5 days was performed in June 214, the camera was installed on the instruments and was tested during 4 technical nights. Additional technical run are foreseen in the months to come in 214 with upgraded performances. The detector is cooled using a miniature pulse tube providing vibrations free 1.5 W of cooling power at 8K without the need of liquid nitrogen operation. Detector cooling down to 55 K is achievable at the highest cooling power with this system. In operation, the detector is cooled at 78K in order to limit the pulse tube power and increase its lifetime. No vibrations have been detected on the instrument due to the pulse tube operation. The first technical mission was a success, the camera worked without any major issue on the sky and 4 telescope fringes tracking was achieved at first attempt on the sky. A full description of this project and of this technical run is given elsewhere in this conference by Sylvain Guieu [11]. Fig. 1: (left) the RAPID cryostat in operation in Paranal, on the PIONIER VLTI visitor instrument in June 214 inside the ESO Paranal VLTI laboratory; (right) Part of the RAPID team shipping the RAPID system in Paranal from Grenoble France in May THE OCAM 2K CAMERA The FIRST LIGHT IMAGING [12] spin-off now commercializes most of these fast detectors developments and is specialized on very fast and low noise camera for scientific applications like adaptive optics and interferometry. Many camera systems have been sold by this company in the world to the best astronomical telescopes.

11 The now well-known OCAM2 camera, see Fig. 11, is commercialized by First Light Imaging [12]. OCAM2 is a readyto-use camera with embedded parameters to run the CCD, factory optimized. OCAM2 has also been designed for ruggedness and can cope with more demanding environmental conditions, like accepting cooling water temperature up to 35 C and removing the need for an external chiller. The camera is fully sealed, includes the Thermo Electric Cooler controller inside the camera head, and needs only a standard +24V power supply for the whole system. Fig. 11. the OCAM2 camera, 24x24 pixels EMCCD, from 1.5 to 2 kfps, <.2 e noise, commercialized by First Light Imaging [12]. The OCAM2 system is capable of driving all members of the CCD22/219 family at their nominal speed (1.5kframes/s) and transmitting the data at full speed through a CameraLink interface. The camera controller is able to drive deep depleted variants with multilevel clocking at voltage levels up to 24V with speeds of more than 1Mlines/s. The controller handles the 8 L3vision outputs with high voltage clocking up to 5V voltage swing. A big effort has been made to have high voltage stability (less that 1mV/hour of drift) in order to ensure a constant gain over a long period. The system digitizes the CCD signal using correlated double sampling with 14 bits resolution. Standard interfacing of the camera is performed by using a PC computer running Windows OS fitted with a CameraLink full grabber and a proprietary software capable of gathering in real time the extremely high data rate of 22Mbytes/s produced by the camera. By clocking pixels at 18.6 MHz, OCAM2 moved to OCAM2K [13] and is now able to acquire images at 2 Kfps without performances degradation, as shown in Table 1. Readout noise as low as.13 e was obtained at 2 kps and gain 1 with the 24x24 pixels EMMCCD of OCAM2K, see Table 1. Table 1. OCAM2 and OCAM2K performances comparison Test measurement OCAM2 OCAM2K Unit Nominal speed (full frame) fps Mean readout noise (full frame, full speed), gain e- Pure Latency 6 43 µs Dark signal at full speed and temperature -45 C.23.2 e-/pix/frame Detector operating temperature C Peak Quantum Efficiency at 65 nm % Linearity at gain x1 from 1 to 15 ke <3 <3 % Image area Full Well Capacity at gain x1, 153 fps 3 3 ke- Parallel CTE at gain x1, 153 fps N/A Serial CTE at gain x1, 153 fps N/A

12 1 Noise input (e) Multiplication gain Output Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 Fig. 12: OCAM2K readout noise at 2 kfps as a function of the multiplication gain. The OCAM2K readout noise as a function of the multiplication gain is shown in Fig. 12. Readout noise below.2 e at 2 frames/s can easily be achieved as shown in this figure. The Fig. 13 shows the OCAM2K readout noise histogram at 2 fps and multiplication gain x1. Readout noise of.12 e can be achieved in these conditions. Another version of OCAM2, called OCAM2S, was also recently developed by First Light Imaging with an electronic shutter allowing to precisely synchronize the integration time with an external trigger. This original development is described elsewhere in this conference by Jean-Luc Gach [14].

13 Histogram gaussian fit Pixel value histogram 14 x 15 RMS noise =.12 e 12 1 Number of count pixel value input referred (e) Fig. 13: OCAM2K readout noise histogram at 2 fps and multiplication gain x1. Readout noise as low as.12 e can be achieved in these conditions. 4. THE NGSD BSI CMOS 88X84 DETECTOR FOR LASER GUIDE STAR A new fast detector development in the visible has been started by ESO and the OPTICON network in 28 to develop new detector devices in the E-ELT framework, both for NGS and LGS wavefront sensing on extremely large telescopes [15]. The same consortium with ESO, e2v technologies and the French astronomical observatories (LAM, IPAG and OHP) decided to develop a long term program for this goal with joint funding from ESO and OPTICON under the 7th Framework Programme. Very early in the project, it has been decided to move to new detector technologies based on CMOS devices. But if CMOS devices are now commonly used in low cost applications, this is not the case for demanding scientific imaging. To mitigate the risk of this technological step, the long term programme was divided into several phases, up to the LGSD (Laser Guide Star Detector) which is the final development. The different phases are "Technology Demonstrators" (TVP), the "Natural Guide Star Detector" (NGSD) and the LGSD. The main issue with Laser Guide Star wavefront sensing is the spot elongation due to the finite distance of the laser guide star produced by the stimulation of the sodium layer of the atmosphere at about 9 km. This cone effect due to the angle between the telescope axis and the laser beam axis induces that LGS spots are elongated. The main consequence is that the LGS sub-aperture requires more pixels than with NGS whereas all other parameters of the AO detector remain the same: frame rate, pixel size, quantum efficiency, dark current and up to a certain level the readout noise. Maintaining fast frame rate (~ 1 khz) and low readout noise

14 lower than 3 e while increasing the detector format is impossible with the current detector technology. This is the reason why a new devices family is under development to cover this new exciting challenge for the E-ELT. The main specifications of the NGSD are given in Table 2. In addition, First Light Imaging is developing a compact camera system based on this device. This camera will be available by 215. This development is fully described elsewhere in this conference [16] by Mark Downing. Table 2. the NGSD 88x84 BSI CMOS device for LGS wavefront sensing. Pixel number (including dark reference pixels) Detector technology Pixel Pitch 24µm Pixel topology Sub-aperture Array architecture Natural Guide Star Detector NGSD - 88x84 pixels with 84x84 sensitive pixels Thinned backside illuminated CMOS.18µm 4T pinned photodiode pixel 2x2 pixels Pixel full well 4 e- Read noise including ADC ADCs configuration Number of parallel LVDS channels 22 Serial LVDS channel bit rate Frame rate 42x42 sub-apertures of 2x2 pixels < 3. e-rms 2 x 88 column ADCs, 9 (goal 1) bits 21 Mb/s baseline, up to 42 Mb/s (desired) 7 fps up to 1 fps with degraded performance 5. CONCLUSION This paper illustrates a long term and coordinated wavefront sensor development in Europe involving cutting edge detectors and camera systems industry associated with ESO, academic French laboratories (LAM, IPAG and OHP) and the First Light Imaging spin off. Wavefront sensing detector developments are now carried out in Europe for the next generation of telescopes. Among them, a big eefort is currently placed on infrared wavefront sensors devices. One of this infrared device is called RAPID and is based on a 2 kfps 32x255 pixels infrared APD arrays. This device is currently tested on the sky, already demonstrating on sky read noise lower of 1.7 e at this frame rate. A first technical run of this device has been done on the ESO VLTI in June 214. This was the first time ever that an infrared APD array was successfully used on a big telescope facility and an operating astronomical instrument. This infrared detector is produced by SOFRADIR. A commercial camera based on e-apd array will be commercialized by First Light Imaging [1]. Apart this, a long programme has started in 24 for developing large CMOS detectors for the E-ELT with several phases, all detectors are fabricated by e2v. The current phase consist in the production of a 88x8 pixel fully digital CMOS detector which should provide 3 e- read noise at 7 Hz (1 Hz with degraded performances) and optimal QE. This detector, called NGSD, will be used for natural and laser guide start systems on Extremely Large Telescopes. A camera system based on the NGSD, commercialized by First Light Imaging, will be offered by 215.

15 6. ACKNOWLEDGMENTS These developments have been partly carried out using OPTICON and FUI funds. OPTICON is supported by the European Commission's FP7 Capacities programme (Grant number 22664). The RAPID programme was funded by the Fonds Unique Interministériel (FUI) under the 7th AAP from the French "Ministère de l'economie, des Finances et de l'emploi". Funding is also: ESO, CNRS, Université de Provence, Sofradir, ONERA and CEA/LETI. This work is also partially supported by the LabEx FOCUS ANR-11-LABX-13. REFERENCES [1] Moorwood, A., "Instrumentation at the ESO VLT ", Proc. SPIE 6269, (26). [2] Feautrier, P., Kern, P. Y., Dorn, R. J., Rousset, G., Rabou, P., Laurent, S., Lizon, J., Stadler, E., Magnard, Y., Rondeaux, O., Cochard, M., Rabaud, D., Delboulbe, A., Puget, P., Hubin, N. N., "NAOS visible wavefront sensor" in Adaptive Optical Systems Technology, ed. by Peter L. Wizinowich, SPIE Proc. Vol. 47, pp (2). [3] Gillmore, G. F., "OPTICON: a (small) part of European astronomy", Proc. SPIE 5382, 138 (24). [4] Feautrier, P., Fusco, T., Downing, M., Hubin, N., Gach, J-L., Balard, P., Guillaume, C., Stadler, E., Boissin, O., Jorden, P., Diaz, J-J., "Zero noise wavefront sensor development within the Opticon European network", Scientific Detectors for Astronomy 25, Springer Netherlands editor, ISBN: , Beletic, Jenna E.; Beletic, James W.; Amico, Paola (Eds.), Vol. 336 (26). [5] e2v technologies, [6] Jerram, P., Pool, P. J., Bell, R., Burt, D. J., Bowring, S., Spencer, S., Hazelwood, M., Moody, I., Catlett, N. and Heyes, P. S., "The LLCCD: low-light imaging without the need for an intensifier", in Proc. SPIE, 436, pp , May 21. [7] Fusco, T., Nicolle, M., Rousset, G., Michau, V., Beuzit, J-L, Mouillet, D., "Optimisation of Shack-Hartman based wavefront sensor for XAO systems", Advancements in Adaptive Optics. Edited by Domenico B. Calia, Brent L. Ellerbroek, and Roberto Ragazzoni. Proceedings of the SPIE, Volume 549, pp (24). [8] Robbins, M., Hadven, B., "The Noise Performances of Electron Multiplying Charge-Coupled Devices", IEEE Transactions On Electron Devices, Vol. 5, No. 5, pp (23). [9] Petit, C., Fusco, T., Charton, J., Mouillet, D., Rabou, P., Buey, T., Rousset, G., Sauvage, J.-F., Baudoz, P., Gigan, P., Kasper, M., Fedrigo, E., Hubin, N., Feautrier, P., Beuzit, J.-L., Puget, P., "The SPHERE XAO system: design and performance", Proc. SPIE 715, 7151D (28). [1] J.-B. Le Bouquin, J.-P. Berger, B. Lazareff, G. Zins, P. Haguenauer, L. Jocou, P. Kern, R. Millan-Gabet, W. Traub, O. Absil, J.-C. Augereau, M. Benisty, N. Blind, X. Bonfils, P. Bourget, A. Delboulbe, P. Feautrier, M. Germain, P. Gitton, D. Gillier, M. Kiekebusch, J. Kluska, J. Knudstrup, P. Labeye, J.-L. Lizon, J.-L. Monin, Y. Magnard, F. Malbet, D. Maurel, F. Ménard, M. Micallef, L. Michaud, G. Montagnier, S. Morel, T. Moulin, K. Perraut, D. Popovic, P. Rabou, S. Rochat, C. Rojas, F. Roussel, A. Roux, E. Stadler, S. Stefl, E. Tatulli and N. Ventura, PIONIER: a 4-telescope visitor instrument at VLTI, A&A, Volume 535, November 211, DOI: [11] Sylvain Guieu, Philippe Feautrier, Eric Stadler, Johan Rothman, Michel Tauvy, Jean-Baptiste Le Bouquin, Gérard Zins, Pierre Kern, Jérome Coussement, Eric D. de Borniol, Jean-Luc Gach, Marc Jacquart, Thibaut Moulin, Sylvain Rochat, Alain Delboulbé, Sophie Derelle, Clélia Robert, Michel Vuillermet, RAPID: a revolutionary fast optical to NIR camera applied to interferometry, SPIE Astronomical instrumentation and telescopes Montreal 214 conference proceedings, Paper , Optical and Infrared Interferometry IV, Montreal, 214. [12] First Light Imaging SAS, [13] Gach et al., First results of a 2+ frame per second OCAM2, proceedings of the AO4ELT3 conference, Florence 213, [14] Jean-Luc Gach, Philippe Feautrier, Philippe Balard, Christian Guillaume, Eric Stadler, OCAM2S: an integral shutter ultrafast and low noise wavefront sensor camera for laser guide stars adaptive optics systems, Paper , SPIE Astronomical instrumentation and telescopes Montreal 214 conference proceedings, Paper , Adaptive Optics Systems IV, Montreal, 214.

16 [15] Mark Downing ; Johann Kolb ; Dietrich Baade ; Philippe Balard ; Bart Dierickx ; Arnaud Defernez ; Benoit Dupont ; Philippe Feautrier ; Gert Finger ; Martin Fryer ; Jean-Luc Gach ; Christian Guillaume ; Norbert Hubin ; Olaf Iwert ; Paul Jerram ; Paul Jorden ; Andrew Pike ; Jerome Pratlong ; Javier Reyes ; Eric Stadler ; Andrew Walker, Backside-illuminated, high-qe, 3e- RoN, fast 7fps, 176x168 pixels CMOS imager for AO with highly parallel readout, Proc. SPIE 8453, High Energy, Optical, and Infrared Detectors for Astronomy V, 8453C (September 25, 212); doi:1.1117/ [16] Mark Downing, Johann Kolb, Philippe Balard, Bart Dierickx, Arnaud Defernez, Philippe Feautrier, Gert Finger, Martin Fryer, Jean-Luc Gach, Christian Guillaume, Norbert Hubin, Paul Jerram, Paul Jorden, Manfred Meyer, Andrew Payne, Andrew Pike, Javier Reyes, Robert Simpson, Eric Stadler, Nick Swift, LGSD/NGSD: High Speed Optical CMOS Imagers for E-ELT Adaptive Optics, SPIE Astronomical instrumentation and telescopes Montreal 214. conference proceedings, Paper , High Energy, Optical, and Infrared Detectors for Astronomy VI, Montreal, 214.

Visible and Infrared Wavefront Sensing detectors review in Europe part I

Visible and Infrared Wavefront Sensing detectors review in Europe part I Florence, Italy. Adaptive May 2013 Optics for Extremely Large Telescopes III ISBN: 978-88-908876-0-4 DOI: 10.12839/AO4ELT3.15019 Visible and Infrared Wavefront Sensing detectors review in Europe part I

More information

High QE, Thinned Backside-Illuminated, 3e- RoN, Fast 700fps, 1760x1760 Pixels Wave-Front Sensor Imager with Highly Parallel Readout

High QE, Thinned Backside-Illuminated, 3e- RoN, Fast 700fps, 1760x1760 Pixels Wave-Front Sensor Imager with Highly Parallel Readout High QE, Thinned Backside-Illuminated, 3e- RoN, Fast 700fps, 1760x1760 Pixels Wave-Front Sensor Imager with Highly Parallel Readout Mark Downing, Dietrich Baade, Norbert Hubin, Olaf Iwert, Javier Reyes

More information

CMOS Sensor for AO. Backside-Illuminated, high QE, 3e- RoN, fast 700fps, 1760x1760 pixels CMOS Imager for AO with highly parallel readout

CMOS Sensor for AO. Backside-Illuminated, high QE, 3e- RoN, fast 700fps, 1760x1760 pixels CMOS Imager for AO with highly parallel readout CMOS Sensor for AO Backside-Illuminated, high QE, 3e- RoN, fast 700fps, 1760x1760 pixels CMOS Imager for AO with highly parallel readout Mark Downing, Johann Kolb, Gert Finger, Norbert Hubin, Javier Reyes,

More information

RAPID: A Revolutionary Fast Low Noise Detector on Pionier

RAPID: A Revolutionary Fast Low Noise Detector on Pionier : A Revolutionary Fast Low Noise Detector on Pionier Sylvain Guieu ESO / IPAG Jean Baptiste Lebouquin Philippe Feautrier Gérard Zins Éric Stadler Pierre Kern Alain Delboulbé Thibault Moulin Sylvain Rochas

More information

High QE, 3e- RoN, fast 700fps, 1760x1680 pixels CMOS Imager Mark Downing 1

High QE, 3e- RoN, fast 700fps, 1760x1680 pixels CMOS Imager Mark Downing 1 High QE, 3e- RoN, fast 700fps, 1760x1680 pixels CMOS Imager Mark Downing 1, Johann Kolb 1, Philippe Balard 1, Bart Dierickx 3, Arnaud Defernez 3, Philippe Feautrier 4, Gert Finger 1, Martin Fryer 2, Jean-Luc

More information

The NAOS visible wave front sensor

The NAOS visible wave front sensor The NAOS visible wave front sensor Philippe Feautrier a, Pierre Kern a, Reinhold Dorn c, Gérard Rousset b, Patrick Rabou a, Sylvain Laurent a, Jean-Louis Lizon c, Eric Stadler a, Yves Magnard a, Olivier

More information

Backside-Illuminated, high QE, 3e- RoN, fast 700fps, 1760x1680 pixels CMOS Imager for AO with highly parallel readout

Backside-Illuminated, high QE, 3e- RoN, fast 700fps, 1760x1680 pixels CMOS Imager for AO with highly parallel readout Backside-Illuminated, high QE, 3e- RoN, fast 700fps, 1760x1680 pixels CMOS Imager for AO with highly parallel readout Mark Downing* a, Johann Kolb a, Philippe Balard e, c Bart Dierickx, c Arnaud Defernez,

More information

A DEDICATED CONTROLLER FOR ADAPTIVE OPTICS L3CCD DEVELOPMENTS

A DEDICATED CONTROLLER FOR ADAPTIVE OPTICS L3CCD DEVELOPMENTS A DEDICATED CONTROLLER FOR ADAPTIVE OPTICS L3CCD DEVELOPMENTS Jean-Luc GACH 1, Philippe Balard 1, Olivier Boissin 1, Mark Downing 2, Philippe Feautrier 3, Christian Guillaume 4, Eric Stadler 3 1 Observatoire

More information

C-RED One and C-RED 2: SWIR advanced cameras using Saphira e- APD and Snake InGaAs detectors

C-RED One and C-RED 2: SWIR advanced cameras using Saphira e- APD and Snake InGaAs detectors C-RED One and C-RED 2: SWIR advanced cameras using Saphira e- APD and Snake InGaAs detectors,philippe Feautrier a,b,*, Jean-Luc Gach a,c, Timothée Greffe *a, Fabien Clop a, Stephane Lemarchand a, Thomas

More information

C-RED 2 InGaAs 640x fps infrared camera for low order wavefront sensing

C-RED 2 InGaAs 640x fps infrared camera for low order wavefront sensing SPIE astronomical instrumentation and telescopes, Austin, Texas, United States, 10-15 June 2018 Adaptive Optics Systems VI, Conference 10703. C-RED 2 InGaAs 640x512 600 fps infrared camera for low order

More information

AO Wavefront Sensing Detector Developments at ESO

AO Wavefront Sensing Detector Developments at ESO AO Wavefront Sensing Detector Developments at ESO Mark Downing* a, Johann Kolb a, Dietrich Baade a, Olaf Iwert a, Norbert Hubin a, Javier Reyes a, Philippe Feautrier b, Jean-Luc Gach c, Philippe Balard

More information

Infrared detectors for wavefront sensing

Infrared detectors for wavefront sensing Infrared detectors for wavefront sensing Jean-Luc Gach et al. The project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 673944 First

More information

SLICING THE UNIVERSE CCDs for MUSE

SLICING THE UNIVERSE CCDs for MUSE SLICING THE UNIVERSE CCDs for MUSE Roland Reiss 1, Sebastian Deiries 1, Jean Louis Lizon 1, Manfred Meyer 1, Javier Reyes 1, Roland Bacon 2, François Hénault 2, Magali Loupias 2 1 European Southern Observatory,

More information

THE CCD RIDDLE REVISTED: SIGNAL VERSUS TIME LINEAR SIGNAL VERSUS VARIANCE NON-LINEAR

THE CCD RIDDLE REVISTED: SIGNAL VERSUS TIME LINEAR SIGNAL VERSUS VARIANCE NON-LINEAR THE CCD RIDDLE REVISTED: SIGNAL VERSUS TIME LINEAR SIGNAL VERSUS VARIANCE NON-LINEAR Mark Downing 1, Peter Sinclaire 1. 1 ESO, Karl Schwartzschild Strasse-2, 85748 Munich, Germany. ABSTRACT The photon

More information

TEST RESULTS WITH 2KX2K MCT ARRAYS

TEST RESULTS WITH 2KX2K MCT ARRAYS TEST RESULTS WITH 2KX2K MCT ARRAYS Finger, G, Dorn, R.J., Mehrgan, H., Meyer, M., Moorwood A.F.M. and Stegmeier, J. European Southern Observatory Abstract: Key words: The performance of both an LPE 2Kx2K

More information

TAOS II: Three 88-Megapixel astronomy arrays of large area, backthinned, and low-noise CMOS sensors

TAOS II: Three 88-Megapixel astronomy arrays of large area, backthinned, and low-noise CMOS sensors TAOS II: Three 88-Megapixel astronomy arrays of large area, backthinned, and low-noise CMOS sensors CMOS Image Sensors for High Performance Applications TOULOUSE WORKSHOP - 26th & 27th NOVEMBER 2013 Jérôme

More information

the need for an intensifier

the need for an intensifier * The LLLCCD : Low Light Imaging without the need for an intensifier Paul Jerram, Peter Pool, Ray Bell, David Burt, Steve Bowring, Simon Spencer, Mike Hazelwood, Ian Moody, Neil Catlett, Philip Heyes Marconi

More information

Low Light Level CCD Performance and Issues

Low Light Level CCD Performance and Issues Low Light Level CCD Performance and Issues Nagaraja Bezawada UK Astronomy Technology Centre 04 July 2007 Overview of the Talk Introduction to L3CCD (EM CCD) ULTRASPEC Performance and Issues New L3 CCD

More information

NEAT breadboard system analysis and performance models

NEAT breadboard system analysis and performance models NEAT breadboard system analysis François Hénault, Antoine Crouzier, Fabien Malbet, Pierre Kern, Guillermo Martin, Philippe Feautrier, Eric Staedler, Sylvain Lafrasse, Alain Delboulbé, Jean-Michel Le Duigou,

More information

IR Detectors Developments for Space Applications

IR Detectors Developments for Space Applications CMOS Image Sensors for High Performance Applications Toulouse, France, 6 th & 7 th December 2011 IR Detectors Developments for Space Applications Harald Weller SELEX GALILEO Infrared Ltd, Southampton,

More information

Advanced ROIC designs for cooled IR detectors. Xavier Lefoul, Patrick Maillart, Michel Zécri, Eric Sanson, Gilbert Decaens, Laurent Baud

Advanced ROIC designs for cooled IR detectors. Xavier Lefoul, Patrick Maillart, Michel Zécri, Eric Sanson, Gilbert Decaens, Laurent Baud Advanced ROIC designs for cooled IR detectors Xavier Lefoul, Patrick Maillart, Michel Zécri, Eric Sanson, Gilbert Decaens, Laurent Baud Outline Introduction Presentation of latest FPA currently available

More information

Review of AO Wavefront Sensing Detectors

Review of AO Wavefront Sensing Detectors Review of AO Wavefront Sensing Detectors Mark Downing (mdowning@eso.org) * a, Gert Finger a, Dietrich Baade a, Norbert Hubin a, Johann Kolb a, Olaf Iwert a a ESO, Karl-Schwarzschild-Strasse 2, 85748 Garching

More information

A prototype of the Laser Guide Stars wavefront sensor for the E-ELT multi-conjugate adaptive optics module

A prototype of the Laser Guide Stars wavefront sensor for the E-ELT multi-conjugate adaptive optics module 1st AO4ELT conference, 05020 (2010) DOI:10.1051/ao4elt/201005020 Owned by the authors, published by EDP Sciences, 2010 A prototype of the Laser Guide Stars wavefront sensor for the E-ELT multi-conjugate

More information

On-sky performance demonstration of the near infrared SAPHIRA e-apd array and new developments of e-apd technology

On-sky performance demonstration of the near infrared SAPHIRA e-apd array and new developments of e-apd technology On-sky performance demonstration of the near infrared SAPHIRA e-apd array and new developments of e-apd technology Gert Finger * a, Ian Baker b, Domingo Alvarez a, Christophe Dupuy a, Derek Ives a, Leander

More information

Detectors that cover a dynamic range of more than 1 million in several dimensions

Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors that cover a dynamic range of more than 1 million in several dimensions Detectors for Astronomy Workshop Garching, Germany 10 October 2009 James W. Beletic Teledyne Providing the best images

More information

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency

Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency Fully depleted, thick, monolithic CMOS pixels with high quantum efficiency Andrew Clarke a*, Konstantin Stefanov a, Nicholas Johnston a and Andrew Holland a a Centre for Electronic Imaging, The Open University,

More information

Multi-function InGaAs detector with on-chip signal processing

Multi-function InGaAs detector with on-chip signal processing Multi-function InGaAs detector with on-chip signal processing Lior Shkedy, Rami Fraenkel, Tal Fishman, Avihoo Giladi, Leonid Bykov, Ilana Grimberg, Elad Ilan, Shay Vasserman and Alina Koifman SemiConductor

More information

Content. Instrumentation Programmes at ESO Mark Casali. Instrumentation at ESO. Future Instrument Programmes

Content. Instrumentation Programmes at ESO Mark Casali. Instrumentation at ESO. Future Instrument Programmes Instrumentation Programmes at ESO Mark Casali Content Instrumentation at ESO Introduction Instruments in Construction Technologies Future Instrument Programmes La Silla Paranal Programme E-ELT programme

More information

UCLA Adaptive Optics for Extremely Large Telescopes 4 Conference Proceedings

UCLA Adaptive Optics for Extremely Large Telescopes 4 Conference Proceedings UCLA Adaptive Optics for Extremely Large Telescopes 4 Conference Proceedings Title Experimental implementation of a Pyramid WFS: Towards the Permalink https://escholarship.org/uc/item/56v9924z Journal

More information

Electron Multiplying CCDs

Electron Multiplying CCDs SNIC Symposium, Stanford, California 3-6 April 2006 Electron Multiplying CCDs P.A.Jerram, P. J. Pool, D. J. Burt, R. T. Bell, M.S.Robbins e2v technologies ltd, 106, Waterhouse Lane, Chelmsford, Essex,

More information

Active Laser Guide Star refocusing system for EAGLE instrument

Active Laser Guide Star refocusing system for EAGLE instrument 1st AO4ELT conference, 04008 (2010) DOI:10.1051/ao4elt/201004008 Owned by the authors, published by EDP Sciences, 2010 Active Laser Guide Star refocusing system for EAGLE instrument Emmanuel Hugot 1,a,

More information

The SPHERE XAO system SAXO: integration, test and laboratory performance.

The SPHERE XAO system SAXO: integration, test and laboratory performance. The SPHERE XAO system SAXO: integration, test and laboratory performance. C. Petit a, J.-F. Sauvage a, A. Sevin b, A. Costille c, T. Fusco a, P. Baudoz b, J.-L. Beuzit c, T. Buey b, J. Charton c, K. Dohlen

More information

Author s Accepted Manuscript

Author s Accepted Manuscript Author s Accepted Manuscript The X-ray quantum efficiency measurement of high resistivity CCDs Neil J. Murray, Andrew D. Holland, David R. Smith, Jason P. Gow, Peter J. Pool, David J. Burt PII: S0168-9002(09)00147-8

More information

Mini Workshop Interferometry. ESO Vitacura, 28 January Presentation by Sébastien Morel (MIDI Instrument Scientist, Paranal Observatory)

Mini Workshop Interferometry. ESO Vitacura, 28 January Presentation by Sébastien Morel (MIDI Instrument Scientist, Paranal Observatory) Mini Workshop Interferometry ESO Vitacura, 28 January 2004 - Presentation by Sébastien Morel (MIDI Instrument Scientist, Paranal Observatory) MIDI (MID-infrared Interferometric instrument) 1st generation

More information

Germany, SO15 0LG, United Kingdom ABSTRACT

Germany, SO15 0LG, United Kingdom ABSTRACT NIR HgCdTe Avalanche Photodiode Arrays for Wavefront Sensing and Fringe Tracking Gert Finger 1, Ian Baker 2, Domingo Alvarez 1, Derek Ives 1, Leander Mehrgan 1, Manfred Meyer 1 and Jörg Stegmeier 1 1 European

More information

Charge coupled devices at ESO - Performances and results

Charge coupled devices at ESO - Performances and results Charge coupled devices at ESO - Performances and results Cyril Cavadore and Reinhold J. Dorn and James W. Beletic European Southern Observatory, Germany Abstract: The Optical Detector Team at the European

More information

Fratricide effect on ELTs

Fratricide effect on ELTs 1st AO4ELT conference, 04005 (2010) DOI:10.1051/ao4elt/201004005 Owned by the authors, published by EDP Sciences, 2010 Fratricide effect on ELTs DamienGratadour 1,a,EricGendron 1,GerardRousset 1,andFrancoisRigaut

More information

Minimizes reflection losses from UV to IR; No optical losses due to multiple optical surfaces; Optional AR coating and wedge windows available.

Minimizes reflection losses from UV to IR; No optical losses due to multiple optical surfaces; Optional AR coating and wedge windows available. SOPHIA: 2048B The SOPHIA : 2048B camera from Princeton Instruments (PI) is fully integrated, ultra-low noise 2048 x 2048, 15 µm pixel CCD camera designed expressly for the most demanding quantitative scientific

More information

Characteristic of e2v CMOS Sensors for Astronomical Applications

Characteristic of e2v CMOS Sensors for Astronomical Applications Characteristic of e2v CMOS Sensors for Astronomical Applications Shiang-Yu Wang* a, Hung-Hsu Ling a, Yen-Sang Hu a, John C. Geary b, Stephen M. Amato b, Jerome Pratlong c, Andrew Pike c, Paul Jorden c

More information

Wavefront Sensing In Other Disciplines. 15 February 2003 Jerry Nelson, UCSC Wavefront Congress

Wavefront Sensing In Other Disciplines. 15 February 2003 Jerry Nelson, UCSC Wavefront Congress Wavefront Sensing In Other Disciplines 15 February 2003 Jerry Nelson, UCSC Wavefront Congress QuickTime and a Photo - JPEG decompressor are needed to see this picture. 15feb03 Nelson wavefront sensing

More information

*Sub-Electron Read Noise at MHz Pixel Rates

*Sub-Electron Read Noise at MHz Pixel Rates *Sub-Electron Read Noise at MHz Pixel Rates Craig D. Mackay, Robert N. Tubbs, Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge, CB3 0HA, UK Ray Bell, David Burt, Paul Jerram,

More information

CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor

CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor CCD67 Back Illuminated AIMO High Performance Compact Pack CCD Sensor FEATURES * 256 x 256 Pixel Image Area. * 26 mm Square Pixels. * Low Noise, High Responsivity Output Amplifier. * 1% Active Area. * Gated

More information

NGC user report. Gert Finger

NGC user report. Gert Finger NGC user report Gert Finger Overview user s perspective of the transition from IRACE to NGC Performance of NGC prototypes with optical and infrared detectors Implementation of two special features on the

More information

CCD30-11 NIMO Back Illuminated Deep Depleted High Performance CCD Sensor

CCD30-11 NIMO Back Illuminated Deep Depleted High Performance CCD Sensor CCD30-11 NIMO Back Illuminated Deep Depleted High Performance CCD Sensor FEATURES 1024 by 256 Pixel Format 26µm Square Pixels Image area 26.6 x 6.7mm Back Illuminated format for high quantum efficiency

More information

Detailed Characterisation of a New Large Area CCD Manufactured on High Resistivity Silicon

Detailed Characterisation of a New Large Area CCD Manufactured on High Resistivity Silicon Detailed Characterisation of a New Large Area CCD Manufactured on High Resistivity Silicon Mark S. Robbins *, Pritesh Mistry, Paul R. Jorden e2v technologies Ltd, 106 Waterhouse Lane, Chelmsford, Essex

More information

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014

Detectors for microscopy - CCDs, APDs and PMTs. Antonia Göhler. Nov 2014 Detectors for microscopy - CCDs, APDs and PMTs Antonia Göhler Nov 2014 Detectors/Sensors in general are devices that detect events or changes in quantities (intensities) and provide a corresponding output,

More information

Stability of IR-arrays for robotized observations at dome C

Stability of IR-arrays for robotized observations at dome C Stability of IR-arrays for robotized observations at dome C 27.3.2007, Tenerife Page Nr. 1 IR wide field imaging MPIA IR projects and studies OMEGA2000: NIR WFI Calar Alto NACO: NIR AO-supported Imager

More information

High Definition 10µm pitch InGaAs detector with Asynchronous Laser Pulse Detection mode

High Definition 10µm pitch InGaAs detector with Asynchronous Laser Pulse Detection mode High Definition 10µm pitch InGaAs detector with Asynchronous Laser Pulse Detection mode R. Fraenkel, E. Berkowicz, L. Bykov, R. Dobromislin, R. Elishkov, A. Giladi, I. Grimberg, I. Hirsh, E. Ilan, C. Jacobson,

More information

Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout mode

Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout mode Evaluation of the Teledyne SIDECAR ASIC at cryogenic temperature using a visible hybrid H2RG focal plane array in 32 channel readout mode Reinhold J. Dorn *1, Siegfried Eschbaumer 1, Donald N.B. Hall 2,

More information

MTF and PSF measurements of the CCD detector for the Euclid visible channel

MTF and PSF measurements of the CCD detector for the Euclid visible channel MTF and PSF measurements of the CCD273-84 detector for the Euclid visible channel I. Swindells* a, R. Wheeler a, S. Darby a, S. Bowring a, D. Burt a, R. Bell a, L. Duvet b, D. Walton c, R. Cole c a e2v

More information

READOUT TECHNIQUES FOR DRIFT AND LOW FREQUENCY NOISE REJECTION IN INFRARED ARRAYS

READOUT TECHNIQUES FOR DRIFT AND LOW FREQUENCY NOISE REJECTION IN INFRARED ARRAYS READOUT TECHNIQUES FOR DRIFT AND LOW FREQUENCY NOISE REJECTION IN INFRARED ARRAYS Finger 1, G, Dorn 1, R.J 1, Hoffman, A.W. 2, Mehrgan, H. 1, Meyer, M. 1, Moorwood A.F.M. 1 and Stegmeier, J. 1 1) European

More information

CCD Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

CCD Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor CCD201-20 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor INTRODUCTION The CCD201 is a large format sensor (41k 2 ) in the L3Vision TM range of products from e2v technologies. This

More information

TELEDYNE S HIGH PERFORMANCE INFRARED DETECTORS FOR SPACE MISSIONS. Paul Jerram and James Beletic ICSO October 2018

TELEDYNE S HIGH PERFORMANCE INFRARED DETECTORS FOR SPACE MISSIONS. Paul Jerram and James Beletic ICSO October 2018 TELEDYNE S HIGH PERFORMANCE INFRARED DETECTORS FOR SPACE MISSIONS Paul Jerram and James Beletic ICSO October 2018 Teledyne High Performance Image Sensors Teledyne DALSA Waterloo, Ontario (Design, I&T)

More information

CCD97 00 Front Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

CCD97 00 Front Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor CCD97 00 Front Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor INTRODUCTION The CCD97 is part of the new L3Vision 2 range of products from e2v technologies. This device uses a novel output

More information

Optimization of Existing Centroiding Algorithms for Shack Hartmann Sensor

Optimization of Existing Centroiding Algorithms for Shack Hartmann Sensor Proceeding of the National Conference on Innovative Computational Intelligence & Security Systems Sona College of Technology, Salem. Apr 3-4, 009. pp 400-405 Optimization of Existing Centroiding Algorithms

More information

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection

Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection Interpixel crosstalk in a 3D-integrated active pixel sensor for x-ray detection The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

Fundamentals of CMOS Image Sensors

Fundamentals of CMOS Image Sensors CHAPTER 2 Fundamentals of CMOS Image Sensors Mixed-Signal IC Design for Image Sensor 2-1 Outline Photoelectric Effect Photodetectors CMOS Image Sensor(CIS) Array Architecture CIS Peripherals Design Considerations

More information

CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor

CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor CCD47-10 NIMO Back Illuminated Compact Pack High Performance CCD Sensor FEATURES 1024 by 1024 Nominal (1056 by 1027 Usable Pixels) Image area 13.3 x 13.3mm Back Illuminated format for high quantum efficiency

More information

Low Cost Earth Sensor based on Oxygen Airglow

Low Cost Earth Sensor based on Oxygen Airglow Assessment Executive Summary Date : 16.06.2008 Page: 1 of 7 Low Cost Earth Sensor based on Oxygen Airglow Executive Summary Prepared by: H. Shea EPFL LMTS herbert.shea@epfl.ch EPFL Lausanne Switzerland

More information

Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory

Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory J. Astrophys. Astr. (2008) 29, 353 357 Development of a Low-order Adaptive Optics System at Udaipur Solar Observatory A. R. Bayanna, B. Kumar, R. E. Louis, P. Venkatakrishnan & S. K. Mathew Udaipur Solar

More information

DEVELOPMENT AND CHARACTERISATION OF MCT DETECTORS FOR SPACE ASTROPHYSICS AT CEA

DEVELOPMENT AND CHARACTERISATION OF MCT DETECTORS FOR SPACE ASTROPHYSICS AT CEA DEVELOPMENT AND CHARACTERISATION OF MCT DETECTORS FOR SPACE ASTROPHYSICS AT CEA O. Boulade 1, N. Baier 2, P. Castelein 2, C. Cervera 2, P. Chorier 3, G. Destefanis 2, B. Fièque 3, O. Gravrand 2, F. Guellec

More information

Detector Control for the ELT (and the VLT) What we are doing and why?

Detector Control for the ELT (and the VLT) What we are doing and why? Detector Control for the ELT (and the VLT) What we are doing and why? Derek Ives, Leander Mehrgan, Javier Reyes and Gert Finger Pasadena 2015 ELT and VLT Detector Requirements Science Detectors AO Detectors

More information

A 3 Mpixel ROIC with 10 m Pixel Pitch and 120 Hz Frame Rate Digital Output

A 3 Mpixel ROIC with 10 m Pixel Pitch and 120 Hz Frame Rate Digital Output A 3 Mpixel ROIC with 10 m Pixel Pitch and 120 Hz Frame Rate Digital Output Elad Ilan, Niv Shiloah, Shimon Elkind, Roman Dobromislin, Willie Freiman, Alex Zviagintsev, Itzik Nevo, Oren Cohen, Fanny Khinich,

More information

Electron-Bombarded CMOS

Electron-Bombarded CMOS New Megapixel Single Photon Position Sensitive HPD: Electron-Bombarded CMOS University of Lyon / CNRS-IN2P3 in collaboration with J. Baudot, E. Chabanat, P. Depasse, W. Dulinski, N. Estre, M. Winter N56:

More information

CMOS Today & Tomorrow

CMOS Today & Tomorrow CMOS Today & Tomorrow Uwe Pulsfort TDALSA Product & Application Support Overview Image Sensor Technology Today Typical Architectures Pixel, ADCs & Data Path Image Quality Image Sensor Technology Tomorrow

More information

Wavefront sensor design for NGAO: Assumptions, Design Parameters and Technical Challenges Version 0.1

Wavefront sensor design for NGAO: Assumptions, Design Parameters and Technical Challenges Version 0.1 Wavefront sensor design for NGAO: Assumptions, Design Parameters and Technical Challenges Version 0.1 V. Velur Caltech Optical Observatories M/S 105-24, 1200 E California Blvd., Pasadena, CA 91125 Sept.

More information

The new CMOS Tracking Camera used at the Zimmerwald Observatory

The new CMOS Tracking Camera used at the Zimmerwald Observatory 13-0421 The new CMOS Tracking Camera used at the Zimmerwald Observatory M. Ploner, P. Lauber, M. Prohaska, P. Schlatter, J. Utzinger, T. Schildknecht, A. Jaeggi Astronomical Institute, University of Bern,

More information

Where detectors are used in science & technology

Where detectors are used in science & technology Lecture 9 Outline Role of detectors Photomultiplier tubes (photoemission) Modulation transfer function Photoconductive detector physics Detector architecture Where detectors are used in science & technology

More information

Minimizes reflection losses from UV-IR; Optional AR coatings & wedge windows are available.

Minimizes reflection losses from UV-IR; Optional AR coatings & wedge windows are available. Now Powered by LightField PyLoN:2K 2048 x 512 The PyLoN :2K is a controllerless, cryogenically-cooled CCD camera designed for quantitative scientific spectroscopy applications demanding the highest possible

More information

Characterisation of a CMOS Charge Transfer Device for TDI Imaging

Characterisation of a CMOS Charge Transfer Device for TDI Imaging Preprint typeset in JINST style - HYPER VERSION Characterisation of a CMOS Charge Transfer Device for TDI Imaging J. Rushton a, A. Holland a, K. Stefanov a and F. Mayer b a Centre for Electronic Imaging,

More information

AN INITIAL investigation into the effects of proton irradiation

AN INITIAL investigation into the effects of proton irradiation IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 53, NO. 2, FEBRUARY 2006 205 Proton Irradiation of EMCCDs David R. Smith, Richard Ingley, and Andrew D. Holland Abstract This paper describes the irradiation

More information

e2v Launches New Onyx 1.3M for Premium Performance in Low Light Conditions

e2v Launches New Onyx 1.3M for Premium Performance in Low Light Conditions e2v Launches New Onyx 1.3M for Premium Performance in Low Light Conditions e2v s Onyx family of image sensors is designed for the most demanding outdoor camera and industrial machine vision applications,

More information

4DAD, a device to align angularly and laterally a high power laser using a conventional sighting telescope as metrology

4DAD, a device to align angularly and laterally a high power laser using a conventional sighting telescope as metrology 4DAD, a device to align angularly and laterally a high power laser using a conventional sighting telescope as metrology Christophe DUPUY, Thomas PFROMMER, Domenico BONACCINI CALIA European Southern Observatory,

More information

Persistence Characterisation of Teledyne H2RG detectors

Persistence Characterisation of Teledyne H2RG detectors Persistence Characterisation of Teledyne H2RG detectors Simon Tulloch European Southern Observatory, Karl Schwarzschild Strasse 2, Garching, 85748, Germany. Abstract. Image persistence is a major problem

More information

100 khz and 2 MHz digitization rates Choose low speed digitization for low noise or high speed for fast spectral acquisition.

100 khz and 2 MHz digitization rates Choose low speed digitization for low noise or high speed for fast spectral acquisition. Now Powered by LightField PIXIS: 1 134 x 1 The PIXIS series from Princeton Instruments (PI) are fully integrated, low noise cameras with a 134 pixel format designed for quantitative scientific optical

More information

Welcome to: LMBR Imaging Workshop. Imaging Fundamentals Mike Meade, Photometrics

Welcome to: LMBR Imaging Workshop. Imaging Fundamentals Mike Meade, Photometrics Welcome to: LMBR Imaging Workshop Imaging Fundamentals Mike Meade, Photometrics Introduction CCD Fundamentals Typical Cooled CCD Camera Configuration Shutter Optic Sealed Window DC Voltage Serial Clock

More information

E2V Technologies CCD42-80 Back Illuminated High Performance CCD Sensor

E2V Technologies CCD42-80 Back Illuminated High Performance CCD Sensor E2V Technologies CCD42-80 Back Illuminated High Performance CCD Sensor FEATURES * 2048 by 4096 Pixel Format * 1.5 mm Square Pixels * Image Area 27.6 x 55. mm * Wide Dynamic Range * Symmetrical Anti-static

More information

A new Infra-Red Camera for COAST. Richard Neill - PhD student Supervisor: Dr John Young

A new Infra-Red Camera for COAST. Richard Neill - PhD student Supervisor: Dr John Young A new Infra-Red Camera for COAST Richard Neill - PhD student Supervisor: Dr John Young The Cambridge Optical Aperture-Synthesis Telescope: COAST is a

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs PSF and non-uniformity in a monolithic, fully depleted, 4T CMOS image sensor Conference or Workshop

More information

Evaluation of Performance of the MACAO Systems at the

Evaluation of Performance of the MACAO Systems at the Evaluation of Performance of the MACAO Systems at the VLTI Sridharan Rengaswamy a, Pierre Haguenauer a, Stephane Brillant a, Angela Cortes a, Julien H. Girard a, Stephane Guisard b, Jérôme Paufique b,

More information

Electron Multiplying Charge Coupled Devices. Craig Mackay, Institute of Astronomy, University of Cambridge.

Electron Multiplying Charge Coupled Devices. Craig Mackay, Institute of Astronomy, University of Cambridge. Electron Multiplying Charge Coupled Devices Craig Mackay, Institute of Astronomy, University of Cambridge. Outline Introduction to EMCCDs: General Characteristics Applications of EMCCDs: Current and Potential

More information

Marconi Applied Technologies CCD47-20 High Performance CCD Sensor

Marconi Applied Technologies CCD47-20 High Performance CCD Sensor Marconi Applied Technologies CCD47-20 High Performance CCD Sensor FEATURES * 1024 by 1024 1:1 Image Format * Image Area 13.3 x 13.3 mm * Frame Transfer Operation * 13 mm Square Pixels * Symmetrical Anti-static

More information

Point-spread function and photon transfer of a CCD for space-based astronomy

Point-spread function and photon transfer of a CCD for space-based astronomy Point-spread function and photon transfer of a CCD for space-based astronomy Edgar A. H. Allanwood a, Neil J. Murray a, Konstantin D. Stefanov a, David J. Burt b, Andrew D. Holland a a Centre for Electronic

More information

Low temperature measurements of the large-area, backthinned, and lownoise TAOSII CMOS sensors

Low temperature measurements of the large-area, backthinned, and lownoise TAOSII CMOS sensors Low temperature measurements of the large-area, backthinned, and lownoise TAOSII CMOS sensors Steven Johnson, Jérôme Pratlong, Amr Ibrahim, Paul Jerram, Paul Jorden (e2v technologies) Shiang-Yu Wang and

More information

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions

Difrotec Product & Services. Ultra high accuracy interferometry & custom optical solutions Difrotec Product & Services Ultra high accuracy interferometry & custom optical solutions Content 1. Overview 2. Interferometer D7 3. Benefits 4. Measurements 5. Specifications 6. Applications 7. Cases

More information

Digital Cameras for Microscopy

Digital Cameras for Microscopy Digital Cameras for Microscopy Fast frame rate and high sensitivity EM-CCD (Electron multiplication CCD) cameras High dynamic range Enhanced Ideal format for short exposures, fast frame rate and high dynamic

More information

Open Research Online The Open University s repository of research publications and other research outputs

Open Research Online The Open University s repository of research publications and other research outputs Open Research Online The Open University s repository of research publications and other research outputs Developing a high-resolution x-ray imager using electron-multiplying (EM) CCDs Conference or Workshop

More information

CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor

CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor CCD97-00 Back Illuminated 2-Phase IMO Series Electron Multiplying CCD Sensor INTRODUCTION The CCD97 is part of the L3Vision TM range of products from e2v technologies. This device uses a novel output amplifier

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION Teledyne s High Performance Infrared Detectors for Space Missions Paul Jerram a and James Beletic b a Teledyne e2v Space Imaging, Chelmsford, UK, CM7 4BS b Teledyne Imaging Sensors, Camarillo, California,

More information

Olivier Daigle a,b, Claude Carignan a, Sébastien Blais-Ouellette b

Olivier Daigle a,b, Claude Carignan a, Sébastien Blais-Ouellette b Faint flux performance of an EMCCD Olivier Daigle a,b, Claude Carignan a, Sébastien Blais-Ouellette b a Laboratoire d Astrophysique Expérimentale, Département de physique, Université de Montréal, C.P.

More information

CCD30 11 Back Illuminated High Performance CCD Sensor

CCD30 11 Back Illuminated High Performance CCD Sensor CCD30 11 Back Illuminated High Performance CCD Sensor FEATURES * 1024 by 256 Pixel Format * 26 mm Square Pixels * Image Area 26.6 x 6.7 mm * Wide Dynamic Range * Symmetrical Anti-static Gate Protection

More information

CCD42-40 NIMO Back Illuminated High Performance CCD Sensor

CCD42-40 NIMO Back Illuminated High Performance CCD Sensor CCD42-40 NIMO Back Illuminated High Performance CCD Sensor FEATURES 2048 by 2048 pixel format 13.5 mm square pixels Image area 27.6 x 27.6 mm Back Illuminated format for high quantum efficiency Full-frame

More information

Properties of a Detector

Properties of a Detector Properties of a Detector Quantum Efficiency fraction of photons detected wavelength and spatially dependent Dynamic Range difference between lowest and highest measurable flux Linearity detection rate

More information

A new Photon Counting Detector: Intensified CMOS- APS

A new Photon Counting Detector: Intensified CMOS- APS A new Photon Counting Detector: Intensified CMOS- APS M. Belluso 1, G. Bonanno 1, A. Calì 1, A. Carbone 3, R. Cosentino 1, A. Modica 4, S. Scuderi 1, C. Timpanaro 1, M. Uslenghi 2 1- I.N.A.F.-Osservatorio

More information

PoS(PhotoDet 2012)058

PoS(PhotoDet 2012)058 Absolute Photo Detection Efficiency measurement of Silicon PhotoMultipliers Vincent CHAUMAT 1, Cyril Bazin, Nicoleta Dinu, Véronique PUILL 1, Jean-François Vagnucci Laboratoire de l accélérateur Linéaire,

More information

A New Single-Photon Avalanche Diode in 90nm Standard CMOS Technology

A New Single-Photon Avalanche Diode in 90nm Standard CMOS Technology A New Single-Photon Avalanche Diode in 90nm Standard CMOS Technology Mohammad Azim Karami* a, Marek Gersbach, Edoardo Charbon a a Dept. of Electrical engineering, Technical University of Delft, Delft,

More information

Camera Test Protocol. Introduction TABLE OF CONTENTS. Camera Test Protocol Technical Note Technical Note

Camera Test Protocol. Introduction TABLE OF CONTENTS. Camera Test Protocol Technical Note Technical Note Technical Note CMOS, EMCCD AND CCD CAMERAS FOR LIFE SCIENCES Camera Test Protocol Introduction The detector is one of the most important components of any microscope system. Accurate detector readings

More information

Last class. This class. CCDs Fancy CCDs. Camera specs scmos

Last class. This class. CCDs Fancy CCDs. Camera specs scmos CCDs and scmos Last class CCDs Fancy CCDs This class Camera specs scmos Fancy CCD cameras: -Back thinned -> higher QE -Unexposed chip -> frame transfer -Electron multiplying -> higher SNR -Fancy ADC ->

More information

E2V Technologies CCD42-10 Inverted Mode Sensor High Performance AIMO CCD Sensor

E2V Technologies CCD42-10 Inverted Mode Sensor High Performance AIMO CCD Sensor E2V Technologies CCD42-1 Inverted Mode Sensor High Performance AIMO CCD Sensor FEATURES * 248 by 512 Pixel Format * 13.5 mm Square Pixels * Image Area 27.6 x 6.9 mm * Wide Dynamic Range * Symmetrical Anti-static

More information

ABSTRACTT. developments. applications. 1.2 GigaPixel. 2.1 CIS113 (Vega) figures below. illustrate the. another paper. 3. The

ABSTRACTT. developments. applications. 1.2 GigaPixel. 2.1 CIS113 (Vega) figures below. illustrate the. another paper. 3. The e2v CCD and CMOS sensors and systems designed for astronomical applications Paul Jorden*, Paul Jerram, J Doug Jordan, Jérôme Pratlong, Markk Robbins e2v technologies, 106 Waterhouse Lane, Chelmsford, Essex,

More information