Color appearance in image displays

Size: px
Start display at page:

Download "Color appearance in image displays"

Transcription

1 Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship Color appearance in image displays Mark Fairchild Follow this and additional works at: Recommended Citation Fairchild, Mark, "Color appearance in image displays" (25). Accessed from This Presentation is brought to you for free and open access by RIT Scholar Works. It has been accepted for inclusion in Presentations and other scholarship by an authorized administrator of RIT Scholar Works. For more information, please contact

2 Color Appearance in Image Displays Mark D. Fairchild RIT Munsell Color Science Laboratory ISCC/CIE Expert Symposium 75 Years of the CIE Standard Colorimetric Observer Ottawa 26 O Canada

3 Image Colorimetry Device Dependent (e.g. RGB, CMYK) Device Independent (e.g. XYZ, L*a*b*) Viewing-Conditions Independent (e.g. JCh) Color Appearance Viewing-Conditions Independent But Spatially Localized

4 Image Appearance Spatial, Temporal & Image Quality Questions Remain... Which degraded image is better? And by how much? XYZ to CIELAB Tristimulus Values Amounts of Three Primaries Required to Match a Color Specifies the Stimulus of Color CIELAB Aims to Begin Describing Differences & Appearance

5 CIELAB to CIECAM97s CIELAB Adaptation & Response Compression Input: Stimulus & White Point Output: ~ Appearance Correlates Lightness, Chroma, Hue CIECAM97s Aims to be More Accurate & Comprehensive than CIELAB CIECAM: 97s to 2 More Appearance Phenomena Background, Surround, etc. Stimulus, White, Luminance, Other Parts of Viewing Field More Accurate Appearance Correlates Brightness, Lightness, Colorfulness, Chroma, Saturation, Hue CIECAM2: An Evolutionary Enhancement

6 CIECAM2 Accurate Adaptation & Appearance Scales Simple Stimulus, Background, Surround Images: When Reproduced at Same Scale CIECAM2 Successes Alive After 4+ Years Accurate CAT2 Display Brightness/Colorfulness Perceived Gamut Volumes Practical Color Management (e.g. Microsoft) Color Differences

7 Beyond CIECAM2 Color Appearance Spatial Vision Temporal Vision Image Appearance Modeling icam: An Example

8 Past Results Image Quality: Sharpness & Contrast HDR Rendering: Local Adaptation HDR Video: Adaptation Time Course Image Quality 1.2 (a) Im Model Prediction Im Model Prediction Perceived Difference Perceived Contrast Image Difference Prediction (Sharpness Data) Image Difference Prediction (Contrast Data)

9 HDR Rendering Video Rendering

10 Recent Research HDR Rendering Psychophysics Perceived Color Gamut Volumes Surround Effects Noise Adaptation Orthogonal Opponent-Colors Dimensions HDR Psychophysics Fig. 3 Average preference scores for 12 scenes (color images) (The algorithms are labeled as Retinexbased filters (R), Sigmoid function (S), Histogram adjustment (H), icam (I), Photographic reproduction (P), and Bilateral filter (B). The same labels are used in this article).

11 HDR Accuracy Fig. 2 Experimental scenes: (a) window (b) breakfast (c) desk Fig. 14 Overall accuracy scores for HDR rendering algorithms Perceived Gamuts

12 Image Examples Image Examples

13 Surround Figure 1, Demos for surround lab. Image is shown in different surround condition. Relative Lum Normalized Lum Figure 5, Relationship between the average surround luminance and image contrast. Each column shows the plot for each scene. The first row shows the scene; the second row shows the average surround luminance (relative to maximum LCD luminance) vs. gamma for each scene; in the last row, the relative surround luminance is normalized to the average luminance of three different gammas ( = 1/1.3, = 1, and = 1.3 ) for each scene. Noise Adaptation

14 Noise Adaptation Noise Adaptation

15 .9 Noise Adaptation MF Random Adapt MF Horizontal Adapt MF Vertical Adapt GJ Random Adapt GJ Horizontal Adapt GJ Vertical Adapt.8.3 Random Adapt Horizontal Adapt Vertical Adapt Visible Contrast.7.6 Model-Equal Random Contrast Adapting Contrast Adapting Contrast Orthogonal Opponency C C $%&'()"*+,-./1+2),$(345)6773(%&87978)78%(:96%(79+;:)23;::%4);%3;, A $%&'()"*<,.=>?@A1+2),$(345)6773(%&879?9@9+;:A, A C B C B PCA3 PCA3 $%&'()"*2,=-B1+2),$(345)6773(%&879=9-9+;:B PCA2 PCA2 PCA1 A PCA1 $%&'()"*:,@.<.(1+2),$3(45)6773(%&879@9.<9+;:.(, A B B For Y average =.29 # # # " V 1 V 2 V 3 $ ' $ X $ & # & # & & = #' '.59& * # Y & & # % "'.579 ' & # % " Z & %

16 Ongoing Projects Image Size Improved HDR Rendering HDR Photographic/Appearance Survey Spectral Adaptation Modeling Transformability of Primaries CIECAM2 & IPT E Gamuts & Brilliance Observer Metamerism & Full Standard Observer Surround Color Color Curiosity Shop Image Size 43.6 (mm) 87.2 (mm) (mm) (mm)

17 Improved HDR HDR Survey

18 Gamuts & Brilliance 3 cd/m 2 :.3 cd/m 2 (1,:1 Contrast) Spectral Adaptation Illuminant/Source WL (nm) Illuminant/Source WN (cm -1 ) Reflectance WL (nm) Reflectance WN (cm -1 ) 14. Define Blur WN (cm -1 ) Stimulus WN (cm -1 ) Median CIELAB Color Difference A D75 TL84 Hor CWF Equal-Energy Illuminant WN (cm -1 ) (1-D) Blurred Illuminant/Source WN (cm -1 ) + (D) Adapting Stimulus WN (cm -1 ). Spectral CAT2 CIELAB Constancy Adaptation Model Adapted Stimulus WN (cm -1 ) Adapted Ill. E Reflectance WL (nm) Colorimetry Illuminant E XYZ CIELAB

19 CIECAM2 E E94-Type Weighted Color Difference Equation In CIECAM2 JCh and IPT(cylindrical) Performance Comparable to DE2 Useful Default Viewing Conditions More Testing and Description to Come Transformability TC1-56, Improved Colour Matching Functions, M. Brill Match 2 Whites, Each with Two Sets of RGB Primaries Many Replicates for a Few Observers A Collection of Observers Statistically Meaningful Test of Transformability of Primaries One of Several Labs Thanks to Irena NIST

20 2 ) (L*) b* -a* a* -b* a* b* L* b* L* Power CRT Gray Print Wavelength (nm) HARD-COPY a*. 1. a*. 1. a* Metameric Matching Color Reproduction Media 2 Observers 7 Colors (CMYKRGB) 2 Media (Print, Transparency) L* Nimeroff et al. CIE Pub. 8 Intra-observer b* Inter-observer Sample: Cyan Transparency L-Cone Peak Density Lens Peak Density M-Cone Peak Density Funding: NSF-NYS/IUCRC & NYSSTF CAT CEIS Visual Experiment: Rick Alfvin and Jason Gibson Macula Peak Density Lens Peak Density Experimental Results: R.L. Alfvin and M.D. Fairchild, Observer Variability in Metameric Color Matches using Color Reproduction Media, Color Res. Appl. 22, in press (1997). CMF Model: A.D. North and M.D. Fairchild, Measuring Color Matching Functions Part I, Color Res. Appl. 18, (1993). Visual Data Starting Point: V.C. Smith and J. Pokorny, Chromatic Discrimination Axes, CRT Phosphor Spectra, and Individual Variation in Color Vision, J. Opt. Soc. Am. 12, (1995). Observed Predicted Obs. Metamerism... Modeling Observer Metamerism through Monte Carlo Simulation Abstract: Monte Carlo Experiment: 1, Sets of Color Matching Functions Generated 1996 OSA Poster Improved Model More Observers Full Expression of Nimeroff Mean- Covariance System Metameric color matches depend on the observer s color matching functions. Data were collected on observer variability in typical metameric matches. A Monte Carlo simulation, using a model of color matching functions and physiological data, was performed to derive a complete colorimetric system capable of predicting inter-observer variability in addition to mean color matches. Visual Experiment: CRT Typical Results: Radiance (w/sr*m Inter-Observer Variability Observed and predicted (previously published models) covariance ellipses. Predictions are inadequate. Monte Carlo Model: x' (") = 1 #k 1x $ lens (") 1 #k 2 x $ macula (") [ k 3 x L(") + k 4 x M(") + k 5 x S(") ] y' (") = 1 #k 1y$ (") lens 1 #k 2 y$ macula(") [ k 3 yl(") + k 4yM(") + k 5 ys(") ] z' (") = 1 #k 1z$ (") lens 1 #k 2 z$ macula (") [ k 3 z L(") + k 4 z M(") + k 5 z S(") ] L-Cones: 6% Smith & Pokorny 4% Shifted -4nm (In Wave#) k Coefficeints Fitted to CIE 1931 Standard Colorimetric Observer M-Cones: 88% Smith & Pokorny 12% Shifted +4nm (In Wave#) Acknowledgements / References: S-Cones: 1% Smith & Pokorny Mean and Covariance Functions Established Standard Error Propoagation to CIELAB Covariance Matrices for Observed Metamers Predicted Covariance Dependent upon Metemeric Properties Monte Carlo Results: Gray Print: 1, Color Matching Functions Blue Transparency: 1, Color Matching Functions Gray Print: 3 Sets of 2 Color Matching Functions Conclusions: Observer Variability in Practical Color Matching is Significant Previously Published Techniques Underpredict Variability A Monte Carlo Model Produced Better Results Further Data and Model Refinement are Required Surround Color Before Model After

21 Curiosity Conclusions Image Appearance Modeling is a Natural Extension of Color Appearance Modeling Enabled by Recent Technology There are Many Questions of Fundamental and Applied Color Science that Build Together to Address Image Appearance Plenty of Exciting Challenges Lie Ahead

22 Thank You... The work discussed in this paper has been funded by a variety of corporate, government, and institutional sponsors. See <mcsl.rit.edu/about/sponsors.php> for a full listing.

COLOR APPEARANCE IN IMAGE DISPLAYS

COLOR APPEARANCE IN IMAGE DISPLAYS COLOR APPEARANCE IN IMAGE DISPLAYS Fairchild, Mark D. Rochester Institute of Technology ABSTRACT CIE colorimetry was born with the specification of tristimulus values 75 years ago. It evolved to improved

More information

Using HDR display technology and color appearance modeling to create display color gamuts that exceed the spectrum locus

Using HDR display technology and color appearance modeling to create display color gamuts that exceed the spectrum locus Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 6-15-2006 Using HDR display technology and color appearance modeling to create display color gamuts that exceed the

More information

Meet icam: A Next-Generation Color Appearance Model

Meet icam: A Next-Generation Color Appearance Model Meet icam: A Next-Generation Color Appearance Model Mark D. Fairchild and Garrett M. Johnson Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester NY

More information

Using Color Appearance Models in Device-Independent Color Imaging. R. I. T Munsell Color Science Laboratory

Using Color Appearance Models in Device-Independent Color Imaging. R. I. T Munsell Color Science Laboratory Using Color Appearance Models in Device-Independent Color Imaging The Problem Jackson, McDonald, and Freeman, Computer Generated Color, (1994). MacUser, April (1996) The Solution Specify Color Independent

More information

icam06, HDR, and Image Appearance

icam06, HDR, and Image Appearance icam06, HDR, and Image Appearance Jiangtao Kuang, Mark D. Fairchild, Rochester Institute of Technology, Rochester, New York Abstract A new image appearance model, designated as icam06, has been developed

More information

Color Appearance, Color Order, & Other Color Systems

Color Appearance, Color Order, & Other Color Systems Color Appearance, Color Order, & Other Color Systems Mark Fairchild Rochester Institute of Technology Integrated Sciences Academy Program of Color Science / Munsell Color Science Laboratory ISCC/AIC Munsell

More information

Multiscale model of Adaptation, Spatial Vision and Color Appearance

Multiscale model of Adaptation, Spatial Vision and Color Appearance Multiscale model of Adaptation, Spatial Vision and Color Appearance Sumanta N. Pattanaik 1 Mark D. Fairchild 2 James A. Ferwerda 1 Donald P. Greenberg 1 1 Program of Computer Graphics, Cornell University,

More information

Quantifying mixed adaptation in cross-media color reproduction

Quantifying mixed adaptation in cross-media color reproduction Rochester Institute of Technology RIT Scholar Works Presentations and other scholarship 2000 Quantifying mixed adaptation in cross-media color reproduction Sharron Henley Mark Fairchild Follow this and

More information

Viewing Environments for Cross-Media Image Comparisons

Viewing Environments for Cross-Media Image Comparisons Viewing Environments for Cross-Media Image Comparisons Karen Braun and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester, New York

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

The Quality of Appearance

The Quality of Appearance ABSTRACT The Quality of Appearance Garrett M. Johnson Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science Rochester Institute of Technology 14623-Rochester, NY (USA) Corresponding

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

ABSTRACT. Keywords: Color image differences, image appearance, image quality, vision modeling 1. INTRODUCTION

ABSTRACT. Keywords: Color image differences, image appearance, image quality, vision modeling 1. INTRODUCTION Measuring Images: Differences, Quality, and Appearance Garrett M. Johnson * and Mark D. Fairchild Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science, Rochester Institute of

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

icam06: A refined image appearance model for HDR image rendering

icam06: A refined image appearance model for HDR image rendering J. Vis. Commun. Image R. 8 () 46 44 www.elsevier.com/locate/jvci icam6: A refined image appearance model for HDR image rendering Jiangtao Kuang *, Garrett M. Johnson, Mark D. Fairchild Munsell Color Science

More information

The Performance of CIECAM02

The Performance of CIECAM02 The Performance of CIECAM02 Changjun Li 1, M. Ronnier Luo 1, Robert W. G. Hunt 1, Nathan Moroney 2, Mark D. Fairchild 3, and Todd Newman 4 1 Color & Imaging Institute, University of Derby, Derby, United

More information

On Contrast Sensitivity in an Image Difference Model

On Contrast Sensitivity in an Image Difference Model On Contrast Sensitivity in an Image Difference Model Garrett M. Johnson and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester New

More information

Influence of Background and Surround on Image Color Matching

Influence of Background and Surround on Image Color Matching Influence of Background and Surround on Image Color Matching Lidija Mandic, 1 Sonja Grgic, 2 Mislav Grgic 2 1 University of Zagreb, Faculty of Graphic Arts, Getaldiceva 2, 10000 Zagreb, Croatia 2 University

More information

Appearance Match between Soft Copy and Hard Copy under Mixed Chromatic Adaptation

Appearance Match between Soft Copy and Hard Copy under Mixed Chromatic Adaptation Appearance Match between Soft Copy and Hard Copy under Mixed Chromatic Adaptation Naoya KATOH Research Center, Sony Corporation, Tokyo, Japan Abstract Human visual system is partially adapted to the CRT

More information

ABSTRACT. Keywords: color appearance, image appearance, image quality, vision modeling, image rendering

ABSTRACT. Keywords: color appearance, image appearance, image quality, vision modeling, image rendering Image appearance modeling Mark D. Fairchild and Garrett M. Johnson * Munsell Color Science Laboratory, Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY, USA

More information

On Contrast Sensitivity in an Image Difference Model

On Contrast Sensitivity in an Image Difference Model On Contrast Sensitivity in an Image Difference Model Garrett M. Johnson and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester New

More information

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation.

12/02/2017. From light to colour spaces. Electromagnetic spectrum. Colour. Correlated colour temperature. Black body radiation. From light to colour spaces Light and colour Advanced Graphics Rafal Mantiuk Computer Laboratory, University of Cambridge 1 2 Electromagnetic spectrum Visible light Electromagnetic waves of wavelength

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

University of British Columbia CPSC 414 Computer Graphics

University of British Columbia CPSC 414 Computer Graphics University of British Columbia CPSC 414 Computer Graphics Color 2 Week 10, Fri 7 Nov 2003 Tamara Munzner 1 Readings Chapter 1.4: color plus supplemental reading: A Survey of Color for Computer Graphics,

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD)

Color Science. What light is. Measuring light. CS 4620 Lecture 15. Salient property is the spectral power distribution (SPD) Color Science CS 4620 Lecture 15 1 2 What light is Measuring light Light is electromagnetic radiation Salient property is the spectral power distribution (SPD) [Lawrence Berkeley Lab / MicroWorlds] exists

More information

Mark D. Fairchild and Garrett M. Johnson Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester NY

Mark D. Fairchild and Garrett M. Johnson Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester NY METACOW: A Public-Domain, High- Resolution, Fully-Digital, Noise-Free, Metameric, Extended-Dynamic-Range, Spectral Test Target for Imaging System Analysis and Simulation Mark D. Fairchild and Garrett M.

More information

Color Appearance Models

Color Appearance Models Color Appearance Models Arjun Satish Mitsunobu Sugimoto 1 Today's topic Color Appearance Models CIELAB The Nayatani et al. Model The Hunt Model The RLAB Model 2 1 Terminology recap Color Hue Brightness/Lightness

More information

Color Computer Vision Spring 2018, Lecture 15

Color Computer Vision Spring 2018, Lecture 15 Color http://www.cs.cmu.edu/~16385/ 16-385 Computer Vision Spring 2018, Lecture 15 Course announcements Homework 4 has been posted. - Due Friday March 23 rd (one-week homework!) - Any questions about the

More information

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color

Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color Understand brightness, intensity, eye characteristics, and gamma correction, halftone technology, Understand general usage of color 1 ACHROMATIC LIGHT (Grayscale) Quantity of light physics sense of energy

More information

Color , , Computational Photography Fall 2017, Lecture 11

Color , , Computational Photography Fall 2017, Lecture 11 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 11 Course announcements Homework 2 grades have been posted on Canvas. - Mean: 81.6% (HW1:

More information

The Effect of Opponent Noise on Image Quality

The Effect of Opponent Noise on Image Quality The Effect of Opponent Noise on Image Quality Garrett M. Johnson * and Mark D. Fairchild Munsell Color Science Laboratory, Rochester Institute of Technology Rochester, NY 14623 ABSTRACT A psychophysical

More information

Color , , Computational Photography Fall 2018, Lecture 7

Color , , Computational Photography Fall 2018, Lecture 7 Color http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 7 Course announcements Homework 2 is out. - Due September 28 th. - Requires camera and

More information

What will be on the final exam?

What will be on the final exam? What will be on the final exam? CS 178, Spring 2009 Marc Levoy Computer Science Department Stanford University Trichromatic theory (1 of 2) interaction of light with matter understand spectral power distributions

More information

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995.

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Reading Foley, Computer graphics, Chapter 13. Color Optional Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Gerald S. Wasserman. Color Vision: An Historical ntroduction.

More information

Status quo of CIE work on. colour rendering indices

Status quo of CIE work on. colour rendering indices CIE Div.1/ICC/ISO Workshop on Colorimetry, Graphic Arts and Colour Management 4 July 2013, University of Leeds, UK Status quo of CIE work on colour rendering indices Hirohisa Yaguchi Chiba University,

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

What is Color. Color is a fundamental attribute of human visual perception.

What is Color. Color is a fundamental attribute of human visual perception. Color What is Color Color is a fundamental attribute of human visual perception. By fundamental we mean that it is so unique that its meaning cannot be fully appreciated without direct experience. How

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Effective Color: Materials. Color in Information Display. What does RGB Mean? The Craft of Digital Color. RGB from Cameras.

Effective Color: Materials. Color in Information Display. What does RGB Mean? The Craft of Digital Color. RGB from Cameras. Effective Color: Materials Color in Information Display Aesthetics Maureen Stone StoneSoup Consulting Woodinville, WA Course Notes on http://www.stonesc.com/vis05 (Part 2) Materials Perception The Craft

More information

Practical Method for Appearance Match Between Soft Copy and Hard Copy

Practical Method for Appearance Match Between Soft Copy and Hard Copy Practical Method for Appearance Match Between Soft Copy and Hard Copy Naoya Katoh Corporate Research Laboratories, Sony Corporation, Shinagawa, Tokyo 141, Japan Abstract CRT monitors are often used as

More information

A new algorithm for calculating perceived colour difference of images

A new algorithm for calculating perceived colour difference of images Loughborough University Institutional Repository A new algorithm for calculating perceived colour difference of images This item was submitted to Loughborough University's Institutional Repository by the/an

More information

The Science Seeing of process Digital Media. The Science of Digital Media Introduction

The Science Seeing of process Digital Media. The Science of Digital Media Introduction The Human Science eye of and Digital Displays Media Human Visual System Eye Perception of colour types terminology Human Visual System Eye Brains Camera and HVS HVS and displays Introduction 2 The Science

More information

Color Science. CS 4620 Lecture 15

Color Science. CS 4620 Lecture 15 Color Science CS 4620 Lecture 15 2013 Steve Marschner 1 [source unknown] 2013 Steve Marschner 2 What light is Light is electromagnetic radiation exists as oscillations of different frequency (or, wavelength)

More information

Color vision and representation

Color vision and representation Color vision and representation S M L 0.0 0.44 0.52 Mark Rzchowski Physics Department 1 Eye perceives different wavelengths as different colors. Sensitive only to 400nm - 700 nm range Narrow piece of the

More information

Colour Management Workflow

Colour Management Workflow Colour Management Workflow The Eye as a Sensor The eye has three types of receptor called 'cones' that can pick up blue (S), green (M) and red (L) wavelengths. The sensitivity overlaps slightly enabling

More information

Evaluation and improvement of the workflow of digital imaging of fine art reproductions in museums

Evaluation and improvement of the workflow of digital imaging of fine art reproductions in museums Evaluation and improvement of the workflow of digital imaging of fine art reproductions in museums Thesis Proposal Jun Jiang 01/25/2012 Advisor: Jinwei Gu and Franziska Frey Munsell Color Science Laboratory,

More information

HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS

HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS HOW CLOSE IS CLOSE ENOUGH? SPECIFYING COLOUR TOLERANCES FOR HDR AND WCG DISPLAYS Jaclyn A. Pytlarz, Elizabeth G. Pieri Dolby Laboratories Inc., USA ABSTRACT With a new high-dynamic-range (HDR) and wide-colour-gamut

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

KODAK Q-60 Color Input Targets

KODAK Q-60 Color Input Targets TECHNICAL DATA / COLOR PAPER June 2003 TI-2045 KODAK Q-60 Color Input Targets The KODAK Q-60 Color Input Targets are very specialized tools, designed to meet the needs of professional, printing and publishing

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

Comparing Appearance Models Using Pictorial Images

Comparing Appearance Models Using Pictorial Images Comparing s Using Pictorial Images Taek Gyu Kim, Roy S. Berns, and Mark D. Fairchild Munsell Color Science Laboratory, Center for Imaging Science Rochester Institute of Technology, Rochester, New York

More information

Effect of Capture Illumination on Preferred White Point for Camera Automatic White Balance

Effect of Capture Illumination on Preferred White Point for Camera Automatic White Balance Effect of Capture Illumination on Preferred White Point for Camera Automatic White Balance Ben Bodner, Yixuan Wang, Susan Farnand Rochester Institute of Technology, Munsell Color Science Laboratory Rochester,

More information

Color Reproduction Algorithms and Intent

Color Reproduction Algorithms and Intent Color Reproduction Algorithms and Intent J A Stephen Viggiano and Nathan M. Moroney Imaging Division RIT Research Corporation Rochester, NY 14623 Abstract The effect of image type on systematic differences

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Visibility of Uncorrelated Image Noise

Visibility of Uncorrelated Image Noise Visibility of Uncorrelated Image Noise Jiajing Xu a, Reno Bowen b, Jing Wang c, and Joyce Farrell a a Dept. of Electrical Engineering, Stanford University, Stanford, CA. 94305 U.S.A. b Dept. of Psychology,

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Colorimetry vs. Densitometry in the Selection of Ink-jet Colorants

Colorimetry vs. Densitometry in the Selection of Ink-jet Colorants Colorimetry vs. Densitometry in the Selection of Ink-jet Colorants E. Baumann, M. Fryberg, R. Hofmann, and M. Meissner ILFORD Imaging Switzerland GmbH Marly, Switzerland Abstract The gamut performance

More information

Color Reproduction. Chapter 6

Color Reproduction. Chapter 6 Chapter 6 Color Reproduction Take a digital camera and click a picture of a scene. This is the color reproduction of the original scene. The success of a color reproduction lies in how close the reproduced

More information

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1

Color. Fredo Durand Many slides by Victor Ostromoukhov. Color Vision 1 Color Fredo Durand Many slides by Victor Ostromoukhov Color Vision 1 Today: color Disclaimer: Color is both quite simple and quite complex There are two options to teach color: pretend it all makes sense

More information

Color and color constancy

Color and color constancy Color and color constancy 6.869, MIT (Bill Freeman) Antonio Torralba Sept. 12, 2013 Why does a visual system need color? http://www.hobbylinc.com/gr/pll/pll5019.jpg Why does a visual system need color?

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

EFFECT OF FLUORESCENT LIGHT SOURCES ON HUMAN CONTRAST SENSITIVITY Krisztián SAMU 1, Balázs Vince NAGY 1,2, Zsuzsanna LUDAS 1, György ÁBRAHÁM 1

EFFECT OF FLUORESCENT LIGHT SOURCES ON HUMAN CONTRAST SENSITIVITY Krisztián SAMU 1, Balázs Vince NAGY 1,2, Zsuzsanna LUDAS 1, György ÁBRAHÁM 1 EFFECT OF FLUORESCENT LIGHT SOURCES ON HUMAN CONTRAST SENSITIVITY Krisztián SAMU 1, Balázs Vince NAGY 1,2, Zsuzsanna LUDAS 1, György ÁBRAHÁM 1 1 Dept. of Mechatronics, Optics and Eng. Informatics, Budapest

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Black point compensation and its influence on image appearance

Black point compensation and its influence on image appearance riginal scientific paper UDK: 070. Black point compensation and its influence on image appearance Authors: Dragoljub Novaković, Igor Karlović, Ivana Tomić Faculty of Technical Sciences, Graphic Engineering

More information

Colorimetry and Color Modeling

Colorimetry and Color Modeling Color Matching Experiments 1 Colorimetry and Color Modeling Colorimetry is the science of measuring color. Color modeling, for the purposes of this Field Guide, is defined as the mathematical constructs

More information

IN RECENT YEARS, multi-primary (MP)

IN RECENT YEARS, multi-primary (MP) Color Displays: The Spectral Point of View Color is closely related to the light spectrum. Nevertheless, spectral properties are seldom discussed in the context of color displays. Here, a novel concept

More information

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color.

University of British Columbia CPSC 314 Computer Graphics Jan-Apr Tamara Munzner. Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2016 Tamara Munzner Color http://www.ugrad.cs.ubc.ca/~cs314/vjan2016 Vision/Color 2 RGB Color triple (r, g, b) represents colors with amount

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones

Comparing Sound and Light. Light and Color. More complicated light. Seeing colors. Rods and cones Light and Color Eye perceives EM radiation of different wavelengths as different colors. Sensitive only to the range 4nm - 7 nm This is a narrow piece of the entire electromagnetic spectrum. Comparing

More information

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors.

the eye Light is electromagnetic radiation. The different wavelengths of the (to humans) visible part of the spectra make up the colors. Computer Assisted Image Analysis TF 3p and MN1 5p Color Image Processing Lecture 14 GW 6 (suggested problem 6.25) How does the human eye perceive color? How can color be described using mathematics? Different

More information

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal IFT3355: Infographie Couleur Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal Color Appearance Visual Range Electromagnetic waves (in nanometres) γ rays X rays ultraviolet violet

More information

Color and color constancy

Color and color constancy Color and color constancy 6.869, MIT Bill Freeman Antonio Torralba Feb. 22, 2011 Why does a visual system need color? http://www.hobbylinc.com/gr/pll/pll5019.jpg Why does a visual system need color? (an

More information

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013.

Reading for Color. Vision/Color. RGB Color. Vision/Color. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013. University of British Columbia CPSC 314 Computer Graphics Jan-Apr 2013 Tamara Munzner Vision/Color Reading for Color RB Chap Color FCG Sections 3.2-3.3 FCG Chap 20 Color FCG Chap 21.2.2 Visual Perception

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

any kind, you have two receptive fields, one the small center region, the other the surround region.

any kind, you have two receptive fields, one the small center region, the other the surround region. In a centersurround cell of any kind, you have two receptive fields, one the small center region, the other the surround region. + _ In a chromatic center-surround field, each in innervated by one class

More information

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading:

Announcements. Electromagnetic Spectrum. The appearance of colors. Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Announcements Homework 4 is due Tue, Dec 6, 11:59 PM Reading: Chapter 3: Color CSE 252A Lecture 18 Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

Color Digital Imaging: Cameras, Scanners and Monitors

Color Digital Imaging: Cameras, Scanners and Monitors Color Digital Imaging: Cameras, Scanners and Monitors H. J. Trussell Dept. of Electrical and Computer Engineering North Carolina State University Raleigh, NC 27695-79 hjt@ncsu.edu Color Imaging Devices

More information

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner

CS6640 Computational Photography. 6. Color science for digital photography Steve Marschner CS6640 Computational Photography 6. Color science for digital photography 2012 Steve Marschner 1 What visible light is One octave of the electromagnetic spectrum (380-760nm) NASA/Wikimedia Commons 2 What

More information

Introduction to Computer Vision CSE 152 Lecture 18

Introduction to Computer Vision CSE 152 Lecture 18 CSE 152 Lecture 18 Announcements Homework 5 is due Sat, Jun 9, 11:59 PM Reading: Chapter 3: Color Electromagnetic Spectrum The appearance of colors Color appearance is strongly affected by (at least):

More information

PERCEIVING COLOR. Functions of Color Vision

PERCEIVING COLOR. Functions of Color Vision PERCEIVING COLOR Functions of Color Vision Object identification Evolution : Identify fruits in trees Perceptual organization Add beauty to life Slide 2 Visible Light Spectrum Slide 3 Color is due to..

More information

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini

Digital Image Processing COSC 6380/4393. Lecture 20 Oct 25 th, 2018 Pranav Mantini Digital Image Processing COSC 6380/4393 Lecture 20 Oct 25 th, 2018 Pranav Mantini What is color? Color is a psychological property of our visual experiences when we look at objects and lights, not a physical

More information

CIE Standards for assessing quality of light sources

CIE Standards for assessing quality of light sources CIE Standards for assessing quality of light sources J Schanda University Veszprém, Department for Image Processing and Neurocomputing, Hungary 1. Introduction CIE publishes Standards and Technical Reports

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Visual Perception. human perception display devices. CS Visual Perception

Visual Perception. human perception display devices. CS Visual Perception Visual Perception human perception display devices 1 Reference Chapters 4, 5 Designing with the Mind in Mind by Jeff Johnson 2 Visual Perception Most user interfaces are visual in nature. So, it is important

More information

Multispectral. imaging device. ADVANCED LIGHT ANALYSIS by. Most accurate homogeneity MeasureMent of spectral radiance. UMasterMS1 & UMasterMS2

Multispectral. imaging device. ADVANCED LIGHT ANALYSIS by. Most accurate homogeneity MeasureMent of spectral radiance. UMasterMS1 & UMasterMS2 Multispectral imaging device Most accurate homogeneity MeasureMent of spectral radiance UMasterMS1 & UMasterMS2 ADVANCED LIGHT ANALYSIS by UMaster Ms Multispectral Imaging Device UMaster MS Description

More information

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38

Images. CS 4620 Lecture Kavita Bala w/ prior instructor Steve Marschner. Cornell CS4620 Fall 2015 Lecture 38 Images CS 4620 Lecture 38 w/ prior instructor Steve Marschner 1 Announcements A7 extended by 24 hours w/ prior instructor Steve Marschner 2 Color displays Operating principle: humans are trichromatic match

More information

A New Metric for Color Halftone Visibility

A New Metric for Color Halftone Visibility A New Metric for Color Halftone Visibility Qing Yu and Kevin J. Parker, Robert Buckley* and Victor Klassen* Dept. of Electrical Engineering, University of Rochester, Rochester, NY *Corporate Research &

More information

Colour + Perception. CMPT 467/767 Visualization Torsten Möller. Pfister/Möller

Colour + Perception. CMPT 467/767 Visualization Torsten Möller. Pfister/Möller Colour + Perception CMPT 467/767 Visualization Torsten Möller Recommended Reading http://www.stonesc.com/ 2 Where / What 3 Based on slide from Mazur Contours & Texture C. Ware, Visual Thinking for Design

More information

VU Rendering SS Unit 8: Tone Reproduction

VU Rendering SS Unit 8: Tone Reproduction VU Rendering SS 2012 Unit 8: Tone Reproduction Overview 1. The Problem Image Synthesis Pipeline Different Image Types Human visual system Tone mapping Chromatic Adaptation 2. Tone Reproduction Linear methods

More information

Lighting with Color and

Lighting with Color and Lighting with Color and the Color in White: The Color Quality Scale (CQS) Wendy Davis wendy.davis@nist.gov Optical Technology Division National Institute of Standards and Technology Color Rendering Equal

More information

CSE512 :: 6 Feb Color. Jeffrey Heer University of Washington

CSE512 :: 6 Feb Color. Jeffrey Heer University of Washington CSE512 :: 6 Feb 2014 Color Jeffrey Heer University of Washington 1 Color in Visualization Identify, Group, Layer, Highlight Colin Ware 2 Purpose of Color To label To measure To represent and imitate To

More information

AMONG THE human senses, sight and color perception

AMONG THE human senses, sight and color perception IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 6, NO. 7, JULY 1997 901 Digital Color Imaging Gaurav Sharma, Member, IEEE, and H. Joel Trussell, Fellow, IEEE Abstract This paper surveys current technology

More information

Color. Maneesh Agrawala Jessica Hullman. CS : Visualization Fall Assignment 3: Visualization Software

Color. Maneesh Agrawala Jessica Hullman. CS : Visualization Fall Assignment 3: Visualization Software Color Maneesh Agrawala Jessica Hullman CS 294-10: Visualization Fall 2014 Assignment 3: Visualization Software Create a small interactive visualization application you choose data domain and visualization

More information

Reprint. Journal. of the SID

Reprint. Journal. of the SID Evaluation of HDR tone-mapping algorithms using a high-dynamic-range display to emulate real scenes Jiangtao Kuang Rodney Heckaman Mark D. Fairchild (SID Member) Abstract Current HDR display technology

More information

Chapter 2 Fundamentals of Digital Imaging

Chapter 2 Fundamentals of Digital Imaging Chapter 2 Fundamentals of Digital Imaging Part 4 Color Representation 1 In this lecture, you will find answers to these questions What is RGB color model and how does it represent colors? What is CMY color

More information

A World of Color. Session 4 Color Spaces. OLLI at Illinois Spring D. H. Tracy

A World of Color. Session 4 Color Spaces. OLLI at Illinois Spring D. H. Tracy A World of Color Session 4 Color Spaces OLLI at Illinois Spring 2018 D. H. Tracy Course Outline 1. Overview, History and Spectra 2. Nature and Sources of Light 3. Eyes and Color Vision 4. Color Spaces

More information

Visual computation of surface lightness: Local contrast vs. frames of reference

Visual computation of surface lightness: Local contrast vs. frames of reference 1 Visual computation of surface lightness: Local contrast vs. frames of reference Alan L. Gilchrist 1 & Ana Radonjic 2 1 Rutgers University, Newark, USA 2 University of Pennsylvania, Philadelphia, USA

More information