What creates good color design?

Size: px
Start display at page:

Download "What creates good color design?"

Transcription

1 What about this wheel thingy? It sounds a terribly interesting project. Ah, said the marketing girl, well, we're having a little difficulty there. Difficulty? exclaimed Ford. Difficulty? What do you mean, difficulty? It's the single simplest machine in the entire Universe! The marketing girl soured him with a look. "All right Mr. Wise guy," she said, you're so clever, you tell us what color it should be. Color Envisioning Information (ch 5) Stone, Expert Color Choices Douglas Adams, The Restaurant at the End of the Universe Today s lecture Creating color Perceiving color Measuring color CIE XYZ, xyy, CIELAB Practicum Color measurement demo Tufte s principles applied Designing for CVD or color blindness What creates good color design? Good ideas executed with superb craft E.R. Tufte, Envisioning Information Aesthetics Perception Materials Maureen Stone, StoneSoup Consulting 1

2 Materials: Pigments & Paints Scattered light Materials: Dyes Organic molecules Biological origin (snails, bugs, plants, etc.) Synthetic (William Perkin) Dyed pigments are lakes The Bright Earth, Philip Ball Mauve, Simon Garfield Print & Film Layered color CMY primaries Film: dye layers Print: Halftone patterns Black for contrast Light Summed spectra RGB primaries Displays, projectors Basis for digital color LCD Display CRT Display Perception Materials Perception Aesthetics Physical World Visual System Mental Models Aesthetics Lights, surfaces, objects Eye, optic nerve, visual cortex Red, green, brown Apple, leaf, bark Stop, go, state park Perception Warm, cool, neutral Attractive, ugly, blah Materials Color design Powerful, nurturing, Maureen Stone, StoneSoup Consulting 2

3 Physical World Physical World Visual System Mental Models Light Energy Spectral distribution functions F(λ) Cone Response Encode as three values (L,M,S) CIE (X,Y,Z) Opponent Encoding Separate lightness, chroma (A,R-G,Y-B) Perceptual Models Color Space Hue, lightness saturation CIELAB Munsell (HVC) Appearance Models Color in Context Adaptation, Background, Size, CIECAM02 Spectral Distribution Visible light Power vs. wavelength Any source Direct Transmitted Reflected Refracted From A Field Guide to Digital Color, A.K. Peters, 2003 Visual System Cone Response Color Exploratory Light path Cornea, pupil, lens, retina Optic nerve, brain Retinal cells Rods and cones Unevenly distributed Cones Three color receptors Concentrated in fovea Simulation by Mark Fairchild Encode spectra as three values Long, medium and short (LMS) Trichromacy: only LMS is seen Different spectra can look the same Sort of like a digital camera* Inside the eye: Mayo Clinic From A Field Guide to Digital Color, A.K. Peters, 2003 Metamerism CIE Color Measurement All spectra that stimulate the same cone response are indistinguishable Metameric match CIE Standard Observer CIE tristimulus values (XYZ) International standard for specifying color All spectra that create the same tristimulus (XYZ) values look the same From A Field Guide to Digital Color, A.K. Peters, 2003 Maureen Stone, StoneSoup Consulting 3

4 CIE XYZ from Displays For any RGB Y = ry R +gy G +by B Y R Y G Y B = Maximum luminance of the display red, green, blue r,g,b are linear pixel values Similarly for X and Z Can be expressed as a matrix CIE Chromaticity Diagram Separate Colorfulness (x,y) Brightness (Y) XYZ = xyy Project XYZ on a plane x = X/(X+Y+Z) y = Y/(X+Y+Z) z = Z/(X+Y+Z) 1 = x+y+z luminance Pixel value Colors that vary only in brightness project to the same point Spectra that look the same project to the same point Display Gamuts Display gamuts create a triangle From A Field Guide to Digital Color, A.K. Peters, 2003 Projector Gamuts Pixel to Luminance Mapping ( gamma curve ) Same image, different mappings From A Field Guide to Digital Color, A.K. Peters, 2003 Maureen Stone, StoneSoup Consulting 4

5 Color Models Physical World Visual System Mental Models Light Energy Spectral distribution functions F(λ) Cone Response Encode as three values (L,M,S) CIE (X,Y,Z) Trichromacy Metamerism Color matching Color measurement Opponent Encoding Separate lightness, chroma (A,R-G,Y-B) Perceptual Models Color Space Hue, lightness saturation CIELAB Munsell (HVC) Appearance Models Color in Context Adaptation, Background, Size, CIECAM02 Opponent Color Definition Achromatic axis R-G and Y-B axis Separate lightness from chroma channels VA-Lab U Calgary Support for Opponent Color Unique hues No reddish-green Afterimages Red-green Blue-yellow Color vision deficiencies Red-green anomalies * Blue-yellow anomalies Physical World Visual System Mental Models Light Energy Spectral distribution functions F(λ) Cone Response Encode as three values (L,M,S) CIE (X,Y,Z) Opponent Encoding Separate lightness, chroma (A,R-G,Y-B) Separate lightness, chroma After images Color blindness Perceptual Models Color Space Hue, lightness saturation CIELAB Munsell (HVC) Appearance Models Color in Context Adaptation, Background, Size, CIECAM02 Perceptual Color Spaces Unique black and white Uniform differences Perception & design CIELAB Lightness (L*) plus two color axis (a*, b*) Non-linear function of CIE XYZ E defined for computing color differences Lightness Colorfulness Hue Maureen Stone, StoneSoup Consulting 5

6 Color Models Physical World Visual System Mental Models Light Energy Spectral distribution functions F(λ) Cone Response Encode as three values (L,M,S) CIE (X,Y,Z) Opponent Encoding Separate lightness, chroma (A,R-G,Y-B) Perceptual Models Color Space Hue, lightness saturation CIELAB Munsell (HVC) Intuitive color Color differences Color design Appearance Models Color in Context Adaptation, Background, Size, CIECAM02 The Magic Number 3 Trichromacy & Metamerism Three cones (color receptors) Encode any color as 3 numbers Color representation & measurement Opponent & perceptual color Lightness (luminance) + 2 chroma L* a* b* Hue, saturation, value Color reproduction Mix 3 primary colors (e.g. R,G,B) Match subset of all colors (gamut) Color Appearance yellow Demo Beyond three values Aesthetics Aesthetics Perception Good painting, good coloring, is comparable to good cooking. Even a good cooking recipe demands tasting and repeated tasting while it is being followed. And the best tasting still depends on a cook with taste. Josef Albers Materials Maureen Stone, StoneSoup Consulting 6

7 Effective Color Design Use color for a purpose Identify your information & messages Identify its function Assign relative importance Map colors accordingly Design using contrast & analogy Contrast emphasizes Analogy groups Legibility, attention & layering Design, test, evaluate Practice, practice, practice Envisioning Information avoiding catastrophe becomes the first principle in bringing color to information: Above all, do no harm. E. R. Tufte Fundamental Uses To label To measure To represent or to imitate reality To enliven or decorate Color and Function To label Primarily hue variation Associated with color names To measure Vary lightness & chroma Map to data distribution Color scales, ramps, maps Color and Function To evoke nature Metaphor, symbolic Illustration: distilled experience Color and Function To decorate, beautify Emotional design Visceral & reflective Maureen Stone, StoneSoup Consulting 7

8 Contrast and Analogy Contrast & Analogy Contrast (difference) separates Analogy (similarity) groups Get it right in black & white Value defines shape No edge without lightness difference No shading without lightness variation Value difference (contrast) Defines legibility Controls attention Creates layering Creates robustness Across viewers Across media Hue, chroma, value Value only In brief Get it right in black & white Use neutral backgrounds Grays or near gray RGB all nearly equal Prefer light backgrounds Avoid overly saturated colors RGB: No values are zero Exception: yellow Use hue contrast sparingly Small differences are fine If many hues, then use similar value, saturation To Label Identify by Color Cluster Calendar Created by Tableau - Visual Analysis for Databases TM Jarke van Wijk, Edward van Selow Cluster and Calendar based Visualization of Time Series Data Maureen Stone, StoneSoup Consulting 8

9 Grouping, Highlighting Psychophysics of Labeling Preattentive, pop out Time proportional to the number of digits Time proportional to the number of 7 s Both 3 s and 7 s Pop out Pop-out vs. Distinguishable Pop-out Typically, 5-6 distinct values simultaneously Up to 9 under controlled conditions Distinguishable 20 easily for reasonable sized stimuli More if in a controlled context Usually need a legend Color Names Basic names (Berlin & Kay) Linguistic study of names across 20 languages Found 11 basic names, similar linguistic evolution Black, white, gray Red, green, blue, yellow Orange, purple, brown, pink Controversy about original hypothesis Recent work by Kay et. al. Redefines as constraints, modulated by language World Color Survey Recommended by Colin Ware for labels World Color Survey WCS Database 330 Munsell chips 24 native speakers of 110 languages Asked to name each chip Berinmo English grue Language, thought and color: recent developments. Paul Kay and Terry Regier. Maureen Stone, StoneSoup Consulting 9

10 Tableau Color Example Color Sketches Categorical color palettes How many? Algorithmic? Basic colors (regular and pastel) Extensible? Customizable? Color appearance As a function of size As a function of background Robust and reliable color names Categorical Colors 10 basic colors Simple names Increase number with lightness variation Designed to balance Legibly colored dots, lines and text But not too gaudy for bars Tasteful, yet colorful Tableau names Basic names (11) Black, white, gray Red, green, blue, yellow Orange, purple, brown, pink Tableau names (10) Minus black & white Plus teal Yellow => gold Palette-based UI 1. Select whole palettes 2. Individual colors from different palettes 3. Standard color picker Maureen Stone, StoneSoup Consulting 10

11 Many, many RGB/HSV/HSL Color Tools To Measure eyedropper Data to Color Different Scales, Different Views Types of data values Nominal, ordinal, numeric Qualitative, sequential, diverging Color scale depends on data type Nominal like labeling (hue) Numeric scales need an order (saturation, brightness) Only approximate; best if quantized Long history in Vis research, cartography Rogowitz & Treinish, How not to lie with visualization Density Map Lightness scale Usually a bad idea Brewer Scales Nominal scales Distinct hues, but similar emphasis Sequential scale Vary in lightness and saturation Vary slightly in hue Diverging scale Complementary sequential scales Neutral at zero Lightness scale with hue and chroma variation Hue scale with lightness variation Maureen Stone, StoneSoup Consulting 11

12 Color Brewer Tableau Color Example Color sequences What colors, what sequences? Continuous or quantized? (and how?) Work at all sizes, and in isolation Real numeric data All distributions, including outliers Can t visualize the histogram Much harder than colorizing an image UI to encourage good practice UI must be simple, not intimidating Users not expert in color or statistics Ramp Design Sequential Ramps Start with Brewer ramps Available as RGB Not calibrated Modify For srgb Eliminate darkest colors Reduce hue shift Interpolate Custom Python code CIELAB, RGB Piecewise linear From ColorBrewer Diverging Ramps Data Distribution Mapping Census 2000: The Geography of U.S. Diversity Maureen Stone, StoneSoup Consulting 12

13 Heat Map (default ramp) Full Range Skewed Data Skewed Data Slightly negative Stepped Threshold Skewed Data Skewed Data Quantitative UI StoneSoup Consulting, 2005 Maureen Stone, StoneSoup Consulting 13

14 Multi-dimensional Scatter plot Multivariate Color Sequences Variable 1, 2 X, Y Variable 3, 4, 5 R, G, B Using Color Dimensions to Display Data Dimensions Beatty and Ware Color Weaves How well does it work? 6 variables = 6 hues, which vary in brightness Brewer color scheme Additive mixture (blend) Spatial texture (weave) Weaving versus Blending (APGV06 and SIGGRAPH poster) Haleh Hagh-Shenas, Victoria Interrante, Christopher Healey and Sunghee Kim From The Economist Multispectral Color Imaging Color and Shading Shape is defined by lightness (shading) Color (hue, saturation) labels CT image (defines shape) PET color highlights tumor Image courtesy of Siemens Maureen Stone, StoneSoup Consulting 14

15 Color Overlay (Temperature) 3D line integral convolution to visualize 3D flow (LIC). Color varies from red to yellow with increasing temperature To Represent or Imitate Reality Victoria Interrante and Chester Grosch, U. Minnesota Illustrative Color To Enliven or Decorate Gray s Anatomy of the Human Body Map of Point Reyes Visualization of isoelectron density surfaces around molecules Marc Levoy (1988) Which has more information? Which would you rather look at? Color Vision Deficiencies (CVD) Non-standard cone (SML) response Genetic Medical Mild to missing Three modes L-weak (protanope) M-weak (deuteranope) S-weak (tritanope) Modeled in opponent space Achromatic axis R-G and Y-B axis Maureen Stone, StoneSoup Consulting 15

16 Incidence of CVD Monochromacy % Dichromacy Protanopia 1% Deuteranopia 1.1% Tritanopia 0.002% Anomalous trichromacy Protanomaly 1% Deuteranomaly 4.9% Tritanomaly - Total % Vischeck Simulates dichromatic color vision deficiencies Web service or Photoshop plug-in Robert Dougherty and Alex Wade vischeck.com R. W. G. Hunt. Measuring Colour. Fountain Press,1998. Deuteranope Protanope Tritanope Smart Money iphone Double encode: Shapes or textures Maureen Stone, StoneSoup Consulting 16

17 Similar colors are the real problem Accommodation No color set that works for all viewers Even accommodating most common is limiting Options: Minimize dependency on color Double encode Provide choices/customization STOP protanope deuteranope luminance Maureen Stone, StoneSoup Consulting 17

Color in Information Display RIT Seminar October 5, 2005

Color in Information Display RIT Seminar October 5, 2005 Information Display Color in Information Display Maureen Stone StoneSoup Consulting Woodinville, WA Graphical presentation of information Charts, graphs, diagrams, maps, illustrations Originally hand-crafted,

More information

Color. Maneesh Agrawala Jessica Hullman. CS : Visualization Fall Assignment 3: Visualization Software

Color. Maneesh Agrawala Jessica Hullman. CS : Visualization Fall Assignment 3: Visualization Software Color Maneesh Agrawala Jessica Hullman CS 294-10: Visualization Fall 2014 Assignment 3: Visualization Software Create a small interactive visualization application you choose data domain and visualization

More information

A Brief Plug. Color in Information Display. Color includes Gray. Information Display. Color In Information Display, SIAT 1/24/2006

A Brief Plug. Color in Information Display. Color includes Gray. Information Display. Color In Information Display, SIAT 1/24/2006 A Brief Plug Color in Information Display Maureen Stone StoneSoup Consulting Woodinville, WA Information Display Color includes Gray Graphical presentation of information Charts, graphs, diagrams, maps,

More information

Colour + Perception. CMPT 467/767 Visualization Torsten Möller. Pfister/Möller

Colour + Perception. CMPT 467/767 Visualization Torsten Möller. Pfister/Möller Colour + Perception CMPT 467/767 Visualization Torsten Möller Recommended Reading http://www.stonesc.com/ 2 Where / What 3 Based on slide from Mazur Contours & Texture C. Ware, Visual Thinking for Design

More information

IAT 355 Visual Analytics. Luminance, Contrast and Colour in Information Display. Lyn Bartram

IAT 355 Visual Analytics. Luminance, Contrast and Colour in Information Display. Lyn Bartram IAT 355 Visual Analytics Luminance, Contrast and Colour in Information Display Lyn Bartram Simultaneous contrast effects a gray patch placed on a dark background looks lighter than the same gray patch

More information

CSE512 :: 6 Feb Color. Jeffrey Heer University of Washington

CSE512 :: 6 Feb Color. Jeffrey Heer University of Washington CSE512 :: 6 Feb 2014 Color Jeffrey Heer University of Washington 1 Color in Visualization Identify, Group, Layer, Highlight Colin Ware 2 Purpose of Color To label To measure To represent and imitate To

More information

CPSC / Colour

CPSC / Colour CPSC 599.28/601.28 Colour Sheelagh Carpendale What makes colour effective? Good ideas executed with superb craft E.R. Tufte Effective colour needs a context Immediate vs. studied Anyone vs. specialist

More information

CPSC 583 Colour. Sheelagh Carpendale

CPSC 583 Colour. Sheelagh Carpendale CPSC 583 Colour Sheelagh Carpendale References Colin Ware. (2004) Information Visualization: Perception for Design. Morgan Kaufmann. Maureen Stone. (2003) A field guide to digital color. AK Peters Bernice

More information

Goals for this Course. Color in Information Display. What this Course is Not. Effective Color. Why Should You Care? What makes color effective?

Goals for this Course. Color in Information Display. What this Course is Not. Effective Color. Why Should You Care? What makes color effective? Goals for this Course Color in Information Display Maureen Stone StoneSoup Consulting Woodinville, WA Course Notes on http://www.stonesc.com/vis05 Improve the use of color in visualization Why use color?

More information

CPSC 583 Colour. Sheelagh Carpendale

CPSC 583 Colour. Sheelagh Carpendale CPSC 583 Colour Sheelagh Carpendale References Colin Ware. (2004) Information Visualization: Perception for Design. Morgan Kaufmann. Maureen Stone. (2003) A field guide to digital color. AK Peters Bernice

More information

Contrast, Luminance and Colour

Contrast, Luminance and Colour Contrast, Luminance and Colour Week 3 Lecture 1 IAT 814 Lyn Bartram Some of these slides have been borrowed and adapted from Maureen Stone and Colin Ware What is gray? Colour space is 3 dimensions 1 achromatic

More information

excite the cones in the same way.

excite the cones in the same way. Humans have 3 kinds of cones Color vision Edward H. Adelson 9.35 Trichromacy To specify a light s spectrum requires an infinite set of numbers. Each cone gives a single number (univariance) when stimulated

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

Adapted from the Slides by Dr. Mike Bailey at Oregon State University

Adapted from the Slides by Dr. Mike Bailey at Oregon State University Colors in Visualization Adapted from the Slides by Dr. Mike Bailey at Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place

More information

Effective Color: Materials. Color in Information Display. What does RGB Mean? The Craft of Digital Color. RGB from Cameras.

Effective Color: Materials. Color in Information Display. What does RGB Mean? The Craft of Digital Color. RGB from Cameras. Effective Color: Materials Color in Information Display Aesthetics Maureen Stone StoneSoup Consulting Woodinville, WA Course Notes on http://www.stonesc.com/vis05 (Part 2) Materials Perception The Craft

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013.

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013 Tamara Munzner Vision/Color Reading for Color RB Chap Color FCG Sections 3.2-3.3 FCG Chap 20 Color FCG Chap 21.2.2 Visual Perception

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color.

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016 Tamara Munzner Color http://www.ugrad.cs.ubc.ca/~cs314/vjan2016 Vision/Color 2 RGB Color triple (r, g, b) represents colors with amount

More information

Computer Graphics Si Lu Fall /27/2016

Computer Graphics Si Lu Fall /27/2016 Computer Graphics Si Lu Fall 2017 09/27/2016 Announcement Class mailing list https://groups.google.com/d/forum/cs447-fall-2016 2 Demo Time The Making of Hallelujah with Lytro Immerge https://vimeo.com/213266879

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Color in Information Display, Vis08 10/19/2008

Color in Information Display, Vis08 10/19/2008 Color in Information Display Overview Aesthetics Materials Perception Color vision & models (2:-2:3) Tufte s principles (2:3-2:5) Case study: Tableau Software (2:5-3:3) Break (3:3-4:) Tableau demo, Jock

More information

PERCEPTUALLY-ADAPTIVE COLOR ENHANCEMENT OF STILL IMAGES FOR INDIVIDUALS WITH DICHROMACY. Alexander Wong and William Bishop

PERCEPTUALLY-ADAPTIVE COLOR ENHANCEMENT OF STILL IMAGES FOR INDIVIDUALS WITH DICHROMACY. Alexander Wong and William Bishop PERCEPTUALLY-ADAPTIVE COLOR ENHANCEMENT OF STILL IMAGES FOR INDIVIDUALS WITH DICHROMACY Alexander Wong and William Bishop University of Waterloo Waterloo, Ontario, Canada ABSTRACT Dichromacy is a medical

More information

CSE 332/564: Visualization. Fundamentals of Color. Perception of Light Intensity. Computer Science Department Stony Brook University

CSE 332/564: Visualization. Fundamentals of Color. Perception of Light Intensity. Computer Science Department Stony Brook University Perception of Light Intensity CSE 332/564: Visualization Fundamentals of Color Klaus Mueller Computer Science Department Stony Brook University How Many Intensity Levels Do We Need? Dynamic Intensity Range

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Visual Perception. human perception display devices. CS Visual Perception

Visual Perception. human perception display devices. CS Visual Perception Visual Perception human perception display devices 1 Reference Chapters 4, 5 Designing with the Mind in Mind by Jeff Johnson 2 Visual Perception Most user interfaces are visual in nature. So, it is important

More information

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3355 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1 Color Fredo Durand Many slides by Victor Ostromoukhov Color Vision 1 Today: color Disclaimer: Color is both quite simple and quite complex There are two options to teach color: pretend it all makes sense

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

Light and Colour. Light as part of the EM spectrum. Light as part of the EM spectrum

Light and Colour. Light as part of the EM spectrum. Light as part of the EM spectrum Light and Colour Prof. Grega Bizjak, PhD Laboratory of Lighting and Photometry Faculty of Electrical Engineering University of Ljubljana Light as part of the EM spectrum Visible light can be seen as part

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

Digital Image Processing

Digital Image Processing Digital Image Processing 6. Color Image Processing Computer Engineering, Sejong University Category of Color Processing Algorithm Full-color processing Using Full color sensor, it can obtain the image

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

Color Computer Vision Spring 2018, Lecture 15

Color Computer Vision Spring 2018, Lecture 15 Color http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 15 Course announcements Homework 4 has been posted. - Due Friday March 23 rd (one-week homework!) - Any questions about the

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

PERCEIVING COLOR. Functions of Color Vision

PERCEIVING COLOR. Functions of Color Vision PERCEIVING COLOR Functions of Color Vision Object identification Evolution : Identify fruits in trees Perceptual organization Add beauty to life Slide 2 Visible Light Spectrum Slide 3 Color is due to..

More information

Geography 360 Principles of Cartography. April 24, 2006

Geography 360 Principles of Cartography. April 24, 2006 Geography 360 Principles of Cartography April 24, 2006 Outlines 1. Principles of color Color as physical phenomenon Color as physiological phenomenon 2. How is color specified? (color model) Hardware-oriented

More information

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision Colour Vision I: The receptoral basis of colour vision Colour Vision 1 - receptoral What is colour? Relating a physical attribute to sensation Principle of Trichromacy & metamers Prof. Kathy T. Mullen

More information

Multimedia Systems and Technologies

Multimedia Systems and Technologies Multimedia Systems and Technologies Faculty of Engineering Master s s degree in Computer Engineering Marco Porta Computer Vision & Multimedia Lab Dipartimento di Ingegneria Industriale e dell Informazione

More information

Color Perception and Applications. Penny Rheingans University of Maryland Baltimore County. Overview

Color Perception and Applications. Penny Rheingans University of Maryland Baltimore County. Overview Color Perception and Applications SIGGRAPH 99 Course: Fundamental Issues of Visual Perception for Effective Image Generation Penny Rheingans University of Maryland Baltimore County Overview Characteristics

More information

Marks + Channels. Large Data Visualization Torsten Möller. Munzner/Möller

Marks + Channels. Large Data Visualization Torsten Möller. Munzner/Möller Marks + Channels Large Data Visualization Torsten Möller Overview Marks + channels Channel effectiveness Accuracy Discriminability Separability Popout Channel characteristics Spatial position Colour Size

More information

Future Electronics EZ-Color Seminar. Autumn Colour Technology

Future Electronics EZ-Color Seminar. Autumn Colour Technology Polymer Optics Ltd. 6 Kiln Ride, Wokingham Berks, RG40 3JL, England Tel/Fax:+44 (0)1189 893341 www.polymer-optics.co.uk Future Electronics EZ-Color Seminar Autumn 2007 Colour Technology Mike Hanney Technical

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

A World of Color. Session 4 Color Spaces. OLLI at Illinois Spring D. H. Tracy

A World of Color. Session 4 Color Spaces. OLLI at Illinois Spring D. H. Tracy A World of Color Session 4 Color Spaces OLLI at Illinois Spring 2018 D. H. Tracy Course Outline 1. Overview, History and Spectra 2. Nature and Sources of Light 3. Eyes and Color Vision 4. Color Spaces

More information

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies

Light. intensity wavelength. Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies Image formation World, image, eye Light Light is electromagnetic waves Laser is light that contains only a narrow spectrum of frequencies intensity wavelength Visible light is light with wavelength from

More information

Visual Perception. Jeff Avery

Visual Perception. Jeff Avery Visual Perception Jeff Avery Source Chapter 4,5 Designing with Mind in Mind by Jeff Johnson Visual Perception Most user interfaces are visual in nature. So, it is important that we understand the inherent

More information

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science Slide 1 the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour Sir Isaac Newton (1730) Slide 2 Light

More information

What is Color. Color is a fundamental attribute of human visual perception.

What is Color. Color is a fundamental attribute of human visual perception. Color What is Color Color is a fundamental attribute of human visual perception. By fundamental we mean that it is so unique that its meaning cannot be fully appreciated without direct experience. How

More information

Colors in Visualization. By Mike Bailey Oregon State University

Colors in Visualization. By Mike Bailey Oregon State University Colors in Visualization By Mike Bailey Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed, so

More information

Color vision and representation

Color vision and representation Color vision and representation S M L 0.0 0.44 0.52 Mark Rzchowski Physics Department 1 Eye perceives different wavelengths as different colors. Sensitive only to 400nm - 700 nm range Narrow piece of the

More information

Color appearance in image displays

Color appearance in image displays Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 1-18-25 Color appearance in image displays Mark Fairchild Follow this and additional works at: http://scholarworks.rit.edu/other

More information

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38 Images CS 4620 Lecture 38 w/ prior instructor Steve Marschner 1 Announcements A7 extended by 24 hours w/ prior instructor Steve Marschner 2 Color displays Operating principle: humans are trichromatic match

More information

Colors in Scientific Visualization. Mike Bailey Oregon State University

Colors in Scientific Visualization. Mike Bailey Oregon State University Colors in Scientific Visualization Mike Bailey Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed,

More information

Using Color in Scientific Visualization

Using Color in Scientific Visualization Using Color in Scientific Visualization Mike Bailey The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed, so difficult

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Today. Color. Color and light. Color and light. Electromagnetic spectrum 2/7/2011. CS376 Lecture 6: Color 1. What is color?

Today. Color. Color and light. Color and light. Electromagnetic spectrum 2/7/2011. CS376 Lecture 6: Color 1. What is color? Color Monday, Feb 7 Prof. UT-Austin Today Measuring color Spectral power distributions Color mixing Color matching experiments Color spaces Uniform color spaces Perception of color Human photoreceptors

More information

Question From Last Class

Question From Last Class Question From Last Class What is it about matter that determines its color? e.g., what's the difference between a surface that reflects only long wavelengths (reds) and a surfaces the reflects only medium

More information

University of British Columbia CPSC 414 Computer Graphics

University of British Columbia CPSC 414 Computer Graphics University of British Columbia CPSC 414 Computer Graphics Color 2 Week 10, Fri 7 Nov 2003 Tamara Munzner 1 Readings Chapter 1.4: color plus supplemental reading: A Survey of Color for Computer Graphics,

More information

SYDE 575: Introduction to Image Processing. Adaptive Color Enhancement for Color vision Deficiencies

SYDE 575: Introduction to Image Processing. Adaptive Color Enhancement for Color vision Deficiencies SYDE 575: Introduction to Image Processing Adaptive Color Enhancement for Color vision Deficiencies Color vision deficiencies Statistics show that color vision deficiencies affect 8.7% of the male population

More information

Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May

Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May Lecture 8. Human Information Processing (1) CENG 412-Human Factors in Engineering May 30 2009 1 Outline Visual Sensory systems Reading Wickens pp. 61-91 2 Today s story: Textbook page 61. List the vision-related

More information

CMPSCI 670: Computer Vision! Color. University of Massachusetts, Amherst September 15, 2014 Instructor: Subhransu Maji

CMPSCI 670: Computer Vision! Color. University of Massachusetts, Amherst September 15, 2014 Instructor: Subhransu Maji CMPSCI 670: Computer Vision! Color University of Massachusetts, Amherst September 15, 2014 Instructor: Subhransu Maji Slides by D.A. Forsyth 2 Color is the result of interaction between light in the environment

More information

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation. From light to colour spaces Light and colour Advanced Graphics Rafal Mantiuk Computer Laboratory, University of Cambridge 1 2 Electromagnetic spectrum Visible light Electromagnetic waves of wavelength

More information

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones Light and Color Eye perceives EM radiation of different wavelengths as different colors. Sensitive only to the range 4nm - 7 nm This is a narrow piece of the entire electromagnetic spectrum. Comparing

More information

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal IFT3355: Infographie Couleur Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal Color Appearance Visual Range Electromagnetic waves (in nanometres) γ rays X rays ultraviolet violet

More information

Additive. Subtractive

Additive. Subtractive Physics 106 Additive Subtractive Subtractive Mixing Rules: Mixing Cyan + Magenta, one gets Blue Mixing Cyan + Yellow, one gets Green Mixing Magenta + Yellow, one gets Red Mixing any two of the Blue, Red,

More information

CS 544 Human Abilities

CS 544 Human Abilities CS 544 Human Abilities Color Perception and Guidelines for Design Preattentive Processing Acknowledgement: Some of the material in these lectures is based on material prepared for similar courses by Saul

More information

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading:

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Announcements Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Chapter 3: Color CSE 252A Lecture 18 Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Digital Image Processing

Digital Image Processing Digital Image Processing IMAGE PERCEPTION & ILLUSION Hamid R. Rabiee Fall 2015 Outline 2 What is color? Image perception Color matching Color gamut Color balancing Illusions What is Color? 3 Visual perceptual

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Introduction to Computer Vision CSE 152 Lecture 18

Introduction to Computer Vision CSE 152 Lecture 18 CSE 152 Lecture 18 Announcements Homework 5 is due Sat, Jun 9, 11:59 PM Reading: Chapter 3: Color Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

Overview of Human Cognition and its Impact on User Interface Design (Part 2)

Overview of Human Cognition and its Impact on User Interface Design (Part 2) Overview of Human Cognition and its Impact on User Interface Design (Part 2) Brief Recap Gulf of Evaluation What is the state of the system? Gulf of Execution What specific inputs needed to achieve goals?

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3.

AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. AP PSYCH Unit 4.2 Vision 1. How does the eye transform light energy into neural messages? 2. How does the brain process visual information? 3. What theories help us understand color vision? 4. Is your

More information

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling

Colour. Cunliffe & Elliott, Chapter 8 Chapman & Chapman, Digital Multimedia, Chapter 5. Autumn 2016 University of Stirling CSCU9N5: Multimedia and HCI 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Cunliffe & Elliott,

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Comp/Phys/Apsc 715. Example Videos. Administrative 1/23/2014. Lecture 5: Trichromacy, Color Spaces, Properties of Color

Comp/Phys/Apsc 715. Example Videos. Administrative 1/23/2014. Lecture 5: Trichromacy, Color Spaces, Properties of Color Comp/Phys/Apsc 715 Lecture 5: Trichromacy, Color Spaces, Properties of Color 1 Example Videos Segmentation and visualization of neurons Astro Visualization (the Millennium Run) Dragonfly Flight Analysis

More information

Color and perception Christian Miller CS Fall 2011

Color and perception Christian Miller CS Fall 2011 Color and perception Christian Miller CS 354 - Fall 2011 A slight detour We ve spent the whole class talking about how to put images on the screen What happens when we look at those images? Are there any

More information

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match CIE tri-stimulus experiment diffuse reflecting screen diffuse reflecting screen 770 769 768 test light 382 381 380 observer test light 445 535 630 445 535 630 observer light intensity for visual color

More information

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!

Colour. Why/How do we perceive colours? Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow! Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Colour Lecture (2 lectures)! Richardson, Chapter

More information

III: Vision. Objectives:

III: Vision. Objectives: III: Vision Objectives: Describe the characteristics of visible light, and explain the process by which the eye transforms light energy into neural. Describe how the eye and the brain process visual information.

More information

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing

For a long time I limited myself to one color as a form of discipline. Pablo Picasso. Color Image Processing For a long time I limited myself to one color as a form of discipline. Pablo Picasso Color Image Processing 1 Preview Motive - Color is a powerful descriptor that often simplifies object identification

More information

Chapter Objectives. Color Management. Color Management. Chapter Objectives 1/27/12. Beyond Design

Chapter Objectives. Color Management. Color Management. Chapter Objectives 1/27/12. Beyond Design 1/27/12 Copyright 2009 Fairchild Books All rights reserved. No part of this presentation covered by the copyright hereon may be reproduced or used in any form or by any means graphic, electronic, or mechanical,

More information

Sensation, Part 4 Gleitman et al. (2011), Chapter 4

Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 20, 2014 T. M. D'Zmura 1 From last time T. M. D'Zmura 2 Rod Transduction

More information

Prof. Feng Liu. Winter /09/2017

Prof. Feng Liu. Winter /09/2017 Prof. Feng Liu Winter 2017 http://www.cs.pdx.edu/~fliu/courses/cs410/ 01/09/2017 Today Course overview Computer vision Admin. Info Visual Computing at PSU Image representation Color 2 Big Picture: Visual

More information

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE OUTLINE Human visual system Color images Color quantization Colorimetric color spaces HUMAN VISUAL SYSTEM HUMAN VISUAL SYSTEM HUMAN VISUAL

More information

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options?

What is Color Gamut? Public Information Display. How do we see color and why it matters for your PID options? What is Color Gamut? How do we see color and why it matters for your PID options? One of the buzzwords at CES 2017 was broader color gamut. In this whitepaper, our experts unwrap this term to help you

More information

EECS490: Digital Image Processing. Lecture #12

EECS490: Digital Image Processing. Lecture #12 Lecture #12 Image Correlation (example) Color basics (Chapter 6) The Chromaticity Diagram Color Images RGB Color Cube Color spaces Pseudocolor Multispectral Imaging White Light A prism splits white light

More information

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture!

Colour. Electromagnetic Spectrum (1: visible is very small part 2: not all colours are present in the rainbow!) Colour Lecture! Colour Lecture! ITNP80: Multimedia 1 Colour What is colour? Human-centric view of colour Computer-centric view of colour Colour models Monitor production of colour Accurate colour reproduction Richardson,

More information

Creative Computing II

Creative Computing II Creative Computing II Christophe Rhodes c.rhodes@gold.ac.uk Autumn 2010, Wednesdays: 10:00 12:00: RHB307 & 14:00 16:00: WB316 Winter 2011, TBC Ambiguity Image Walter Ehrenstein (1899 1961) Zeitschrift

More information

Capturing Light in man and machine

Capturing Light in man and machine Capturing Light in man and machine CS194: Image Manipulation & Computational Photography Alexei Efros, UC Berkeley, Fall 2015 Etymology PHOTOGRAPHY light drawing / writing Image Formation Digital Camera

More information