Color Perception and Applications. Penny Rheingans University of Maryland Baltimore County. Overview

Size: px
Start display at page:

Download "Color Perception and Applications. Penny Rheingans University of Maryland Baltimore County. Overview"

Transcription

1 Color Perception and Applications SIGGRAPH 99 Course: Fundamental Issues of Visual Perception for Effective Image Generation Penny Rheingans University of Maryland Baltimore County Overview Characteristics of Color Perception Mechanisms of Color Perception Color Specification Using Color to Represent Information

2 Characteristics of Color Perception Fundamental, independent visual process after-images color deficient vision Relative, not absolute Interactions between color and other visual properties Physiology: Receptors Rods active at low light levels (scotopic vision) only one wavelength sensitivity function Cones active at normal light levels three types: sensitivity functions with different peaks

3 Cone Sensitivity Functions Glassner 95, p. 16. Physiology: Ganglia Transform incoming SML into opponent color responses Long (R) G - R - R - G Y - B (Y = R+G) W R+G) Medium (G) Short (B) Characteristics concentric receptive fields logarithmic response of receptors adaption + Yellow - Achrom atic Y-B

4 Physiology: Brain Lateral geniculate nuclei assemble data for single side of visual field 2 monochromatic layers => magnocellular path 4 chromatic layers => parvocellular path Visual cortex visual area 1: blobs visual area 2: thick stripes visual area 4 Visual Pathway Murch, 87.

5 Parvocellular Division Role in vision discrimination of fine detail color Characteristics color: sensitive to wavelength variations acuity: small RF centers speed: relatively slow response Color Models Device-derived convenient for describing display device levels RGB, CMY Intuitive based in familiar color description terms HSV, HSB, HLS Perceptually uniform device independent, perceptually uniform CIELUV, CIELAB, Munsell

6 Color Models Device-derived convenient for describing display device levels RGB, CMY Intuitive based in familiar color description terms HSV, HSB, HLS Perceptually uniform device independent, perceptually uniform CIELUV, CIELAB, Munsell

7 Color Models Device-derived convenient for describing display device levels RGB, CMY Intuitive based in familiar color description terms HSV, HSB, HLS Perceptually uniform device independent, perceptually uniform CIELUV, CIELAB, Munsell

8 Hill et al. 97, pg. 136 Uses of Color Show classification Mimic reality Show value Draw attention Show grouping

9 Uses of Color Show classification Mimic reality Show value Draw attention Show grouping

10 Uses of Color Show classification Mimic reality Show value Draw attention Show grouping

11 Uses of Color Show classification Mimic reality Show value Draw attention Show grouping

12 Uses of Color Show classification Mimic reality Show value Draw attention Show grouping

13 Ware and Beatty 85, p. 22 Perceptual Distortions Color-deficiency Interactions between color components saturation - brightness (Helmholtz-Kohlraush effect) brightness - hue (Bezold-Brucke Phenomenon) Simultaneous contrast brightness hue Small field achrominance Effects of color on perceived size

14 Bezold-Brucke Phenomenon Hurvich 81, pg. 73. Perceptual Distortions Color-deficiency Interactions between color components saturation - brightness (Helmholtz-Kohlraush effect) brightness - hue (Bezold-Brucke Phenomenon) Simultaneous contrast brightness hue Small field achrominance Effects of color on perceived size

15 Simultaneous Contrast Simultaneous Contrast

16 Perceptual Distortions Color-deficiency Interactions between color components saturation - brightness (Helmholtz-Kohlraush effect) brightness - hue (Bezold-Brucke Phenomenon) Simultaneous contrast brightness hue Small field achrominance Effects of color on perceived size Small Field Achrominance Wandell 95, cp. 3.

17 Perceptual Distortions Color-deficiency Interactions between color components saturation - brightness (Helmholtz-Kohlraush effect) brightness - hue (Bezold-Brucke Phenomenon) Simultaneous contrast brightness hue Small field achrominance Effects of color on perceived size Color-size Illusion Cleveland and McGill 83.

18 Some Color Scales Univariate color model component optimal scales double-ended Multivariate color model components Census Bureau TVCM complementary display parameters

19

20 Some Color Scales Univariate color model component optimal scales double-ended Multivariate color model components Census Bureau TVCM complementary display parameters

21 Some Color Scales Univariate color model component optimal scales double-ended Multivariate color model components Census Bureau TVCM complementary display parameters Olson 97, fig

22 Some Color Scales Univariate color model component optimal scales double-ended Multivariate color model components Census Bureau TVCM complementary display parameters

23 Some Color Scales Univariate color model component optimal scales double-ended Multivariate color model components Census Bureau TVCM complementary display parameters Tufte 83, pg. 153.

24 Some Color Scales Univariate color model component optimal scales double-ended Multivariate color model components Census Bureau TVCM complementary display parameters

25 Evaluating Color Scales Trumbo s Principles Order: ordered values should be represented by ordered colors Separation: significantly different levels should be represented by distinguishable colors Rows and columns: to preserve univariate information, display parameters should not obscure one another Diagonal: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below

26

27 Evaluating Color Scales Trumbo s Principles Order: ordered values should be represented by ordered colors Separation: significantly different levels should be represented by distinguishable colors Rows and columns: to preserve univariate information, display parameters should not obscure one another Diagonal: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below

28 Evaluating Color Scales Trumbo s Principles Order: ordered values should be represented by ordered colors Separation: significantly different levels should be represented by distinguishable colors Rows and columns: to preserve univariate information, display parameters should not obscure one another Diagonal: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below

29 Tufte 83, pg. 153.

30 Evaluating Color Scales Trumbo s Principles Order: ordered values should be represented by ordered colors Separation: significantly different levels should be represented by distinguishable colors Rows and columns: to preserve univariate information, display parameters should not obscure one another Diagonal: to show positive association, displayed colors should group into three perceptual classes: diagonal, above, below

31 Evaluating Color Scales (cont.) Ware s experiments metric (quantitative) judgements surface (qualititative) judgements redundant color scales

32 Tufte 97, pg. 77. Tufte 97, pg. 76.

33 Ware s Color Scales Ware 88.

34

35 Considerations Consider goals Consider data Consider audience Consider color connotations

36 Does this work? Final Consideration

37 Principles of Color Representation Avoid distortions Exploit the familiar Emphasize the interesting Say it again (redundant mappings) Select appropriate level of detail

38 Color Models: Device-derived Blue Cyan Magenta White Black Green Red Yellow Red-Green-Blue

39 Color Models: Intuitive L = 1 White Green Yellow Cyan Blue S = 1 S = 0 V = 1 White Magenta Red Cyan Green S = 0 Yellow S = 1 Red Blue Magenta V = 0 Black Hue Hue = 0 L = 0 Black Hue Hue = 0 Hue-Saturation-Value Hue-Lightness-Saturation Color Models: Perceptually Uniform v' Yellowish green Yellow green Green Bluish green Greenish blue Blue White Greenish Yellow Orange Yellow Yellow Orange Reddish orange Yellowish pink Purple Pink Purplish pink Red Reddish purple Purplish red Purplish blue u' CIELUV

40 Opponent Channel Recoding Long (R) - R - G Medium (G) Short (B) + Yellow - Achromatic Y-B

Color Perception. This lecture is (mostly) thanks to Penny Rheingans at the University of Maryland, Baltimore County

Color Perception. This lecture is (mostly) thanks to Penny Rheingans at the University of Maryland, Baltimore County Color Perception This lecture is (mostly) thanks to Penny Rheingans at the University of Maryland, Baltimore County Characteristics of Color Perception Fundamental, independent visual process after-images

More information

Comp/Phys/Apsc 715. Example Videos. Administrative 1/23/2014. Lecture 5: Trichromacy, Color Spaces, Properties of Color

Comp/Phys/Apsc 715. Example Videos. Administrative 1/23/2014. Lecture 5: Trichromacy, Color Spaces, Properties of Color Comp/Phys/Apsc 715 Lecture 5: Trichromacy, Color Spaces, Properties of Color 1 Example Videos Segmentation and visualization of neurons Astro Visualization (the Millennium Run) Dragonfly Flight Analysis

More information

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song

Image and video processing (EBU723U) Colour Images. Dr. Yi-Zhe Song Image and video processing () Colour Images Dr. Yi-Zhe Song yizhe.song@qmul.ac.uk Today s agenda Colour spaces Colour images PGM/PPM images Today s agenda Colour spaces Colour images PGM/PPM images History

More information

Color. Maneesh Agrawala Jessica Hullman. CS : Visualization Fall Assignment 3: Visualization Software

Color. Maneesh Agrawala Jessica Hullman. CS : Visualization Fall Assignment 3: Visualization Software Color Maneesh Agrawala Jessica Hullman CS 294-10: Visualization Fall 2014 Assignment 3: Visualization Software Create a small interactive visualization application you choose data domain and visualization

More information

Color, Vision, & Perception. Outline

Color, Vision, & Perception. Outline Color, Vision, & Perception CS 160, Fall 97 Professor James Landay September 24, 1997 9/24/97 1 Outline Administrivia Review Human visual system Color perception Color deficiency Guidelines for design

More information

Additive. Subtractive

Additive. Subtractive Physics 106 Additive Subtractive Subtractive Mixing Rules: Mixing Cyan + Magenta, one gets Blue Mixing Cyan + Yellow, one gets Green Mixing Magenta + Yellow, one gets Red Mixing any two of the Blue, Red,

More information

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995.

Reading. Foley, Computer graphics, Chapter 13. Optional. Color. Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Reading Foley, Computer graphics, Chapter 13. Color Optional Brian Wandell. Foundations of Vision. Sinauer Associates, Sunderland, MA 1995. Gerald S. Wasserman. Color Vision: An Historical ntroduction.

More information

COLOR and the human response to light

COLOR and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 How

More information

Colour + Perception. CMPT 467/767 Visualization Torsten Möller. Pfister/Möller

Colour + Perception. CMPT 467/767 Visualization Torsten Möller. Pfister/Möller Colour + Perception CMPT 467/767 Visualization Torsten Möller Recommended Reading http://www.stonesc.com/ 2 Where / What 3 Based on slide from Mazur Contours & Texture C. Ware, Visual Thinking for Design

More information

EECS490: Digital Image Processing. Lecture #12

EECS490: Digital Image Processing. Lecture #12 Lecture #12 Image Correlation (example) Color basics (Chapter 6) The Chromaticity Diagram Color Images RGB Color Cube Color spaces Pseudocolor Multispectral Imaging White Light A prism splits white light

More information

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match

CIE tri-stimulus experiment. Color Value Functions. CIE 1931 Standard. Color. Diagram. Color light intensity for visual color match CIE tri-stimulus experiment diffuse reflecting screen diffuse reflecting screen 770 769 768 test light 382 381 380 observer test light 445 535 630 445 535 630 observer light intensity for visual color

More information

Geography 360 Principles of Cartography. April 24, 2006

Geography 360 Principles of Cartography. April 24, 2006 Geography 360 Principles of Cartography April 24, 2006 Outlines 1. Principles of color Color as physical phenomenon Color as physiological phenomenon 2. How is color specified? (color model) Hardware-oriented

More information

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3355 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

excite the cones in the same way.

excite the cones in the same way. Humans have 3 kinds of cones Color vision Edward H. Adelson 9.35 Trichromacy To specify a light s spectrum requires an infinite set of numbers. Each cone gives a single number (univariance) when stimulated

More information

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain

Color & Graphics. Color & Vision. The complete display system is: We'll talk about: Model Frame Buffer Screen Eye Brain Color & Graphics The complete display system is: Model Frame Buffer Screen Eye Brain Color & Vision We'll talk about: Light Visions Psychophysics, Colorimetry Color Perceptually based models Hardware models

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

Question From Last Class

Question From Last Class Question From Last Class What is it about matter that determines its color? e.g., what's the difference between a surface that reflects only long wavelengths (reds) and a surfaces the reflects only medium

More information

COLOR. and the human response to light

COLOR. and the human response to light COLOR and the human response to light Contents Introduction: The nature of light The physiology of human vision Color Spaces: Linear Artistic View Standard Distances between colors Color in the TV 2 Amazing

More information

Chapter 3 Part 2 Color image processing

Chapter 3 Part 2 Color image processing Chapter 3 Part 2 Color image processing Motivation Color fundamentals Color models Pseudocolor image processing Full-color image processing: Component-wise Vector-based Recent and current work Spring 2002

More information

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology

Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2012 Sharif University of Technology Physics of Color Light Light or visible light is the portion of electromagnetic radiation that

More information

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour

CS 565 Computer Vision. Nazar Khan PUCIT Lecture 4: Colour CS 565 Computer Vision Nazar Khan PUCIT Lecture 4: Colour Topics to be covered Motivation for Studying Colour Physical Background Biological Background Technical Colour Spaces Motivation Colour science

More information

What is Color. Color is a fundamental attribute of human visual perception.

What is Color. Color is a fundamental attribute of human visual perception. Color What is Color Color is a fundamental attribute of human visual perception. By fundamental we mean that it is so unique that its meaning cannot be fully appreciated without direct experience. How

More information

Sensation, Part 4 Gleitman et al. (2011), Chapter 4

Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Sensation, Part 4 Gleitman et al. (2011), Chapter 4 Mike D Zmura Department of Cognitive Sciences, UCI Psych 9A / Psy Beh 11A February 20, 2014 T. M. D'Zmura 1 From last time T. M. D'Zmura 2 Rod Transduction

More information

Vision IV. Overview of Topics. Overview of Topics. Colour Vision

Vision IV. Overview of Topics. Overview of Topics. Colour Vision Vision IV Colour Vision Chapter 11 in Chaudhuri 1 1 Overview of Topics Overview of Topics "Avoid vertebrates because they are too complicated, avoid colour vision because it is much too complicated, and

More information

Visual Perception. Overview. The Eye. Information Processing by Human Observer

Visual Perception. Overview. The Eye. Information Processing by Human Observer Visual Perception Spring 06 Instructor: K. J. Ray Liu ECE Department, Univ. of Maryland, College Park Overview Last Class Introduction to DIP/DVP applications and examples Image as a function Concepts

More information

Using Color in Scientific Visualization

Using Color in Scientific Visualization Using Color in Scientific Visualization Mike Bailey The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed, so difficult

More information

Colors in Images & Video

Colors in Images & Video LECTURE 8 Colors in Images & Video CS 5513 Multimedia Systems Spring 2009 Imran Ihsan Principal Design Consultant OPUSVII www.opuseven.com Faculty of Engineering & Applied Sciences 1. Light and Spectra

More information

Color. Color. Colorfull world IFT3350. Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal

Color. Color. Colorfull world IFT3350. Victor Ostromoukhov Université de Montréal. Victor Ostromoukhov - Université de Montréal IFT3350 Victor Ostromoukhov Université de Montréal full world 2 1 in art history Mondrian 1921 The cave of Lascaux About 17000 BC Vermeer mid-xvii century 3 is one of the most effective visual attributes

More information

Vision IV. Overview of Topics. Evolution of Vision. Overview of Topics. Colour Vision

Vision IV. Overview of Topics. Evolution of Vision. Overview of Topics. Colour Vision Overview of Topics Vision IV Colour Vision Chapter 11 in Chaudhuri "Avoid vertebrates because they are too complicated, avoid colour vision because it is much too complicated, and avoid the combination

More information

any kind, you have two receptive fields, one the small center region, the other the surround region.

any kind, you have two receptive fields, one the small center region, the other the surround region. In a centersurround cell of any kind, you have two receptive fields, one the small center region, the other the surround region. + _ In a chromatic center-surround field, each in innervated by one class

More information

Digital Image Processing. Lecture # 8 Color Processing

Digital Image Processing. Lecture # 8 Color Processing Digital Image Processing Lecture # 8 Color Processing 1 COLOR IMAGE PROCESSING COLOR IMAGE PROCESSING Color Importance Color is an excellent descriptor Suitable for object Identification and Extraction

More information

Color Image Processing

Color Image Processing Color Image Processing Jesus J. Caban Outline Discuss Assignment #1 Project Proposal Color Perception & Analysis 1 Discuss Assignment #1 Project Proposal Due next Monday, Oct 4th Project proposal Submit

More information

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University

Bettina Selig. Centre for Image Analysis. Swedish University of Agricultural Sciences Uppsala University 2011-10-26 Bettina Selig Centre for Image Analysis Swedish University of Agricultural Sciences Uppsala University 2 Electromagnetic Radiation Illumination - Reflection - Detection The Human Eye Digital

More information

Achromatic and chromatic vision, rods and cones.

Achromatic and chromatic vision, rods and cones. Achromatic and chromatic vision, rods and cones. Andrew Stockman NEUR3045 Visual Neuroscience Outline Introduction Rod and cone vision Rod vision is achromatic How do we see colour with cone vision? Vision

More information

Adapted from the Slides by Dr. Mike Bailey at Oregon State University

Adapted from the Slides by Dr. Mike Bailey at Oregon State University Colors in Visualization Adapted from the Slides by Dr. Mike Bailey at Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place

More information

The Principles of Chromatics

The Principles of Chromatics The Principles of Chromatics 03/20/07 2 Light Electromagnetic radiation, that produces a sight perception when being hit directly in the eye The wavelength of visible light is 400-700 nm 1 03/20/07 3 Visible

More information

Color Image Processing. Gonzales & Woods: Chapter 6

Color Image Processing. Gonzales & Woods: Chapter 6 Color Image Processing Gonzales & Woods: Chapter 6 Objectives What are the most important concepts and terms related to color perception? What are the main color models used to represent and quantify color?

More information

Introduction to Color Science (Cont)

Introduction to Color Science (Cont) Lecture 24: Introduction to Color Science (Cont) Computer Graphics and Imaging UC Berkeley Empirical Color Matching Experiment Additive Color Matching Experiment Show test light spectrum on left Mix primaries

More information

LECTURE 07 COLORS IN IMAGES & VIDEO

LECTURE 07 COLORS IN IMAGES & VIDEO MULTIMEDIA TECHNOLOGIES LECTURE 07 COLORS IN IMAGES & VIDEO IMRAN IHSAN ASSISTANT PROFESSOR LIGHT AND SPECTRA Visible light is an electromagnetic wave in the 400nm 700 nm range. The eye is basically similar

More information

Digital Image Processing

Digital Image Processing Digital Image Processing IMAGE PERCEPTION & ILLUSION Hamid R. Rabiee Fall 2015 Outline 2 What is color? Image perception Color matching Color gamut Color balancing Illusions What is Color? 3 Visual perceptual

More information

CS 544 Human Abilities

CS 544 Human Abilities CS 544 Human Abilities Color Perception and Guidelines for Design Preattentive Processing Acknowledgement: Some of the material in these lectures is based on material prepared for similar courses by Saul

More information

Mahdi Amiri. March Sharif University of Technology

Mahdi Amiri. March Sharif University of Technology Course Presentation Multimedia Systems Color Space Mahdi Amiri March 2014 Sharif University of Technology The wavelength λ of a sinusoidal waveform traveling at constant speed ν is given by Physics of

More information

Color. Bilkent University. CS554 Computer Vision Pinar Duygulu

Color. Bilkent University. CS554 Computer Vision Pinar Duygulu 1 Color CS 554 Computer Vision Pinar Duygulu Bilkent University 2 What is light? Electromagnetic radiation (EMR) moving along rays in space R(λ) is EMR, measured in units of power (watts) λ is wavelength

More information

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science

Slide 1. Slide 2. Slide 3. Light and Colour. Sir Isaac Newton The Founder of Colour Science Slide 1 the Rays to speak properly are not coloured. In them there is nothing else than a certain Power and Disposition to stir up a Sensation of this or that Colour Sir Isaac Newton (1730) Slide 2 Light

More information

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin

Color and Color Model. Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color and Color Model Chap. 12 Intro. to Computer Graphics, Spring 2009, Y. G. Shin Color Interpretation of color is a psychophysiology problem We could not fully understand the mechanism Physical characteristics

More information

Colors in images. Color spaces, perception, mixing, printing, manipulating...

Colors in images. Color spaces, perception, mixing, printing, manipulating... Colors in images Color spaces, perception, mixing, printing, manipulating... Tomáš Svoboda Czech Technical University, Faculty of Electrical Engineering Center for Machine Perception, Prague, Czech Republic

More information

Color image processing

Color image processing Color image processing Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..)

More information

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1

12 Color Models and Color Applications. Chapter 12. Color Models and Color Applications. Department of Computer Science and Engineering 12-1 Chapter 12 Color Models and Color Applications 12-1 12.1 Overview Color plays a significant role in achieving realistic computer graphic renderings. This chapter describes the quantitative aspects of color,

More information

Color Image Processing

Color Image Processing Color Image Processing Selim Aksoy Department of Computer Engineering Bilkent University saksoy@cs.bilkent.edu.tr Color Used heavily in human vision. Visible spectrum for humans is 400 nm (blue) to 700

More information

OPTO 5320 VISION SCIENCE I

OPTO 5320 VISION SCIENCE I OPTO 5320 VISION SCIENCE I Monocular Sensory Processes of Vision: Color Vision Ronald S. Harwerth, OD, PhD Office: Room 2160 Office hours: By appointment Telephone: 713-743-1940 email: rharwerth@uh.edu

More information

Perception to visualization I

Perception to visualization I Perception to visualization I C. Andrews 2014-02-25 Visualization Pipeline Raw Data data tables visual structures visualization data transformations visual mappings view transformations user interaction

More information

Color in Scientific Visualization

Color in Scientific Visualization Color in Scientific Visualization Mike Bailey mjb@cs.oregonstate.edu colorinvis.pptx The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex

More information

CSE512 :: 6 Feb Color. Jeffrey Heer University of Washington

CSE512 :: 6 Feb Color. Jeffrey Heer University of Washington CSE512 :: 6 Feb 2014 Color Jeffrey Heer University of Washington 1 Color in Visualization Identify, Group, Layer, Highlight Colin Ware 2 Purpose of Color To label To measure To represent and imitate To

More information

Image Perception & 2D Images

Image Perception & 2D Images Image Perception & 2D Images Vision is a matter of perception. Perception is a matter of vision. ES Overview Introduction to ES 2D Graphics in Entertainment Systems Sound, Speech & Music 3D Graphics in

More information

Lecture 3: Grey and Color Image Processing

Lecture 3: Grey and Color Image Processing I22: Digital Image processing Lecture 3: Grey and Color Image Processing Prof. YingLi Tian Sept. 13, 217 Department of Electrical Engineering The City College of New York The City University of New York

More information

Christoph Wagner Colour Theory

Christoph Wagner Colour Theory Colour Theory Hue, Saturation and Lightness (HSL) This model is one of the most intuitive ones in describing colour and I find it most useful for our purposes. There are other models, but we'll focus on

More information

Color Theory: Defining Brown

Color Theory: Defining Brown Color Theory: Defining Brown Defining Colors Colors can be defined in many different ways. Computer users are often familiar with colors defined as percentages or amounts of red, green, and blue (RGB).

More information

Interactive Computer Graphics

Interactive Computer Graphics Interactive Computer Graphics Lecture 4: Colour Graphics Lecture 4: Slide 1 Ways of looking at colour 1. Physics 2. Human visual receptors 3. Subjective assessment Graphics Lecture 4: Slide 2 The physics

More information

Contrast, Luminance and Colour

Contrast, Luminance and Colour Contrast, Luminance and Colour Week 3 Lecture 1 IAT 814 Lyn Bartram Some of these slides have been borrowed and adapted from Maureen Stone and Colin Ware What is gray? Colour space is 3 dimensions 1 achromatic

More information

Marks + Channels. Large Data Visualization Torsten Möller. Munzner/Möller

Marks + Channels. Large Data Visualization Torsten Möller. Munzner/Möller Marks + Channels Large Data Visualization Torsten Möller Overview Marks + channels Channel effectiveness Accuracy Discriminability Separability Popout Channel characteristics Spatial position Colour Size

More information

II-1. Color in Scientific Visualization. Let s start with the most important component in a visualization system You!

II-1. Color in Scientific Visualization. Let s start with the most important component in a visualization system You! Color in Scientific Visualization The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed, so difficult and subtle that avoiding

More information

Color and Color Models

Color and Color Models Einführung in Visual Computing 186.822 Color and Color Models Werner Purgathofer Color problem specification light and perception colorimetry device color systems color ordering systems color symbolism

More information

Color images C1 C2 C3

Color images C1 C2 C3 Color imaging Color images C1 C2 C3 Each colored pixel corresponds to a vector of three values {C1,C2,C3} The characteristics of the components depend on the chosen colorspace (RGB, YUV, CIELab,..) Digital

More information

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ)

COLOR. Elements of color. Visible spectrum. The Human Visual System. The Fovea. There are three types of cones, S, M and L. r( λ) COLOR Elements of color Angel, 4th ed. 1, 2.5, 7.13 excerpt from Joakim Lindblad Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra How is color perceived?

More information

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L

COLOR. Elements of color. Visible spectrum. The Fovea. Lecture 3 October 30, Ingela Nyström 1. There are three types of cones, S, M and L COLOR Elements of color Angel 1.4, 2.4, 7.12 J. Lindblad 2001-11-01 Color = The eye s and the brain s impression of electromagnetic radiation in the visual spectra. How is color perceived? Visible spectrum

More information

Color in Scientific Visualization

Color in Scientific Visualization Color in Scientific Visualization Mike Bailey, PhD San Diego Supercomputer Center and University of California at San Diego mjb@sdsc sdsc.edu 858-534-5142 The often scant benefits derived from coloring

More information

Problems. How do cameras measure light and color? How do humans perceive light and color?

Problems. How do cameras measure light and color? How do humans perceive light and color? Light and Color Problems How do cameras measure light and color? Radiometry How do humans perceive light and color? Photometry How do computers represent light and color? How do monitors display light

More information

To discuss. Color Science Color Models in image. Computer Graphics 2

To discuss. Color Science Color Models in image. Computer Graphics 2 Color To discuss Color Science Color Models in image Computer Graphics 2 Color Science Light & Spectra Light is an electromagnetic wave It s color is characterized by its wavelength Laser consists of single

More information

CSE1710. Big Picture. Reminder

CSE1710. Big Picture. Reminder CSE1710 Click to edit Master Week text 10, styles Lecture 19 Second level Third level Fourth level Fifth level Fall 2013 Thursday, Nov 14, 2013 1 Big Picture For the next three class meetings, we will

More information

White light can be split into constituent wavelengths (or colors) using a prism or a grating.

White light can be split into constituent wavelengths (or colors) using a prism or a grating. Colors and the perception of colors Visible light is only a small member of the family of electromagnetic (EM) waves. The wavelengths of EM waves that we can observe using many different devices span from

More information

Werner Purgathofer

Werner Purgathofer Einführung in Visual Computing 186.822 Color and Color Models Werner Purgathofer Color problem specification light and perceptionp colorimetry device color systems color ordering systems color symbolism

More information

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light

Chapter 9: Color. What is Color? Wavelength is a property of an electromagnetic wave in the frequency range we call light Chapter 9: Color What is color? Color mixtures Intensity-distribution curves Additive Mixing Partitive Mixing Specifying colors RGB Color Chromaticity What is Color? Wavelength is a property of an electromagnetic

More information

Introduction to Color Theory

Introduction to Color Theory Systems & Biomedical Engineering Department SBE 306B: Computer Systems III (Computer Graphics) Dr. Ayman Eldeib Spring 2018 Introduction to With colors you can set a mood, attract attention, or make a

More information

What Is Color? How Brains Make Color Sensations Contents

What Is Color? How Brains Make Color Sensations Contents What Is Color? How Brains Make Color Sensations Contents Abstract... 4 Keywords... 4 1. Anatomy... 5 1.1. Eye... 5 1.1.1. Eyeball layers... 5 1.1.2. Eyeball front... 5 1.1.3. Fluids... 5 1.1.4. Eye muscles...

More information

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008.

Raster Graphics. Overview קורס גרפיקה ממוחשבת 2008 סמסטר ב' What is an image? What is an image? Image Acquisition. Image display 5/19/2008. Overview Images What is an image? How are images displayed? Color models How do we perceive colors? How can we describe and represent colors? קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים

More information

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור

קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור קורס גרפיקה ממוחשבת 2008 סמסטר ב' Raster Graphics 1 חלק מהשקפים מעובדים משקפים של פרדו דוראנד, טומס פנקהאוסר ודניאל כהן-אור Images What is an image? How are images displayed? Color models Overview How

More information

University of British Columbia CPSC 414 Computer Graphics

University of British Columbia CPSC 414 Computer Graphics University of British Columbia CPSC 414 Computer Graphics Color 2 Week 10, Fri 7 Nov 2003 Tamara Munzner 1 Readings Chapter 1.4: color plus supplemental reading: A Survey of Color for Computer Graphics,

More information

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University

Color and Perception. CS535 Fall Daniel G. Aliaga Department of Computer Science Purdue University Color and Perception CS535 Fall 2014 Daniel G. Aliaga Department of Computer Science Purdue University Elements of Color Perception 2 Elements of Color Physics: Illumination Electromagnetic spectra; approx.

More information

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources:

Vision and Color. Reading. Optics, cont d. Lenses. d d f. Brian Curless CSE 557 Autumn Good resources: Reading Good resources: Vision and Color Brian Curless CSE 557 Autumn 2015 Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Vision and Color. Brian Curless CSE 557 Autumn 2015

Vision and Color. Brian Curless CSE 557 Autumn 2015 Vision and Color Brian Curless CSE 557 Autumn 2015 1 Reading Good resources: Glassner, Principles of Digital Image Synthesis, pp. 5-32. Palmer, Vision Science: Photons to Phenomenology. Wandell. Foundations

More information

Introduction & Colour

Introduction & Colour Introduction & Colour Eric C. McCreath School of Computer Science The Australian National University ACT 0200 Australia ericm@cs.anu.edu.au Overview 2 Computer Graphics Uses (Chapter 1) Basic Hardware

More information

VC 16/17 TP4 Colour and Noise

VC 16/17 TP4 Colour and Noise VC 16/17 TP4 Colour and Noise Mestrado em Ciência de Computadores Mestrado Integrado em Engenharia de Redes e Sistemas Informáticos Hélder Filipe Pinto de Oliveira Outline Colour spaces Colour processing

More information

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal

IFT3355: Infographie Couleur. Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal IFT3355: Infographie Couleur Victor Ostromoukhov, Pierre Poulin Dép. I.R.O. Université de Montréal Color Appearance Visual Range Electromagnetic waves (in nanometres) γ rays X rays ultraviolet violet

More information

Figure 1: Energy Distributions for light

Figure 1: Energy Distributions for light Lecture 4: Colour The physical description of colour Colour vision is a very complicated biological and psychological phenomenon. It can be described in many different ways, including by physics, by subjective

More information

Colour spaces. Project for the Digital signal processing course

Colour spaces. Project for the Digital signal processing course Colour spaces Project for the Digital signal processing course Marko Tkalčič, author prof. Jurij F. Tasič, mentor Faculty of electrical engineering University of Ljubljana Tržaška 25, 1001 Ljubljana, Slovenia

More information

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET

INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET INSTITUTIONEN FÖR SYSTEMTEKNIK LULEÅ TEKNISKA UNIVERSITET Some color images on this slide Last Lecture 2D filtering frequency domain The magnitude of the 2D DFT gives the amplitudes of the sinusoids and

More information

Lecture 4. Opponent Colors. Hue Cancellation Experiment HUV Color Space

Lecture 4. Opponent Colors. Hue Cancellation Experiment HUV Color Space Lecture 4 Opponent Colors Hue Cancellation Experiment HUV Color Space 20 40 60 80 100 120 50 100 150 200 250 20 40 60 80 100 120 50 100 150 200 250 20 40 60 80 100 120 50 100 150 200 250 20 40 60 80 100

More information

Computers and Imaging

Computers and Imaging Computers and Imaging Telecommunications 1 P. Mathys Two Different Methods Vector or object-oriented graphics. Images are generated by mathematical descriptions of line (vector) segments. Bitmap or raster

More information

Multimedia Systems and Technologies

Multimedia Systems and Technologies Multimedia Systems and Technologies Faculty of Engineering Master s s degree in Computer Engineering Marco Porta Computer Vision & Multimedia Lab Dipartimento di Ingegneria Industriale e dell Informazione

More information

The human visual system

The human visual system The human visual system Vision and hearing are the two most important means by which humans perceive the outside world. 1 Low-level vision Light is the electromagnetic radiation that stimulates our visual

More information

Revised Edition: 2016 ISBN All rights reserved.

Revised Edition: 2016 ISBN All rights reserved. Revised Edition: 2016 ISBN 978-1-283-50430-0 All rights reserved. Published by: White Word Publications 48 West 48 Street, Suite 1116, New York, NY 10036, United States Email: info@wtbooks.com Table of

More information

THE SCIENCE OF COLOUR

THE SCIENCE OF COLOUR THE SCIENCE OF COLOUR Colour can be described as a light wavelength coming from a light source striking the surface of an object which in turns reflects the incoming light from were it is received by the

More information

check it out online at

check it out online at check it out online at www.belyea.com/svc/all_about_color.pdf Who am I? I got the blues Experience and Emotions through color PASSION JOY Depression HARMONY CREATIVITY PEACE MOURNING It s a bird, it s

More information

Colors in Visualization. By Mike Bailey Oregon State University

Colors in Visualization. By Mike Bailey Oregon State University Colors in Visualization By Mike Bailey Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed, so

More information

A Brief Plug. Color in Information Display. Color includes Gray. Information Display. Color In Information Display, SIAT 1/24/2006

A Brief Plug. Color in Information Display. Color includes Gray. Information Display. Color In Information Display, SIAT 1/24/2006 A Brief Plug Color in Information Display Maureen Stone StoneSoup Consulting Woodinville, WA Information Display Color includes Gray Graphical presentation of information Charts, graphs, diagrams, maps,

More information

CIE R1-57 Border between Blackish and Luminous Colours

CIE R1-57 Border between Blackish and Luminous Colours CIE R1-57 Border between Blackish and Luminous Colours Author: Thorstein Seim Norway Advisors: Klaus Richter Arne Valberg Germany Norway 1 CONTENTS CIE task:... 4 Introduction... 4 Description of concepts...

More information

Introduction to Computer Vision and image processing

Introduction to Computer Vision and image processing Introduction to Computer Vision and image processing 1.1 Overview: Computer Imaging 1.2 Computer Vision 1.3 Image Processing 1.4 Computer Imaging System 1.6 Human Visual Perception 1.7 Image Representation

More information

Colors in Scientific Visualization. Mike Bailey Oregon State University

Colors in Scientific Visualization. Mike Bailey Oregon State University Colors in Scientific Visualization Mike Bailey Oregon State University The often scant benefits derived from coloring data indicate that even putting a good color in a good place is a complex matter. Indeed,

More information

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE

IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE IMAGE PROCESSING >COLOR SPACES UTRECHT UNIVERSITY RONALD POPPE OUTLINE Human visual system Color images Color quantization Colorimetric color spaces HUMAN VISUAL SYSTEM HUMAN VISUAL SYSTEM HUMAN VISUAL

More information

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision

Spectral colors. What is colour? 11/23/17. Colour Vision 1 - receptoral. Colour Vision I: The receptoral basis of colour vision Colour Vision I: The receptoral basis of colour vision Colour Vision 1 - receptoral What is colour? Relating a physical attribute to sensation Principle of Trichromacy & metamers Prof. Kathy T. Mullen

More information