1-D Rate Conversion. Decimation

Size: px
Start display at page:

Download "1-D Rate Conversion. Decimation"

Transcription

1 C. A. Bouman: Digital Image Processing - January 8, Decimation 1-D Rate Conversion Reduce the sampling rate of a discrete-time signal. Low sampling rate reduces storage and computation requirements. Interpolation Increase the sampling rate of a discrete-time signal. Higher sampling rate preserves fidelity.

2 C. A. Bouman: Digital Image Processing - January 8, D Periodic Subsampling Time domain subsampling ofx(n) with period D y(n) = x(dn) x(n) D y(n Frequency domain representation Y(e jω ) = 1 D D 1 k= X (e j(ω 2πk)/D ) Problem: Frequencies aboveπ/d will alias. Example when D = 2 aliased signal aliased signal π π/2 π/2 π ω Solution: Remove frequencies aboveπ/d.

3 C. A. Bouman: Digital Image Processing - January 8, Decimation System jω x(n) H(e ) D y(n) Apply the filter H(e jω ) to remove high frequencies For ω < π For allω H(e jω ) = Impulse response H(e jω ) = rect k= rect = prect 2π/D (ω) ( ) Dω 2π h(n) = 1 D sinc(n/d) Frequency domain representation Y(e jω ) = 1 D D 1 k= H ( D ω k2π ) 2π ) ) (e j(ω 2πk)/D X (e j(ω 2πk)/D

4 C. A. Bouman: Digital Image Processing - January 8, Graphical View of Decimation ford = 2 Spectral content of signal X ( e jω) 1 π π/2 π/2 π 3π/2 2π 5π/2 ω Spectral content of filtered signal H ( e jω) X ( e jω) 1 π π/2 π/2 π 3π/2 2π 5π/2 ω Spectral content of decimated signal Y(e jω ) = 1 D 1 ) H (e j(ω 2πk)/D X D k= (e j(ω 2πk)/D ) 1/D 2π π π 2π 3π 4π 5π ω

5 C. A. Bouman: Digital Image Processing - January 8, Decimation for Images Extension to decimation of images is direct Apply 2-D Filter f(i,j) = h(i,j) x(i,j) Subsample result y(i,j) = f(di,dj) Ideal choice of filter is h(m,n) = 1 D 2sinc(m/D)sinc(n/D) Problems: Filter has infinite extent. Filter is not strictly positive.

6 C. A. Bouman: Digital Image Processing - January 8, Alternative Filters for Image Decimation Direct subsampling h(m,n) = δ(m,n) Advantages/Disadvantages: Low computation Excessive aliasing Block averaging h(m,n) = δ(m,n)+δ(m+1,n) +δ(m,n+1)+δ(m+1,n+1) Advantages/Disadvantages: Low computation Some aliasing Sinc function h(m,n) = 1 D 2sinc(m/D,n/D) Advantages/Disadvantages: Optimal, if signal is band limited... High computation

7 C. A. Bouman: Digital Image Processing - January 8, Decimation Filters 2 D Filter Impulse Response used for Block Averaging Block averaging filter 2 D Sinc Filter used for Ideal Subsampling Sinc filter

8 C. A. Bouman: Digital Image Processing - January 8, Original Image Full resolution

9 C. A. Bouman: Digital Image Processing - January 8, Image Decimation by 4 using Subsampling Severe aliasing

10 C. A. Bouman: Digital Image Processing - January 8, Image Decimation by 8 using Subsampling More severe aliasing

11 C. A. Bouman: Digital Image Processing - January 8, Image Decimation by 4 using Block Averaging Sharp, but with some aliasing

12 C. A. Bouman: Digital Image Processing - January 8, Image Decimation by 4 using Sinc Filter Theoretically optimal, but not necessarily the best visual quality

13 C. A. Bouman: Digital Image Processing - January 8, D Up-Sampling Up-sampling by L { x(n/l) if n = KL for somek y(n) = otherwise or the alternative form y(n) = x(m)δ(n ml) Example forl = 3 m= Discrete time signal x(n) x(n) up sampled by

14 C. A. Bouman: Digital Image Processing - January 8, Up-Sampling in the Frequency Domain Up-sampling by L y(n) = x(m)δ(n ml) m= In the frequency domain Y(e jω ) = X(e jωl ) Example forl = 3 15 DTFT of x(n) DTFT of y(n)

15 C. A. Bouman: Digital Image Processing - January 8, Interpolation in the Frequency Domain x(n) L jω H(e ) y(n) Interpolating filter has the form Example forl = 3 Y(e jω ) = H(e jω )X(e jωl ) 15 DTFT of y(n) Interpolated Signal in Frequency

16 C. A. Bouman: Digital Image Processing - January 8, Interpolating Filter x(n) L jω H(e ) y(n) In the frequency domain H(e jω ) = Lprect 2π/L (ω) In the time domain ( n h(n) = sinc L) 1 Interpolating filter in Time Interpolating filter in Frequency

17 C. A. Bouman: Digital Image Processing - January 8, Interpolation in the Time Domain x(n) L jω H(e ) y(n) In the frequency domain Example forl = 3 Y(e jω ) = X(e jωl ) 1 Discrete time signal x(n) Interpolated Signal in Time

18 C. A. Bouman: Digital Image Processing - January 8, D Interpolation x(n) (L,L) H(e jυ,e jµ ) y(n) Up-sampling y(m,n) = x(k,l)δ(m kl,n ll) k= l= In the frequency domain H(e jµ,e jν ) = prect 2π/L (µ)prect 2π/L (ν) h(m,n) = sinc(m/l,n/l) Problems: sinc function impulse response Infinite support; infinite computation Negative sidelobes; ringing artifacts at edges

19 C. A. Bouman: Digital Image Processing - January 8, Pixel Replication x(n) (L,L) H(e jυ,e jµ ) y(n) Impulse response of filter { 1 for m L 1 and n L 1 h(m,n) = otherwise Replicates each pixell 2 times

20 C. A. Bouman: Digital Image Processing - January 8, Bilinear Interpolation x(n) (L,L) H(e jυ,e jµ ) y(n) Impulse response of filter h(m, n) = Λ(m/L)Λ(n/L) Results in linear interpolation of intermediate pixels

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer.

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer. Sampling of Continuous-Time Signals Reference chapter 4 in Oppenheim and Schafer. Periodic Sampling of Continuous Signals T = sampling period fs = sampling frequency when expressing frequencies in radians

More information

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems.

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems. PROBLEM SET 6 Issued: 2/32/19 Due: 3/1/19 Reading: During the past week we discussed change of discrete-time sampling rate, introducing the techniques of decimation and interpolation, which is covered

More information

PROBLEM SET 5. Reminder: Quiz 1will be on March 6, during the regular class hour. Details to follow. z = e jω h[n] H(e jω ) H(z) DTFT.

PROBLEM SET 5. Reminder: Quiz 1will be on March 6, during the regular class hour. Details to follow. z = e jω h[n] H(e jω ) H(z) DTFT. PROBLEM SET 5 Issued: 2/4/9 Due: 2/22/9 Reading: During the past week we continued our discussion of the impact of pole/zero locations on frequency response, focusing on allpass systems, minimum and maximum-phase

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to increase the sampling rate by an integer

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Lecture 9 Discrete-Time Processing of Continuous-Time Signals Alp Ertürk alp.erturk@kocaeli.edu.tr Analog to Digital Conversion Most real life signals are analog signals These

More information

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 1 Introduction

More information

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications

Lecture 3 Review of Signals and Systems: Part 2. EE4900/EE6720 Digital Communications EE4900/EE6720: Digital Communications 1 Lecture 3 Review of Signals and Systems: Part 2 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN

DISCRETE FOURIER TRANSFORM AND FILTER DESIGN DISCRETE FOURIER TRANSFORM AND FILTER DESIGN N. C. State University CSC557 Multimedia Computing and Networking Fall 2001 Lecture # 03 Spectrum of a Square Wave 2 Results of Some Filters 3 Notation 4 x[n]

More information

Filters. Materials from Prof. Klaus Mueller

Filters. Materials from Prof. Klaus Mueller Filters Materials from Prof. Klaus Mueller Think More about Pixels What exactly a pixel is in an image or on the screen? Solid square? This cannot be implemented A dot? Yes, but size matters Pixel Dots

More information

B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 DIGITAL SIGNAL PROCESSING (Common to ECE and EIE)

B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 DIGITAL SIGNAL PROCESSING (Common to ECE and EIE) Code: 13A04602 R13 B.Tech III Year II Semester (R13) Regular & Supplementary Examinations May/June 2017 (Common to ECE and EIE) PART A (Compulsory Question) 1 Answer the following: (10 X 02 = 20 Marks)

More information

Final Exam Practice Questions for Music 421, with Solutions

Final Exam Practice Questions for Music 421, with Solutions Final Exam Practice Questions for Music 4, with Solutions Elementary Fourier Relationships. For the window w = [/,,/ ], what is (a) the dc magnitude of the window transform? + (b) the magnitude at half

More information

Digital Signal Processing Fourier Analysis of Continuous-Time Signals with the Discrete Fourier Transform

Digital Signal Processing Fourier Analysis of Continuous-Time Signals with the Discrete Fourier Transform Digital Signal Processing Fourier Analysis of Continuous-Time Signals with the Discrete Fourier Transform D. Richard Brown III D. Richard Brown III 1 / 11 Fourier Analysis of CT Signals with the DFT Scenario:

More information

CS3291: Digital Signal Processing

CS3291: Digital Signal Processing CS39 Exam Jan 005 //08 /BMGC University of Manchester Department of Computer Science First Semester Year 3 Examination Paper CS39: Digital Signal Processing Date of Examination: January 005 Answer THREE

More information

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet

ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet ELEC-C5230 Digitaalisen signaalinkäsittelyn perusteet Lecture 10: Summary Taneli Riihonen 16.05.2016 Lecture 10 in Course Book Sanjit K. Mitra, Digital Signal Processing: A Computer-Based Approach, 4th

More information

Chapter 9. Chapter 9 275

Chapter 9. Chapter 9 275 Chapter 9 Chapter 9: Multirate Digital Signal Processing... 76 9. Decimation... 76 9. Interpolation... 8 9.. Linear Interpolation... 85 9.. Sampling rate conversion by Non-integer factors... 86 9.. Illustration

More information

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications EE4900/EE6420: Digital Communications 1 Lecture 2 Review of Signals and Systems: Part 1 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

Image Scaling. This image is too big to fit on the screen. How can we reduce it? How to generate a halfsized

Image Scaling. This image is too big to fit on the screen. How can we reduce it? How to generate a halfsized Resampling Image Scaling This image is too big to fit on the screen. How can we reduce it? How to generate a halfsized version? Image sub-sampling 1/8 1/4 Throw away every other row and column to create

More information

ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130,

ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130, ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130, 1. Enter your name, student ID number, e-mail address, and signature in the space provided

More information

6.02 Fall 2012 Lecture #13

6.02 Fall 2012 Lecture #13 6.02 Fall 2012 Lecture #13 Frequency response Filters Spectral content 6.02 Fall 2012 Lecture 13 Slide #1 Sinusoidal Inputs and LTI Systems h[n] A very important property of LTI systems or channels: If

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. OpenCourseWare 2006

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science. OpenCourseWare 2006 Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.341: Discrete-Time Signal Processing OpenCourseWare 2006 Lecture 6 Quantization and Oversampled Noise Shaping

More information

Outline. J-DSP Overview. Objectives and Motivation. by Andreas Spanias Arizona State University

Outline. J-DSP Overview. Objectives and Motivation. by Andreas Spanias Arizona State University Outline JAVA-DSP () A DSP SOFTWARE TOOL FOR ON-LINE SIMULATIONS AND COMPUTER LABORATORIES by Andreas Spanias Arizona State University Sponsored by NSF-DUE-CCLI-080975-2000-04 New NSF Program Award Starts

More information

Experiments #6. Convolution and Linear Time Invariant Systems

Experiments #6. Convolution and Linear Time Invariant Systems Experiments #6 Convolution and Linear Time Invariant Systems 1) Introduction: In this lab we will explain how to use computer programs to perform a convolution operation on continuous time systems and

More information

Sampling, interpolation and decimation issues

Sampling, interpolation and decimation issues S-72.333 Postgraduate Course in Radiocommunications Fall 2000 Sampling, interpolation and decimation issues Jari Koskelo 28.11.2000. Introduction The topics of this presentation are sampling, interpolation

More information

Final Exam Solutions June 14, 2006

Final Exam Solutions June 14, 2006 Name or 6-Digit Code: PSU Student ID Number: Final Exam Solutions June 14, 2006 ECE 223: Signals & Systems II Dr. McNames Keep your exam flat during the entire exam. If you have to leave the exam temporarily,

More information

ECE 484 Digital Image Processing Lec 09 - Image Resampling

ECE 484 Digital Image Processing Lec 09 - Image Resampling ECE 484 Digital Image Processing Lec 09 - Image Resampling Zhu Li Dept of CSEE, UMKC Office: FH560E, Email: lizhu@umkc.edu, Ph: x 2346. http://l.web.umkc.edu/lizhu slides created with WPS Office Linux

More information

Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design

Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design SMJE3163 DSP2016_Week1-04 Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design 1) Signals, Systems, and DSP 2) DSP system configuration 3)

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 10: February 15th, 2018 Practical and Non-integer Sampling, Multirate Sampling Signals and Systems Review 3 Lecture Outline! Review: Downsampling/Upsampling! Non-integer

More information

Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau

Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau Multirate Signal Processing Lecture 7, Sampling Gerald Schuller, TU Ilmenau (Also see: Lecture ADSP, Slides 06) In discrete, digital signal we use the normalized frequency, T = / f s =: it is without a

More information

Final Exam Solutions June 7, 2004

Final Exam Solutions June 7, 2004 Name: Final Exam Solutions June 7, 24 ECE 223: Signals & Systems II Dr. McNames Write your name above. Keep your exam flat during the entire exam period. If you have to leave the exam temporarily, close

More information

Sampling and Reconstruction of Analog Signals

Sampling and Reconstruction of Analog Signals Sampling and Reconstruction of Analog Signals Chapter Intended Learning Outcomes: (i) Ability to convert an analog signal to a discrete-time sequence via sampling (ii) Ability to construct an analog signal

More information

EE 123: Digital Signal Processing Spring Lecture 15 March 6

EE 123: Digital Signal Processing Spring Lecture 15 March 6 EE 123: Digital Signal Processing Spring 2007 Lecture 15 March 6 Lecturer: Prof. Anant Sahai Scribe: Julia Owen 15.1 Outline These notes cover the following topics: Overlap-Add and Overlap-Save OFDM tricks

More information

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu

Concordia University. Discrete-Time Signal Processing. Lab Manual (ELEC442) Dr. Wei-Ping Zhu Concordia University Discrete-Time Signal Processing Lab Manual (ELEC442) Course Instructor: Dr. Wei-Ping Zhu Fall 2012 Lab 1: Linear Constant Coefficient Difference Equations (LCCDE) Objective In this

More information

ECE 429 / 529 Digital Signal Processing

ECE 429 / 529 Digital Signal Processing ECE 429 / 529 Course Policy & Syllabus R. N. Strickland SYLLABUS ECE 429 / 529 Digital Signal Processing SPRING 2009 I. Introduction DSP is concerned with the digital representation of signals and the

More information

Antialiasing and Related Issues

Antialiasing and Related Issues Antialiasing and Related Issues OUTLINE: Antialiasing Prefiltering, Supersampling, Stochastic Sampling Rastering and Reconstruction Gamma Correction Antialiasing Methods To reduce aliasing, either: 1.

More information

Multirate DSP, part 3: ADC oversampling

Multirate DSP, part 3: ADC oversampling Multirate DSP, part 3: ADC oversampling Li Tan - May 04, 2008 Order this book today at www.elsevierdirect.com or by calling 1-800-545-2522 and receive an additional 20% discount. Use promotion code 92562

More information

Sampling and Signal Processing

Sampling and Signal Processing Sampling and Signal Processing Sampling Methods Sampling is most commonly done with two devices, the sample-and-hold (S/H) and the analog-to-digital-converter (ADC) The S/H acquires a continuous-time signal

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

Two-Dimensional Wavelets with Complementary Filter Banks

Two-Dimensional Wavelets with Complementary Filter Banks Tendências em Matemática Aplicada e Computacional, 1, No. 1 (2000), 1-8. Sociedade Brasileira de Matemática Aplicada e Computacional. Two-Dimensional Wavelets with Complementary Filter Banks M.G. ALMEIDA

More information

Digital Signal Processing (Subject Code: 7EC2)

Digital Signal Processing (Subject Code: 7EC2) CIITM, JAIPUR (DEPARTMENT OF ELECTRONICS & COMMUNICATION) Notes Digital Signal Processing (Subject Code: 7EC2) Prepared Class: B. Tech. IV Year, VII Semester Syllabus UNIT 1: SAMPLING - Discrete time processing

More information

EE 470 Signals and Systems

EE 470 Signals and Systems EE 470 Signals and Systems 9. Introduction to the Design of Discrete Filters Prof. Yasser Mostafa Kadah Textbook Luis Chapparo, Signals and Systems Using Matlab, 2 nd ed., Academic Press, 2015. Filters

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

ECE 6560 Multirate Signal Processing Chapter 11

ECE 6560 Multirate Signal Processing Chapter 11 ultirate Signal Processing Chapter Dr. Bradley J. Bauin Western ichigan University College of Engineering and Applied Sciences Department of Electrical and Computer Engineering 903 W. ichigan Ave. Kalamaoo

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

6.02 Fall 2012 Lecture #15

6.02 Fall 2012 Lecture #15 6.02 Fall 2012 Lecture #15 Modulation to match the transmitted signal to the physical medium Demodulation 6.02 Fall 2012 Lecture 15 Slide #1 Single Link Communication Model Original source End-host computers

More information

Module 9: Multirate Digital Signal Processing Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering &

Module 9: Multirate Digital Signal Processing Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & odule 9: ultirate Digital Signal Processing Prof. Eliathamby Ambikairajah Dr. Tharmarajah Thiruvaran School of Electrical Engineering & Telecommunications The University of New South Wales Australia ultirate

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #27 Tuesday, November 11, 23 6. SPECTRAL ANALYSIS AND ESTIMATION 6.1 Introduction to Spectral Analysis and Estimation The discrete-time Fourier

More information

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING

EC6502 PRINCIPLES OF DIGITAL SIGNAL PROCESSING 1. State the properties of DFT? UNIT-I DISCRETE FOURIER TRANSFORM 1) Periodicity 2) Linearity and symmetry 3) Multiplication of two DFTs 4) Circular convolution 5) Time reversal 6) Circular time shift

More information

ELEC Dr Reji Mathew Electrical Engineering UNSW

ELEC Dr Reji Mathew Electrical Engineering UNSW ELEC 4622 Dr Reji Mathew Electrical Engineering UNSW Filter Design Circularly symmetric 2-D low-pass filter Pass-band radial frequency: ω p Stop-band radial frequency: ω s 1 δ p Pass-band tolerances: δ

More information

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37

Outline. Discrete time signals. Impulse sampling z-transform Frequency response Stability INF4420. Jørgen Andreas Michaelsen Spring / 37 2 / 37 INF4420 Discrete time signals Jørgen Andreas Michaelsen Spring 2013 1 / 37 Outline Impulse sampling z-transform Frequency response Stability Spring 2013 Discrete time signals 2 2 / 37 Introduction More

More information

6.003: Signals and Systems. Sampling

6.003: Signals and Systems. Sampling 6.003: Signals and Systems Sampling April 27, 200 Mid-term Examination #3 om orrow: W ednesday, A pril 2 8, 7 : 3 0-9 : 3 0 pm. No recitations tomorrow. Coverage: Lectures 20 Recitations 20 Homeworks Homework

More information

Project I: Phase Tracking and Baud Timing Correction Systems

Project I: Phase Tracking and Baud Timing Correction Systems Project I: Phase Tracking and Baud Timing Correction Systems ECES 631, Prof. John MacLaren Walsh, Ph. D. 1 Purpose In this lab you will encounter the utility of the fundamental Fourier and z-transform

More information

DIGITAL SIGNAL PROCESSING. Chapter 1 Introduction to Discrete-Time Signals & Sampling

DIGITAL SIGNAL PROCESSING. Chapter 1 Introduction to Discrete-Time Signals & Sampling DIGITAL SIGNAL PROCESSING Chapter 1 Introduction to Discrete-Time Signals & Sampling by Dr. Norizam Sulaiman Faculty of Electrical & Electronics Engineering norizam@ump.edu.my OER Digital Signal Processing

More information

Signal Processing for Speech Applications - Part 2-1. Signal Processing For Speech Applications - Part 2

Signal Processing for Speech Applications - Part 2-1. Signal Processing For Speech Applications - Part 2 Signal Processing for Speech Applications - Part 2-1 Signal Processing For Speech Applications - Part 2 May 14, 2013 Signal Processing for Speech Applications - Part 2-2 References Huang et al., Chapter

More information

Multirate DSP, part 1: Upsampling and downsampling

Multirate DSP, part 1: Upsampling and downsampling Multirate DSP, part 1: Upsampling and downsampling Li Tan - April 21, 2008 Order this book today at www.elsevierdirect.com or by calling 1-800-545-2522 and receive an additional 20% discount. Use promotion

More information

FFT analysis in practice

FFT analysis in practice FFT analysis in practice Perception & Multimedia Computing Lecture 13 Rebecca Fiebrink Lecturer, Department of Computing Goldsmiths, University of London 1 Last Week Review of complex numbers: rectangular

More information

Sampling and pixels. CS 178, Spring Marc Levoy Computer Science Department Stanford University. Begun 4/23, finished 4/25.

Sampling and pixels. CS 178, Spring Marc Levoy Computer Science Department Stanford University. Begun 4/23, finished 4/25. Sampling and pixels CS 178, Spring 2013 Begun 4/23, finished 4/25. Marc Levoy Computer Science Department Stanford University Why study sampling theory? Why do I sometimes get moiré artifacts in my images?

More information

SAMPLING THEORY. Representing continuous signals with discrete numbers

SAMPLING THEORY. Representing continuous signals with discrete numbers SAMPLING THEORY Representing continuous signals with discrete numbers Roger B. Dannenberg Professor of Computer Science, Art, and Music Carnegie Mellon University ICM Week 3 Copyright 2002-2013 by Roger

More information

! Discrete Time Signals. ! Signal Properties. ! Discrete Time Systems. ! Signals carry information. ! Examples:

! Discrete Time Signals. ! Signal Properties. ! Discrete Time Systems. ! Signals carry information. ! Examples: Lecture Outline ESE 531: Digital Signal Processing Lec 2: January 17, 2017 Discrete Time Signals and Systems! Discrete Time Signals! Signal Properties! Discrete Time Systems 2 Discrete Time Signals Signals!

More information

ECE503: Digital Filter Design Lecture 9

ECE503: Digital Filter Design Lecture 9 ECE503: Digital Filter Design Lecture 9 D. Richard Brown III WPI 26-March-2012 WPI D. Richard Brown III 26-March-2012 1 / 33 Lecture 9 Topics Within the broad topic of digital filter design, we are going

More information

EE 438 Final Exam Spring 2000

EE 438 Final Exam Spring 2000 2 May 2000 Name: EE 438 Final Exam Spring 2000 You have 120 minutes to work the following six problems. Each problem is worth 25 points. Be sure to show all your work to obtain full credit. The exam is

More information

Jawaharlal Nehru Engineering College

Jawaharlal Nehru Engineering College Jawaharlal Nehru Engineering College Laboratory Manual SIGNALS & SYSTEMS For Third Year Students Prepared By: Ms.Sunetra S Suvarna Assistant Professor Author JNEC INSTRU. & CONTROL DEPT., Aurangabad SUBJECT

More information

Lecture Schedule: Week Date Lecture Title

Lecture Schedule: Week Date Lecture Title http://elec3004.org Sampling & More 2014 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date Lecture Title 1 2-Mar Introduction 3-Mar

More information

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011

Islamic University of Gaza. Faculty of Engineering Electrical Engineering Department Spring-2011 Islamic University of Gaza Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#4 Sampling and Quantization OBJECTIVES: When you have completed this assignment,

More information

Digital Processing of Continuous-Time Signals

Digital Processing of Continuous-Time Signals Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Aliasing and Antialiasing. What is Aliasing? What is Aliasing? What is Aliasing?

Aliasing and Antialiasing. What is Aliasing? What is Aliasing? What is Aliasing? What is Aliasing? Errors and Artifacts arising during rendering, due to the conversion from a continuously defined illumination field to a discrete raster grid of pixels 1 2 What is Aliasing? What is Aliasing?

More information

ECE503: Digital Signal Processing Lecture 1

ECE503: Digital Signal Processing Lecture 1 ECE503: Digital Signal Processing Lecture 1 D. Richard Brown III WPI 12-January-2012 WPI D. Richard Brown III 12-January-2012 1 / 56 Lecture 1 Major Topics 1. Administrative details: Course web page. Syllabus

More information

2) How fast can we implement these in a system

2) How fast can we implement these in a system Filtration Now that we have looked at the concept of interpolation we have seen practically that a "digital filter" (hold, or interpolate) can affect the frequency response of the overall system. We need

More information

Signals and Systems. Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI

Signals and Systems. Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI Signals and Systems Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Continuous time versus discrete time Continuous time

More information

Corso di DATI e SEGNALI BIOMEDICI 1. Carmelina Ruggiero Laboratorio MedInfo

Corso di DATI e SEGNALI BIOMEDICI 1. Carmelina Ruggiero Laboratorio MedInfo Corso di DATI e SEGNALI BIOMEDICI 1 Carmelina Ruggiero Laboratorio MedInfo Digital Filters Function of a Filter In signal processing, the functions of a filter are: to remove unwanted parts of the signal,

More information

Chapter 6 CONTINUOUS-TIME, IMPULSE-MODULATED, AND DISCRETE-TIME SIGNALS. 6.6 Sampling Theorem 6.7 Aliasing 6.8 Interrelations

Chapter 6 CONTINUOUS-TIME, IMPULSE-MODULATED, AND DISCRETE-TIME SIGNALS. 6.6 Sampling Theorem 6.7 Aliasing 6.8 Interrelations Chapter 6 CONTINUOUS-TIME, IMPULSE-MODULATED, AND DISCRETE-TIME SIGNALS 6.6 Sampling Theorem 6.7 Aliasing 6.8 Interrelations Copyright c 2005- Andreas Antoniou Victoria, BC, Canada Email: aantoniou@ieee.org

More information

EE 123 Discussion Section 6. Frank Ong March 14th, 2016

EE 123 Discussion Section 6. Frank Ong March 14th, 2016 EE 123 Discussion Section 6 Frank Ong March 14th, 2016 Plan Sparse FFT Magnitude Filter Design with convex optimization Sparse FFT Given a length-n signal, FFT takes O(N log N) time to compute its DFT

More information

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing

THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA. Department of Electrical and Computer Engineering. ELEC 423 Digital Signal Processing THE CITADEL THE MILITARY COLLEGE OF SOUTH CAROLINA Department of Electrical and Computer Engineering ELEC 423 Digital Signal Processing Project 2 Due date: November 12 th, 2013 I) Introduction In ELEC

More information

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No

Final Exam. EE313 Signals and Systems. Fall 1999, Prof. Brian L. Evans, Unique No Final Exam EE313 Signals and Systems Fall 1999, Prof. Brian L. Evans, Unique No. 14510 December 11, 1999 The exam is scheduled to last 50 minutes. Open books and open notes. You may refer to your homework

More information

Analysis of Multi-rate filters in Communication system by using interpolation and decimation, filters

Analysis of Multi-rate filters in Communication system by using interpolation and decimation, filters Analysis of Multi-rate filters in Communication system by using interpolation and decimation, filters Vibhooti Sharma M.Tech, E.C.E. Lovely Professional University PHAGWARA Amanjot Singh (Assistant Professor)

More information

Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations are next mon in 1311EECS.

Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations are next mon in 1311EECS. Lecture 8 Today: Announcements: References: FIR filter design IIR filter design Filter roundoff and overflow sensitivity Team proposals are due tomorrow at 6PM Homework 4 is due next thur. Proposal presentations

More information

Understanding Digital Signal Processing

Understanding Digital Signal Processing Understanding Digital Signal Processing Richard G. Lyons PRENTICE HALL PTR PRENTICE HALL Professional Technical Reference Upper Saddle River, New Jersey 07458 www.photr,com Contents Preface xi 1 DISCRETE

More information

6.02 Fall 2012 Lecture #12

6.02 Fall 2012 Lecture #12 6.02 Fall 2012 Lecture #12 Bounded-input, bounded-output stability Frequency response 6.02 Fall 2012 Lecture 12, Slide #1 Bounded-Input Bounded-Output (BIBO) Stability What ensures that the infinite sum

More information

Digital Signal Processing

Digital Signal Processing COMP ENG 4TL4: Digital Signal Processing Notes for Lecture #25 Wednesday, November 5, 23 Aliasing in the impulse invariance method: The impulse invariance method is only suitable for filters with a bandlimited

More information

ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona ECE 429/529 RNS

ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona ECE 429/529 RNS ece 429/529 digital signal processing robin n. strickland ece dept, university of arizona 2007 SPRING 2007 SCHEDULE All dates are tentative. Lesson Day Date Learning outcomes to be Topics Textbook HW/PROJECT

More information

ESE 531: Digital Signal Processing

ESE 531: Digital Signal Processing ESE 531: Digital Signal Processing Lec 10: February 14th, 2017 Practical and Non-integer Sampling, Multirate Sampling Lecture Outline! Downsampling/Upsampling! Practical Interpolation! Non-integer Resampling!

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing Announcements EE23 Digital Signal Processing ecture 5 ast Time D.T processing of C.T signals C.T processing of D.T signals (ha????) D.T are represented as bandlimited C.T signals Fractional delay Resampling

More information

Multirate Signal Processing

Multirate Signal Processing Multirate Signal Processing November 7, 17 Christian Knoll, christian.knoll@tugraz.at, Josef Kulmer, kulmer@tugraz.at Franz Pernkopf, pernkopf@tugraz.at Markus Rauter, Christian Feldbauer, Klaus Witrisal,

More information

Design of a Sharp Linear-Phase FIR Filter Using the α-scaled Sampling Kernel

Design of a Sharp Linear-Phase FIR Filter Using the α-scaled Sampling Kernel Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007 129 Design of a Sharp Linear-Phase FIR Filter Using the -scaled Sampling Kernel K.J. Kim,

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

MATLAB for Audio Signal Processing. P. Professorson UT Arlington Night School

MATLAB for Audio Signal Processing. P. Professorson UT Arlington Night School MATLAB for Audio Signal Processing P. Professorson UT Arlington Night School MATLAB for Audio Signal Processing Getting real world data into your computer Analysis based on frequency content Fourier analysis

More information

Signal Processing Summary

Signal Processing Summary Signal Processing Summary Jan Černocký, Valentina Hubeika {cernocky,ihubeika}@fit.vutbr.cz DCGM FIT BUT Brno, ihubeika@fit.vutbr.cz FIT BUT Brno Signal Processing Summary Jan Černocký, Valentina Hubeika,

More information

Announcements. Image Processing. What s an image? Images as functions. Image processing. What s a digital image?

Announcements. Image Processing. What s an image? Images as functions. Image processing. What s a digital image? Image Processing Images by Pawan Sinha Today s readings Forsyth & Ponce, chapters 8.-8. http://www.cs.washington.edu/education/courses/49cv/wi/readings/book-7-revised-a-indx.pdf For Monday Watt,.3-.4 (handout)

More information

The Polyphase Filter Bank Technique

The Polyphase Filter Bank Technique CASPER Memo 41 The Polyphase Filter Bank Technique Jayanth Chennamangalam Original: 2011.08.06 Modified: 2014.04.24 Introduction to the PFB In digital signal processing, an instrument or software that

More information

Copyright S. K. Mitra

Copyright S. K. Mitra 1 In many applications, a discrete-time signal x[n] is split into a number of subband signals by means of an analysis filter bank The subband signals are then processed Finally, the processed subband signals

More information

Bibliography. Practical Signal Processing and Its Applications Downloaded from

Bibliography. Practical Signal Processing and Its Applications Downloaded from Bibliography Practical Signal Processing and Its Applications Downloaded from www.worldscientific.com Abramowitz, Milton, and Irene A. Stegun. Handbook of mathematical functions: with formulas, graphs,

More information

H 1 (z)= 0.1. X(z)= (1 0.5z 1 )(1 + 2z 1 ) H 1 (z)+h 2 (z)= 1. H 1 (ω) 2 + H 2 (ω) 2 = 1. y(n)= A + B( 1) n. 4. Consider the two filters:

H 1 (z)= 0.1. X(z)= (1 0.5z 1 )(1 + 2z 1 ) H 1 (z)+h 2 (z)= 1. H 1 (ω) 2 + H 2 (ω) 2 = 1. y(n)= A + B( 1) n. 4. Consider the two filters: S J Orfanidis, ECE Department Rutgers University, Piscataway, NJ 8855 orfanidi@ecerutgersedu wwwecerutgersedu/~orfanidi/ece5 wwwecerutgersedu/~orfanidi/introsp 33:5 Digital Signals and Filters Exam October,

More information

6.02 Fall 2013 Lecture #14

6.02 Fall 2013 Lecture #14 6.02 Fall 2013 Lecture #14 Spectral content of signals via the DTFT 6.02 Fall 2013 Lecture 14 Slide #1 Determining h[n] from H(Ω) H(Ω) = m h[m]e jωm Multiply both sides by e jωn and integrate over a (contiguous)

More information

EE123 Digital Signal Processing

EE123 Digital Signal Processing EE123 Digital Signal Processing Lecture 5A Time-Frequency Tiling Subtleties in filtering/processing with DFT x[n] H(e j! ) y[n] System is implemented by overlap-and-save Filtering using DFT H[k] π 2π Subtleties

More information

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3

NH 67, Karur Trichy Highways, Puliyur C.F, Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 NH 67, Karur Trichy Highways, Puliyur C.F, 639 114 Karur District DEPARTMENT OF INFORMATION TECHNOLOGY DIGITAL SIGNAL PROCESSING UNIT 3 IIR FILTER DESIGN Structure of IIR System design of Discrete time

More information

Time: 3 hours Max Marks: 70 Answer any FIVE questions All questions carry equal marks *****

Time: 3 hours Max Marks: 70 Answer any FIVE questions All questions carry equal marks ***** Code: 9A04601 DIGITAL COMMUNICATIONS (Electronics and Communication Engineering) 1 (a) Explain in detail about non-uniform quantization. (b) What is the disadvantage of uniform quantization over the non-uniform

More information

ESE531 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing

ESE531 Spring University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing University of Pennsylvania Department of Electrical and System Engineering Digital Signal Processing ESE531, Spring 2017 Final Project: Audio Equalization Wednesday, Apr. 5 Due: Tuesday, April 25th, 11:59pm

More information

Department of Electrical Engineering. Laboratory Manual Digital Signal Processing

Department of Electrical Engineering. Laboratory Manual Digital Signal Processing Department of Electrical Engineering Laboratory Manual Digital Signal Processing ABASYN UNIVERSITY ISLAMABAD CAMPUS Lab Instructor: Asim Ul Haq Abasyn University Islamabad Campus Digital Signal Processing

More information

EUSIPCO

EUSIPCO EUSIPCO 23 569742569 SIULATION ETHODOLOGY FOR HYBRID FILTER BANK ANALOG TO DIGITAL CONVERTERS Boguslaw Szlachetko,, Olivier Venard, Dpt of Systems Engineering, ESIEE Paris, Noisy Le Grand, France Dpt of

More information

EELE 4310: Digital Signal Processing (DSP)

EELE 4310: Digital Signal Processing (DSP) EELE 4310: Digital Signal Processing (DSP) Chapter # 10 : Digital Filter Design (Part One) Spring, 2012/2013 EELE 4310: Digital Signal Processing (DSP) - Ch.10 Dr. Musbah Shaat 1 / 19 Outline 1 Introduction

More information

F I R Filter (Finite Impulse Response)

F I R Filter (Finite Impulse Response) F I R Filter (Finite Impulse Response) Ir. Dadang Gunawan, Ph.D Electrical Engineering University of Indonesia The Outline 7.1 State-of-the-art 7.2 Type of Linear Phase Filter 7.3 Summary of 4 Types FIR

More information