6.02 Fall 2012 Lecture #15

Size: px
Start display at page:

Download "6.02 Fall 2012 Lecture #15"

Transcription

1 6.02 Fall 2012 Lecture #15 Modulation to match the transmitted signal to the physical medium Demodulation 6.02 Fall 2012 Lecture 15 Slide #1

2 Single Link Communication Model Original source End-host computers Receiving app/user Digitize iti (if needed) Source binary digits ( message bits ) Source coding Bit stream Render/display, etc. Source decoding Bit stream Channel Coding (bit error correction) Bits Mapper + Signals Xmit (Voltages) samples over physical link Recv samples + Demapper Bits Channel Decoding (reducing or removing bit errors) 6.02 Fall 2012 Lecture 15 Slide #3

3 DT Fourier Tr ansform (DTFT) for Spectral Representation of Genera l x[n] x[n] = 1 2π X(Ω)e jωn dω where X(Ω) = x[m]e jωm <2π> m This Fourier representation expresses x[n] as a weighted combination of e jωn for all Ω in [, ]. X(Ω ο )dω is the spectral content of x[n] in the frequency interval [Ω ο, Ω ο + dω ] 6.02 Fall 2012 Lecture 15 Slide #4

4 x[n] = 1 2π Input/Output Behav ior of LT I System in Frequency Domain X(Ω)e jωn dω y[n] = 1 2π H(Ω) <2π> y[n] = 1 2π <2π> <2π> H(Ω)X(Ω)e jωn dω Y (Ω)e jωn dω Y (Ω) = H(Ω)X(Ω) Spectral content of output Frequency response of system Spectral content of input 6.02 Fall 2012 Lecture 15 Slide #5

5 PC Magazine. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Fall 2012 Lecture 15 Slide #6

6 Phase of the frequency response is important too! Maybe not if we are only interested in audio, because the ear is not so sensitive to phase distortions But it s certainly important if we are using an audio channel to transmit non-audio signals such as digital signals representing 1 s and 0 s, not intended for the ear 6.02 Fall 2012 Lecture 15 Slide #7

7 To gauge how it will fare on lowpass and bandpass channels, let s look at the spectral content of a rectangular pulse, x[n]=u[n]-u[n-256], of the kind we ve been using in on-off signaling in our Audiocom lab. Any guesses as to spectral shape? 6.02 Fall 2012 Lecture 15 Slide #8

8 Derivation of DTFT for rectangular pulse x[m]=u[m]-u[m-n] X(Ω) = N 1 m=0 x[m]e jωm =1+ e jω + e j2ω + + e jω(n 1) = (1 e jωn )/(1 e jω ) = e jω(n 1)/2 sin(ωn /2) sin(ω /2) Height N at the origin, first zero-crossing at 2 /N Shifting in time only changes the phase term in front. If the rectangular pulse is centered at 0, this term is Fall 2012 Lecture 15 Slide #9

9 Simpler case: DTFT of x[n] = u[n+5] u[n-6] (centered rectangular pulse of length 11) N A periodic sinc (or Dirichlet kernel ) not the sinc we ve seen before! 2 /N Courtesy of Julius O. Smith. Used with permission Fall 2012 Lecture 15 Slide #10

10 Magnitude of preceding DTFT Courtesy of Julius O. Smith. Used with permission Fall 2012 Lecture 15 Slide #11

11 DTFT of x[n]= u[n] u[n-10], rectangular pulse of length 10 starting at time 0 Courtesy of Don Johnson. Used with permission; available under a CC-BY license Fall 2012 Lecture 15 Slide #12

12 Back to our Audiocom lab example 6.02 Fall 2012 Lecture 15 Slide #13

13 x[n]=u[n]-u[n-256] 6.02 Fall 2012 Lecture 15 Slide #14

14 DTFT of x[n]=u[n]-u[n-256], rectangular pulse of length 256: samples of DTFT spread evenly between [ π, π], computed using FFT (around 3000 times faster than direct computation in this case!) If sampling rate is 48 khz, then this is 24,000 Hz 0 rads/sample 0 Hz Ω = f = f s / Fall 2012 Lecture 15 Slide #15

15 Zooming in: 256 = N Too much of the signal s energy misses the loudspeaker s passband! Hz (corresponds to 2 /N when f s = 48 khz) 6.02 Fall 2012 Lecture 15 Slide #16

16 What if we sent this pulse through an ideal lowpass channel? DTFT of lowpass filtered version of x[n]=u[n]-u[n-256], cutoff 400 Hz 0 Ω = f = f s / Fall 2012 Lecture 15 Slide #17

17 Zooming in: 256 = N 400 Hz Fall 2012 Lecture 15 Slide #18

18 No longer confined to its 256-sample slot, so causes intersymbol interference (ISI). Corresponding pulse in time, i.e., lowpass filtered version of rectangular pulse 6.02 Fall 2012 Lecture 15 Slide #19

19 Effect of Low-P ass Channel 6.02 Fall 2012 Lecture 15 Slide #20

20 How Low Can We Go? 6.02 Fall 2012 Lecture 15 Slide #21

21 Complementary/dual behav ior in time and frequency domains Wider in time, narrower in frequency; and vice versa. This is actually the basis of the uncertainty principle in physics! Smoother in time, sharper in frequency; and vice versa Rectangular pulse in time is a (periodic) sinc in frequency, while rectangular pulse in frequency is a sinc in time; etc Fall 2012 Lecture 15 Slide #22

22 A shaped pulse versus a rectangular pulse: Slightly round the transitions from 0 to 1, and from 1 to 0, by making them sinusoidal, just 30 samples on each end Fall 2012 Lecture 15 Slide #23

23 In the spectral domain: DTFT of rectangular pulse Negative DTFT of shaped pulse Frequency content of shaped pulse only extends to here, around 1500 Hz 6.02 Fall 2012 Lecture 15 Slide #24

24 After passing the two pulses through a 400 Hz cutoff lowpass filter: The lowpass filtered shaped pulse conforms more tightly to the 256-sample slot, and settles a little quicker 6.02 Fall 2012 Lecture 15 Slide #25

25 But loudspeakers are bandpass, not lowpass 6.02 Fall 2012 Lecture 15 Slide #26

26 PC Magazine. All rights reserved. This content is excluded from our Creative Commons license. For more information, see Fall 2012 Lecture 15 Slide #27

27 Spectrum of rectangular pulse after ideal bandpass filtering, 100 Hz to 10,000 Hz 10,000 Hz 6.02 Fall 2012 Lecture 15 Slide #28 0

28 Zooming in: 10,000 Hz Hz 6.02 Fall 2012 Lecture 15 Slide #29

29 Corresponding pulse in time, i.e., bandpass filtered version of rectangular pulse Won t do at all!! 6.02 Fall 2012 Lecture 15 Slide #30

30 The Solution: Modulation Shift the spectrum of the signal x[n] into the loudspeaker s passband by modulation! x[n]cos(ω c n) = 0.5x[n](e jω cn + e jω cn ) dω'+ X(Ω")e j(ω" Ω c )n dω"] = 0.5 2π [ X(Ω')e j(ω'+ω c )n <2π> = 0.5 2π [ X(Ω Ω jωn c )e <2π> <2π> dω+ X(Ω+Ω c )e jωn dω] <2π> Spectrum of modulated signal comprises half-height replications of X(Ω) centered as ±Ω c (i.e., plus and minus the carrier frequency). So choose carrier frequency comfortably in the passband, leaving room around it for the spectrum of x[n] Fall 2012 Lecture 15 Slide #31

31 Is Modulation Linear? Ti me-invariant? x[n] t[n] cos(ω c n) as a system that takes input x[n] and produces output t[n] for transmission? Yes, linear! No, not time-invariant! 6.02 Fall 2012 Lecture 15 Slide #32

32 So for our rectangular pulse example: Time domain: Pulse modulated onto 1000 Hz carrier 6.02 Fall 2012 Lecture 15 Slide #33

33 Corresponding spectrum of signal modulated onto carrier Fall 2012 Lecture 15 Slide #34

34 Zooming in: 128, i.e. half height of original 10,000 Hz, upper cutoff of bandpass filter 1000 Hz 1000 Hz 0 Hz 100 Hz, lower cutoff of bandpass filter 6.02 Fall 2012 Lecture 15 Slide #35

35 Pulse modulated onto 1000 Hz carrier makes it through the bandpass channel with very little distortion 6.02 Fall 2012 Lecture 15 Slide #36

36 At the Receiver: Demodulation In principle, this is (as easy as) modulation again: If the received signal is r[n] = x[n]cos(ω c n), then simply compute d[n] = r[n]cos(ω c n) = x[n]cos 2 (Ω c n) = 0.5 {x[n] + x[n]cos(2ω c n)} What does the spectrum of d[n] look like? What constraint on the bandwidth of x[n] is needed for perfect recovery of x[n]? 6.02 Fall 2012 Lecture 15 Slide #38

37 MIT OpenCourseWare Introduction to EECS II: Digital Communication Systems Fall 2012 For information about citing these materials or our Terms of Use, visit:

6.02 Fall 2012 Lecture #13

6.02 Fall 2012 Lecture #13 6.02 Fall 2012 Lecture #13 Frequency response Filters Spectral content 6.02 Fall 2012 Lecture 13 Slide #1 Sinusoidal Inputs and LTI Systems h[n] A very important property of LTI systems or channels: If

More information

6.02 Fall 2013 Lecture #14

6.02 Fall 2013 Lecture #14 6.02 Fall 2013 Lecture #14 Spectral content of signals via the DTFT 6.02 Fall 2013 Lecture 14 Slide #1 Determining h[n] from H(Ω) H(Ω) = m h[m]e jωm Multiply both sides by e jωn and integrate over a (contiguous)

More information

6.02 Fall 2012 Lecture #12

6.02 Fall 2012 Lecture #12 6.02 Fall 2012 Lecture #12 Bounded-input, bounded-output stability Frequency response 6.02 Fall 2012 Lecture 12, Slide #1 Bounded-Input Bounded-Output (BIBO) Stability What ensures that the infinite sum

More information

6.02 Practice Problems: Modulation & Demodulation

6.02 Practice Problems: Modulation & Demodulation 1 of 12 6.02 Practice Problems: Modulation & Demodulation Problem 1. Here's our "standard" modulation-demodulation system diagram: at the transmitter, signal x[n] is modulated by signal mod[n] and the

More information

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015

ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 Purdue University: ECE438 - Digital Signal Processing with Applications 1 ECE438 - Laboratory 7a: Digital Filter Design (Week 1) By Prof. Charles Bouman and Prof. Mireille Boutin Fall 2015 1 Introduction

More information

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions

Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Evans. Homework #1 Sinusoids, Transforms and Transfer Functions Spring 2018 EE 445S Real-Time Digital Signal Processing Laboratory Prof. Homework #1 Sinusoids, Transforms and Transfer Functions Assigned on Friday, February 2, 2018 Due on Friday, February 9, 2018, by

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications

Lecture 2 Review of Signals and Systems: Part 1. EE4900/EE6720 Digital Communications EE4900/EE6420: Digital Communications 1 Lecture 2 Review of Signals and Systems: Part 1 Block Diagrams of Communication System Digital Communication System 2 Informatio n (sound, video, text, data, ) Transducer

More information

Final Exam Practice Questions for Music 421, with Solutions

Final Exam Practice Questions for Music 421, with Solutions Final Exam Practice Questions for Music 4, with Solutions Elementary Fourier Relationships. For the window w = [/,,/ ], what is (a) the dc magnitude of the window transform? + (b) the magnitude at half

More information

Why Digital? Communication Abstractions and Digital Signaling

Why Digital? Communication Abstractions and Digital Signaling MIT 6.02 DRAFT Lecture Notes Last update: March 17, 2012 CHAPTER 4 Why Digital? Communication Abstractions and Digital Signaling This chapter describes analog and digital communication, and the differences

More information

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK.

Outline. EECS 3213 Fall Sebastian Magierowski York University. Review Passband Modulation. Constellations ASK, FSK, PSK. EECS 3213 Fall 2014 L12: Modulation Sebastian Magierowski York University 1 Outline Review Passband Modulation ASK, FSK, PSK Constellations 2 1 Underlying Idea Attempting to send a sequence of digits through

More information

Final Exam Solutions June 7, 2004

Final Exam Solutions June 7, 2004 Name: Final Exam Solutions June 7, 24 ECE 223: Signals & Systems II Dr. McNames Write your name above. Keep your exam flat during the entire exam period. If you have to leave the exam temporarily, close

More information

Final Exam Solutions June 14, 2006

Final Exam Solutions June 14, 2006 Name or 6-Digit Code: PSU Student ID Number: Final Exam Solutions June 14, 2006 ECE 223: Signals & Systems II Dr. McNames Keep your exam flat during the entire exam. If you have to leave the exam temporarily,

More information

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002

EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Name Page 1 of 11 EE390 Final Exam Fall Term 2002 Friday, December 13, 2002 Notes 1. This is a 2 hour exam, starting at 9:00 am and ending at 11:00 am. The exam is worth a total of 50 marks, broken down

More information

Signals and Systems Lecture 6: Fourier Applications

Signals and Systems Lecture 6: Fourier Applications Signals and Systems Lecture 6: Fourier Applications Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2012 arzaneh Abdollahi Signal and Systems Lecture 6

More information

Digital Signal Processing

Digital Signal Processing Digital Signal Processing Lecture 9 Discrete-Time Processing of Continuous-Time Signals Alp Ertürk alp.erturk@kocaeli.edu.tr Analog to Digital Conversion Most real life signals are analog signals These

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY An Overview of Modulation Techniques: chapter 3.1 3.3.1 2 Introduction (3.1) Analog Modulation Amplitude Modulation Phase and

More information

CS3291: Digital Signal Processing

CS3291: Digital Signal Processing CS39 Exam Jan 005 //08 /BMGC University of Manchester Department of Computer Science First Semester Year 3 Examination Paper CS39: Digital Signal Processing Date of Examination: January 005 Answer THREE

More information

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY

TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY TSEK02: Radio Electronics Lecture 2: Modulation (I) Ted Johansson, EKS, ISY 2 Basic Definitions Time and Frequency db conversion Power and dbm Filter Basics 3 Filter Filter is a component with frequency

More information

ECE 3500: Fundamentals of Signals and Systems (Fall 2015) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation

ECE 3500: Fundamentals of Signals and Systems (Fall 2015) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation ECE 500: Fundamentals of Signals and Systems (Fall 2015) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation Files necessary to complete this assignment: none Deliverables Due: Before Dec. 18th

More information

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam

The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam The University of Texas at Austin Dept. of Electrical and Computer Engineering Final Exam Date: December 18, 2017 Course: EE 313 Evans Name: Last, First The exam is scheduled to last three hours. Open

More information

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation

Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Chapter 7 Single-Sideband Modulation (SSB) and Frequency Translation Contents Slide 1 Single-Sideband Modulation Slide 2 SSB by DSBSC-AM and Filtering Slide 3 SSB by DSBSC-AM and Filtering (cont.) Slide

More information

F I R Filter (Finite Impulse Response)

F I R Filter (Finite Impulse Response) F I R Filter (Finite Impulse Response) Ir. Dadang Gunawan, Ph.D Electrical Engineering University of Indonesia The Outline 7.1 State-of-the-art 7.2 Type of Linear Phase Filter 7.3 Summary of 4 Types FIR

More information

Receiver Designs for the Radio Channel

Receiver Designs for the Radio Channel Receiver Designs for the Radio Channel COS 463: Wireless Networks Lecture 15 Kyle Jamieson [Parts adapted from C. Sodini, W. Ozan, J. Tan] Today 1. Delay Spread and Frequency-Selective Fading 2. Time-Domain

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signals & Systems Prof. Mark Fowler Note Set #19 C-T Systems: Frequency-Domain Analysis of Systems Reading Assignment: Section 5.2 of Kamen and Heck 1/17 Course Flow Diagram The arrows here show

More information

Before doing this PSet, please read Chapters 9 and 10 of the readings. Also attempt the noise and LTI practice problems on this material.

Before doing this PSet, please read Chapters 9 and 10 of the readings. Also attempt the noise and LTI practice problems on this material. Problem Set 4 Your answers will be graded by actual human beings (at least that's what we believe!), so don't limit your answers to machine-gradable responses. Some of the questions specifically ask for

More information

Multirate Digital Signal Processing

Multirate Digital Signal Processing Multirate Digital Signal Processing Basic Sampling Rate Alteration Devices Up-sampler - Used to increase the sampling rate by an integer factor Down-sampler - Used to increase the sampling rate by an integer

More information

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2

Contents. Introduction 1 1 Suggested Reading 2 2 Equipment and Software Tools 2 3 Experiment 2 ECE363, Experiment 02, 2018 Communications Lab, University of Toronto Experiment 02: Noise Bruno Korst - bkf@comm.utoronto.ca Abstract This experiment will introduce you to some of the characteristics

More information

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems.

PROBLEM SET 6. Note: This version is preliminary in that it does not yet have instructions for uploading the MATLAB problems. PROBLEM SET 6 Issued: 2/32/19 Due: 3/1/19 Reading: During the past week we discussed change of discrete-time sampling rate, introducing the techniques of decimation and interpolation, which is covered

More information

Laboratory Assignment 4. Fourier Sound Synthesis

Laboratory Assignment 4. Fourier Sound Synthesis Laboratory Assignment 4 Fourier Sound Synthesis PURPOSE This lab investigates how to use a computer to evaluate the Fourier series for periodic signals and to synthesize audio signals from Fourier series

More information

ECEGR Lab #8: Introduction to Simulink

ECEGR Lab #8: Introduction to Simulink Page 1 ECEGR 317 - Lab #8: Introduction to Simulink Objective: By: Joe McMichael This lab is an introduction to Simulink. The student will become familiar with the Help menu, go through a short example,

More information

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer.

Sampling of Continuous-Time Signals. Reference chapter 4 in Oppenheim and Schafer. Sampling of Continuous-Time Signals Reference chapter 4 in Oppenheim and Schafer. Periodic Sampling of Continuous Signals T = sampling period fs = sampling frequency when expressing frequencies in radians

More information

Principles of Communications ECS 332

Principles of Communications ECS 332 Principles of Communications ECS 332 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5. Angle Modulation Office Hours: BKD, 6th floor of Sirindhralai building Wednesday 4:3-5:3 Friday 4:3-5:3 Example

More information

Neurophysiology. The action potential. Why should we care? AP is the elemental until of nervous system communication

Neurophysiology. The action potential. Why should we care? AP is the elemental until of nervous system communication Neurophysiology Why should we care? AP is the elemental until of nervous system communication The action potential Time course, propagation velocity, and patterns all constrain hypotheses on how the brain

More information

y(n)= Aa n u(n)+bu(n) b m sin(2πmt)= b 1 sin(2πt)+b 2 sin(4πt)+b 3 sin(6πt)+ m=1 x(t)= x = 2 ( b b b b

y(n)= Aa n u(n)+bu(n) b m sin(2πmt)= b 1 sin(2πt)+b 2 sin(4πt)+b 3 sin(6πt)+ m=1 x(t)= x = 2 ( b b b b Exam 1 February 3, 006 Each subquestion is worth 10 points. 1. Consider a periodic sawtooth waveform x(t) with period T 0 = 1 sec shown below: (c) x(n)= u(n). In this case, show that the output has the

More information

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2

Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, Introduction to EECS 2 Massachusetts Institute of Technology Dept. of Electrical Engineering and Computer Science Fall Semester, 2006 6.082 Introduction to EECS 2 Modulation and Demodulation Introduction A communication system

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS

YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS YEDITEPE UNIVERSITY ENGINEERING FACULTY COMMUNICATION SYSTEMS LABORATORY EE 354 COMMUNICATION SYSTEMS EXPERIMENT 3: SAMPLING & TIME DIVISION MULTIPLEX (TDM) Objective: Experimental verification of the

More information

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters

DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters Islamic University of Gaza OBJECTIVES: Faculty of Engineering Electrical Engineering Department Spring-2011 DSP Laboratory (EELE 4110) Lab#10 Finite Impulse Response (FIR) Filters To demonstrate the concept

More information

Multirate DSP, part 3: ADC oversampling

Multirate DSP, part 3: ADC oversampling Multirate DSP, part 3: ADC oversampling Li Tan - May 04, 2008 Order this book today at www.elsevierdirect.com or by calling 1-800-545-2522 and receive an additional 20% discount. Use promotion code 92562

More information

Recap of Last 2 Classes

Recap of Last 2 Classes Recap of Last 2 Classes Transmission Media Analog versus Digital Signals Bandwidth Considerations Attentuation, Delay Distortion and Noise Nyquist and Shannon Analog Modulation Digital Modulation What

More information

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0.

MSK has three important properties. However, the PSD of the MSK only drops by 10log 10 9 = 9.54 db below its midband value at ft b = 0. Gaussian MSK MSK has three important properties Constant envelope (why?) Relatively narrow bandwidth Coherent detection performance equivalent to that of QPSK However, the PSD of the MSK only drops by

More information

Other Modulation Techniques - CAP, QAM, DMT

Other Modulation Techniques - CAP, QAM, DMT Other Modulation Techniques - CAP, QAM, DMT Prof. David Johns (johns@eecg.toronto.edu) (www.eecg.toronto.edu/~johns) slide 1 of 47 Complex Signals Concept useful for describing a pair of real signals Let

More information

Lakehead University. Department of Electrical Engineering

Lakehead University. Department of Electrical Engineering Lakehead University Department of Electrical Engineering Lab Manual Engr. 053 (Digital Signal Processing) Instructor: Dr. M. Nasir Uddin Last updated on January 16, 003 1 Contents: Item Page # Guidelines

More information

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters

(i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters FIR Filter Design Chapter Intended Learning Outcomes: (i) Understanding of the characteristics of linear-phase finite impulse response (FIR) filters (ii) Ability to design linear-phase FIR filters according

More information

Chapter 2: Signal Representation

Chapter 2: Signal Representation Chapter 2: Signal Representation Aveek Dutta Assistant Professor Department of Electrical and Computer Engineering University at Albany Spring 2018 Images and equations adopted from: Digital Communications

More information

Lecture 5: Simulation of OFDM communication systems

Lecture 5: Simulation of OFDM communication systems Lecture 5: Simulation of OFDM communication systems March 28 April 9 28 Yuping Zhao (Doctor of Science in technology) Professor, Peking University Beijing, China Yuping.zhao@pku.edu.cn Single carrier communcation

More information

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title

Digital Filters IIR (& Their Corresponding Analog Filters) Week Date Lecture Title http://elec3004.com Digital Filters IIR (& Their Corresponding Analog Filters) 2017 School of Information Technology and Electrical Engineering at The University of Queensland Lecture Schedule: Week Date

More information

ECE 3500: Fundamentals of Signals and Systems (Fall 2014) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation

ECE 3500: Fundamentals of Signals and Systems (Fall 2014) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation ECE 3500: Fundamentals of Signals and Systems (Fall 2014) Lab 4: Binary Phase-Shift Keying Modulation and Demodulation Files necessary to complete this assignment: none Deliverables Due: Before your assigned

More information

Multi-carrier Modulation and OFDM

Multi-carrier Modulation and OFDM 3/28/2 Multi-carrier Modulation and OFDM Prof. Luiz DaSilva dasilval@tcd.ie +353 896-366 Multi-carrier systems: basic idea Typical mobile radio channel is a fading channel that is flat or frequency selective

More information

Lecture 13. Introduction to OFDM

Lecture 13. Introduction to OFDM Lecture 13 Introduction to OFDM Ref: About-OFDM.pdf Orthogonal frequency division multiplexing (OFDM) is well-known to be effective against multipath distortion. It is a multicarrier communication scheme,

More information

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2)

Mobile & Wireless Networking. Lecture 2: Wireless Transmission (2/2) 192620010 Mobile & Wireless Networking Lecture 2: Wireless Transmission (2/2) [Schiller, Section 2.6 & 2.7] [Reader Part 1: OFDM: An architecture for the fourth generation] Geert Heijenk Outline of Lecture

More information

MAS 160/510 Additional Notes: Modulation

MAS 160/510 Additional Notes: Modulation MAS 160/510 Additional Notes: Modulation From Amplitude Modulation to Frequency Modulation As usually implemented, FM uses much more bandwidth than AM. You ll note, for instance, that FM radio stations

More information

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal

On-off keying, which consists of keying a sinusoidal carrier on and off with a unipolar binary signal Bandpass signalling Thus far only baseband signalling has been considered: an information source is usually a baseband signal. Some communication channels have a bandpass characteristic, and will not propagate

More information

Signals and Systems. Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI

Signals and Systems. Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI Signals and Systems Lecture 13 Wednesday 6 th December 2017 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Continuous time versus discrete time Continuous time

More information

ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130,

ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130, ECE 301, final exam of the session of Prof. Chih-Chun Wang Saturday 10:20am 12:20pm, December 20, 2008, STEW 130, 1. Enter your name, student ID number, e-mail address, and signature in the space provided

More information

Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design

Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design SMJE3163 DSP2016_Week1-04 Week 1 Introduction of Digital Signal Processing with the review of SMJE 2053 Circuits & Signals for Filter Design 1) Signals, Systems, and DSP 2) DSP system configuration 3)

More information

GEORGIA INSTITUTE OF TECHNOLOGY. SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters

GEORGIA INSTITUTE OF TECHNOLOGY. SCHOOL of ELECTRICAL and COMPUTER ENGINEERING. ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters GEORGIA INSTITUTE OF TECHNOLOGY SCHOOL of ELECTRICAL and COMPUTER ENGINEERING ECE 2026 Summer 2018 Lab #8: Filter Design of FIR Filters Date: 19. Jul 2018 Pre-Lab: You should read the Pre-Lab section of

More information

6.003: Signals and Systems. Sampling

6.003: Signals and Systems. Sampling 6.003: Signals and Systems Sampling April 27, 200 Mid-term Examination #3 om orrow: W ednesday, A pril 2 8, 7 : 3 0-9 : 3 0 pm. No recitations tomorrow. Coverage: Lectures 20 Recitations 20 Homeworks Homework

More information

Revision of Lecture 3

Revision of Lecture 3 Revision of Lecture 3 Modulator/demodulator Basic operations of modulation and demodulation Complex notations for modulation and demodulation Carrier recovery and timing recovery This lecture: bits map

More information

Fourier Transform Analysis of Signals and Systems

Fourier Transform Analysis of Signals and Systems Fourier Transform Analysis of Signals and Systems Ideal Filters Filters separate what is desired from what is not desired In the signals and systems context a filter separates signals in one frequency

More information

PROBLEM SET 5. Reminder: Quiz 1will be on March 6, during the regular class hour. Details to follow. z = e jω h[n] H(e jω ) H(z) DTFT.

PROBLEM SET 5. Reminder: Quiz 1will be on March 6, during the regular class hour. Details to follow. z = e jω h[n] H(e jω ) H(z) DTFT. PROBLEM SET 5 Issued: 2/4/9 Due: 2/22/9 Reading: During the past week we continued our discussion of the impact of pole/zero locations on frequency response, focusing on allpass systems, minimum and maximum-phase

More information

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur

Data Conversion Circuits & Modulation Techniques. Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits & Modulation Techniques Subhasish Chandra Assistant Professor Department of Physics Institute of Forensic Science, Nagpur Data Conversion Circuits 2 Digital systems are being used

More information

Digital Filters FIR and IIR Systems

Digital Filters FIR and IIR Systems Digital Filters FIR and IIR Systems ELEC 3004: Systems: Signals & Controls Dr. Surya Singh (Some material adapted from courses by Russ Tedrake and Elena Punskaya) Lecture 16 elec3004@itee.uq.edu.au http://robotics.itee.uq.edu.au/~elec3004/

More information

Chapter 5 Amplitude Modulation. Contents

Chapter 5 Amplitude Modulation. Contents Chapter 5 Amplitude Modulation Contents Slide 1 Amplitude Modulation Slide 2 The Envelope and No Overmodulation Slide 3 Example for Single Tone Modulation Slide 4 Measuring the Modulation Index Slide 5

More information

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time.

END-OF-YEAR EXAMINATIONS ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. END-OF-YEAR EXAMINATIONS 2005 Unit: Day and Time: Time Allowed: ELEC321 Communication Systems (D2) Tuesday, 22 November 2005, 9:20 a.m. Three hours plus 10 minutes reading time. Total Number of Questions:

More information

EE5713 : Advanced Digital Communications

EE5713 : Advanced Digital Communications EE573 : Advanced Digital Communications Week 4, 5: Inter Symbol Interference (ISI) Nyquist Criteria for ISI Pulse Shaping and Raised-Cosine Filter Eye Pattern Error Performance Degradation (On Board) Demodulation

More information

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters

EE247 Lecture 2. Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay comparison example. EECS 247 Lecture 2: Filters EE247 Lecture 2 Material covered today: Nomenclature Filter specifications Quality factor Frequency characteristics Group delay Filter types Butterworth Chebyshev I Chebyshev II Elliptic Bessel Group delay

More information

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the

Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the Speech, music, images, and video are examples of analog signals. Each of these signals is characterized by its bandwidth, dynamic range, and the nature of the signal. For instance, in the case of audio

More information

Lecture 10. Digital Modulation

Lecture 10. Digital Modulation Digital Modulation Lecture 10 On-Off keying (OOK), or amplitude shift keying (ASK) Phase shift keying (PSK), particularly binary PSK (BPSK) Frequency shift keying Typical spectra Modulation/demodulation

More information

Continuous-Time Analog Filters

Continuous-Time Analog Filters ENGR 4333/5333: Digital Signal Processing Continuous-Time Analog Filters Chapter 2 Dr. Mohamed Bingabr University of Central Oklahoma Outline Frequency Response of an LTIC System Signal Transmission through

More information

Midterm 1. Total. Name of Student on Your Left: Name of Student on Your Right: EE 20N: Structure and Interpretation of Signals and Systems

Midterm 1. Total. Name of Student on Your Left: Name of Student on Your Right: EE 20N: Structure and Interpretation of Signals and Systems EE 20N: Structure and Interpretation of Signals and Systems Midterm 1 12:40-2:00, February 19 Notes: There are five questions on this midterm. Answer each question part in the space below it, using the

More information

Problems from the 3 rd edition

Problems from the 3 rd edition (2.1-1) Find the energies of the signals: a) sin t, 0 t π b) sin t, 0 t π c) 2 sin t, 0 t π d) sin (t-2π), 2π t 4π Problems from the 3 rd edition Comment on the effect on energy of sign change, time shifting

More information

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal

Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is the process of impressing a low-frequency information signal (baseband signal) onto a higher frequency carrier signal Modulation is a process of mixing a signal with a sinusoid to produce

More information

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday

Lecture 3: Wireless Physical Layer: Modulation Techniques. Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Lecture 3: Wireless Physical Layer: Modulation Techniques Mythili Vutukuru CS 653 Spring 2014 Jan 13, Monday Modulation We saw a simple example of amplitude modulation in the last lecture Modulation how

More information

EECS 307: Lab Handout 2 (FALL 2012)

EECS 307: Lab Handout 2 (FALL 2012) EECS 307: Lab Handout 2 (FALL 2012) I- Audio Transmission of a Single Tone In this part you will modulate a low-frequency audio tone via AM, and transmit it with a carrier also in the audio range. The

More information

1/14. Signal. Surasak Sanguanpong Last updated: 11 July Signal 1/14

1/14. Signal. Surasak Sanguanpong  Last updated: 11 July Signal 1/14 1/14 Signal Surasak Sanguanpong nguan@ku.ac.th http://www.cpe.ku.ac.th/~nguan Last updated: 11 July 2000 Signal 1/14 Transmission structure 2/14 Transmitter/ Receiver Medium Amplifier/ Repeater Medium

More information

EE247 - Lecture 2 Filters. EECS 247 Lecture 2: Filters 2005 H.K. Page 1. Administrative. Office hours for H.K. changed to:

EE247 - Lecture 2 Filters. EECS 247 Lecture 2: Filters 2005 H.K. Page 1. Administrative. Office hours for H.K. changed to: EE247 - Lecture 2 Filters Material covered today: Nomenclature Filter specifications Quality factor Frequency characteristics Group delay Filter types Butterworth Chebyshev I Chebyshev II Elliptic Bessel

More information

Project 2. Project 2: audio equalizer. Fig. 1: Kinter MA-170 stereo amplifier with bass and treble controls.

Project 2. Project 2: audio equalizer. Fig. 1: Kinter MA-170 stereo amplifier with bass and treble controls. Introduction Project 2 Project 2: audio equalizer This project aims to motivate our study o ilters by considering the design and implementation o an audio equalizer. An equalizer (EQ) modiies the requency

More information

Time: 3 hours Max Marks: 70 Answer any FIVE questions All questions carry equal marks *****

Time: 3 hours Max Marks: 70 Answer any FIVE questions All questions carry equal marks ***** Code: 9A04601 DIGITAL COMMUNICATIONS (Electronics and Communication Engineering) 1 (a) Explain in detail about non-uniform quantization. (b) What is the disadvantage of uniform quantization over the non-uniform

More information

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris

Digital Modulation Lecture 01. Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Frequency-Response Masking FIR Filters

Frequency-Response Masking FIR Filters Frequency-Response Masking FIR Filters Georg Holzmann June 14, 2007 With the frequency-response masking technique it is possible to design sharp and linear phase FIR filters. Therefore a model filter and

More information

Chapter 3: DIFFERENTIAL ENCODING

Chapter 3: DIFFERENTIAL ENCODING Chapter 3: DIFFERENTIAL ENCODING Differential Encoding Eye Patterns Regenerative Receiver Bit Synchronizer Binary to Mary Conversion Huseyin Bilgekul Eeng360 Communication Systems I Department of Electrical

More information

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system

Practical issue: Group definition. TSTE17 System Design, CDIO. Quadrature Amplitude Modulation (QAM) Components of a digital communication system 1 2 TSTE17 System Design, CDIO Introduction telecommunication OFDM principle How to combat ISI How to reduce out of band signaling Practical issue: Group definition Project group sign up list will be put

More information

Objectives. Presentation Outline. Digital Modulation Lecture 01

Objectives. Presentation Outline. Digital Modulation Lecture 01 Digital Modulation Lecture 01 Review of Analogue Modulation Introduction to Digital Modulation Techniques Richard Harris Objectives You will be able to: Classify the various approaches to Analogue Modulation

More information

Digital Processing of

Digital Processing of Chapter 4 Digital Processing of Continuous-Time Signals 清大電機系林嘉文 cwlin@ee.nthu.edu.tw 03-5731152 Original PowerPoint slides prepared by S. K. Mitra 4-1-1 Digital Processing of Continuous-Time Signals Digital

More information

Revision of Wireless Channel

Revision of Wireless Channel Revision of Wireless Channel Quick recap system block diagram CODEC MODEM Wireless Channel Previous three lectures looked into wireless mobile channels To understand mobile communication technologies,

More information

Lecture 3: Modulation & Clock Recovery. CSE 123: Computer Networks Alex C. Snoeren

Lecture 3: Modulation & Clock Recovery. CSE 123: Computer Networks Alex C. Snoeren Lecture 3: Modulation & Clock Recovery CSE 123: Computer Networks Alex C. Snoeren Lecture 3 Overview Signaling constraints Shannon s Law Nyquist Limit Encoding schemes Clock recovery Manchester, NRZ, NRZI,

More information

Experiment 2 Effects of Filtering

Experiment 2 Effects of Filtering Experiment 2 Effects of Filtering INTRODUCTION This experiment demonstrates the relationship between the time and frequency domains. A basic rule of thumb is that the wider the bandwidth allowed for the

More information

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station

Muhammad Ali Jinnah University, Islamabad Campus, Pakistan. Fading Channel. Base Station Fading Lecturer: Assoc. Prof. Dr. Noor M Khan Department of Electronic Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph: +9 (51) 111-878787, Ext. 19 (Office), 186 (ARWiC

More information

Exercises for chapter 2

Exercises for chapter 2 Exercises for chapter Digital Communications A baseband PAM system uses as receiver filter f(t) a matched filter, f(t) = g( t), having two choices for transmission filter g(t) g a (t) = ( ) { t Π =, t,

More information

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1

CSE4214 Digital Communications. Bandpass Modulation and Demodulation/Detection. Bandpass Modulation. Page 1 CSE414 Digital Communications Chapter 4 Bandpass Modulation and Demodulation/Detection Bandpass Modulation Page 1 1 Bandpass Modulation n Baseband transmission is conducted at low frequencies n Passband

More information

Communication Channels

Communication Channels Communication Channels wires (PCB trace or conductor on IC) optical fiber (attenuation 4dB/km) broadcast TV (50 kw transmit) voice telephone line (under -9 dbm or 110 µw) walkie-talkie: 500 mw, 467 MHz

More information

Design of a Sharp Linear-Phase FIR Filter Using the α-scaled Sampling Kernel

Design of a Sharp Linear-Phase FIR Filter Using the α-scaled Sampling Kernel Proceedings of the 6th WSEAS International Conference on SIGNAL PROCESSING, Dallas, Texas, USA, March 22-24, 2007 129 Design of a Sharp Linear-Phase FIR Filter Using the -scaled Sampling Kernel K.J. Kim,

More information

Performing the Spectrogram on the DSP Shield

Performing the Spectrogram on the DSP Shield Performing the Spectrogram on the DSP Shield EE264 Digital Signal Processing Final Report Christopher Ling Department of Electrical Engineering Stanford University Stanford, CA, US x24ling@stanford.edu

More information

EECS 452 Midterm Exam Winter 2012

EECS 452 Midterm Exam Winter 2012 EECS 452 Midterm Exam Winter 2012 Name: unique name: Sign the honor code: I have neither given nor received aid on this exam nor observed anyone else doing so. Scores: # Points Section I /40 Section II

More information

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class

EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class EEL 4350 Principles of Communication Project 2 Due Tuesday, February 10 at the Beginning of Class Description In this project, MATLAB and Simulink are used to construct a system experiment. The experiment

More information

arxiv: v1 [cs.ni] 28 Aug 2015

arxiv: v1 [cs.ni] 28 Aug 2015 ChirpCast: Data Transmission via Audio arxiv:1508.07099v1 [cs.ni] 28 Aug 2015 Francis Iannacci iannacci@cs.washington.edu Department of Computer Science and Engineering Seattle, WA, 98195 Yanping Huang

More information

Frequency Responses and Active Filter Circuits

Frequency Responses and Active Filter Circuits Frequency Responses and Active Filter Circuits Compensation capacitors and parasitic capacitors will influence the frequency response Capacitors are also purposely added to create certain functions; e.g.

More information

Code No: R Set No. 1

Code No: R Set No. 1 Code No: R05220405 Set No. 1 II B.Tech II Semester Regular Examinations, Apr/May 2007 ANALOG COMMUNICATIONS ( Common to Electronics & Communication Engineering and Electronics & Telematics) Time: 3 hours

More information