A Multi-Touch Application for the Automatic Evaluation of Dimensions in Hand-Drawn Sketches

Size: px
Start display at page:

Download "A Multi-Touch Application for the Automatic Evaluation of Dimensions in Hand-Drawn Sketches"

Transcription

1 A Multi-Touch Application for the Automatic Evaluation of Dimensions in Hand-Drawn Sketches Ferran Naya, Manuel Contero Instituto de Investigación en Bioingeniería y Tecnología Orientada al Ser Humano (I3BH) Universitat Politècnica de Valencia Valencia, Spain {fernasan, mcontero}@dig.upv.es Jorge Dorribo-Camba Engineering Design Graphics Texas A&M University College Station, TX, USA camba@tamu.edu Abstract Dimensioning plays an important role in the product development process. It is usually learned through sketching exercises where students add the corresponding dimensions to different parts of an engineering drawing. Nevertheless, being able to self-learn proper dimensioning methods is challenging, as a geometric figure requires a specific number of dimensions to be correctly defined. This paper presents an educational software application for multi-touch tablet devices to support dimensioning activities. Our application uses a multi-touch interface where students can create 2D parametric drawings with dimensions using freehand sketches and receive feedback from the system about the quality of their dimensioning exercises. When a student finishes a sketch, the system reports back the correct and incorrect dimensions. Multitouch gestures are also used for basic sketch manipulation (panning, zooming, and rotating), similar to the standard functionality found in modern smart phones and tablets. Preliminary experiences show that multi-touch interfaces provide an effective way to capture students attention. Students found the system very natural, and the time required to learn how to use the application is short. They enjoyed the simplicity of the interface and valued the powerful control of the geometry. Keywords Innovation and technology; multi-touch displays; sketch-based interfaces I. INTRODUCTION Sketching and dimensioning are considered important learning outcomes in the engineering curriculum. The Accreditation Board for Engineering and Technology (ABET) recommends a list of eleven outcomes for assessing engineering students, one of which, criterion 3, states that students must possess the ability to communicate effectively [1]. Many engineering programs interpret this ability as encompassing written, oral, and graphical forms. In 2004, a survey [2] conducted by the Engineering Design Graphics Division of the American Society for Engineering Education (ASEE) identified the ability to sketch engineering objects in the freehand mode as the second most important graphics skill to be learned by engineering students, while the ability to create dimensions was put in the fourth place. In a classroom environment, students typically practice dimensioning through exercises, where they create the orthographic views of an object and add the corresponding dimensions, or just add the missing dimensions to a given drawing. Dimensioning is a common subject in introductory engineering graphics courses. However, self-learning is difficult as dimensioning exercises are open-ended problems. While a geometric figure requires a specific number of dimensions to be properly defined, there are different sets of correct combinations. In this paper, we present an educational software application for multi-touch tablet devices to support dimensioning activities in engineering graphics courses. Our application uses a multi-touch interface where students can create 2D parametric drawings with dimensions using freehand sketches and receive feedback from the system about the quality of their exercises. II. RELATED WORK Different approaches have been taken to teach dimensioning effectively. Some methods are purely methodological. For example, the "Simple Geometry Method (SGM)" developed by [3] involves breaking down a drawing by a process of simplification. A drawing can be understood as complex geometry that is comprised of multiple simple geometric entities such as lines and circles. Students learn to identify these simple geometric forms and provide dimensions for them. Other methods include the integration of dimensioning and tolerancing topics within CAD modeling courses. As reported by [4], some contents that were traditionally offered as standalone courses (e.g. geometric dimensioning, tolerances, and descriptive geometry) can be partially covered in a parametric modeling course, using CAD tools to apply geometric dimensioning and tolerances to 3D models, and drafting and analysis tools to solve descriptive geometry problems. In previous work by [5], educational modules were designed to illustrate geometric dimensioning and tolerancing examples employing a portable Coordinate Measuring Machine (CMM), which interfaced with a parametric solid modeling software package allowing students to visualize tolerance zones. McInnis et al. [6] developed an online working drawing review video and online assessment tool. This tool paid particular attention to dimensioning and ASME ANSI Y /13/$ IEEE

2 standards with the objective of improving the quality of the working drawings required in final design project reports. There is practically no computer software specifically designed to support students with dimensioning activities. Martinez and Félez [7] developed a methodology based on a computer application that uses variational geometry, which allows students to draw a simple shape and obtain the different alternative dimensions, according to the ISO-129 standard. Their system consists of a sketching module that supports the creation of shapes. These shapes are created by combining lines, circles, and arcs. A calculation module outputs a complete set of dimensions for the sketch that are consistent with the rules established by the ISO-129 standard. Although the most suitable set of dimensions is provided, the application is flexible. If the student wants to replace a specific dimension, the algorithm automatically reconfigures the complete dimensioning set and proposes a different one. III. DIMENSIONING TECHNICAL DRAWINGS Before an object can be built, complete information about both size and shape must be provided. The process of adding size information to a drawing is known as dimensioning. Dimensioning technical drawings is used to provide a complete description of an object so it can be built and defined. If a part is dimensioned properly, then the intent of the designer is clear to both the person making the part and the inspector checking it. Additionally, proper dimensioning improves the quality of the 3D models created with parametric CAD packages, since students can also learn to use geometric and dimensional constraints efficiently. If students know how to add dimensions properly, they also understand the concept of degrees of freedom and the fully-constrained sketch paradigm (a fullyconstrained sketch is a sketch with zero degrees of freedom, i.e. a sketch in which all degrees of freedom of each geometric element are defined using geometric and dimensional constraints). The main challenges for students when adding dimensions to a drawing are the following: How many dimensions are needed to define an accurate and complete object? In general, dimensions should not be duplicated. Also, only the minimum number of dimensions required to produce or inspect the part should be provided. Over- and under-dimensioned sketches are common errors in students work. Therefore, many exercises need to be done in order to learn how to fully-dimension a drawing. What set of dimensions should be used? There are different sets of dimensions that define a part, but not all of them are correct. A typical selection criterion involves analyzing what information is necessary to manufacture the object. For example, to drill a hole, the manufacturer needs to know the diameter of the hole, the location of the center of the hole, and the depth to which the hole needs to be drilled. These three dimensions describe the hole in complete detail for the feature to be made [8]. Selecting a correct set of dimensions for a drawing requires the correct control and use of the following items: Size dimensions (indicate the overall sizes of the object and the sizes of the features). Location dimensions (locate features of an object from a specified datum, surface or other feature). Dimensions of chamfers, fillets, and rounds. Dimensioning of symmetrical parts. Dimensions of arcs. Dimensions of revolved solids. Inclined surfaces. Dimensions of standard features and shapes (prism, cylinder, hole, etc). With the educational objective of assisting engineering students in learning proper dimensioning practices and standards, a computer aided sketching application called eparsketch has been designed. It is described in detail in the next section. IV. METHODOLOGY A. Software Application for Learning Dimensioning Our application for learning dimensioning, called eparsketch, is a version of a research application for managing 2D parametric freehand sketches [9] adapted for educational purposes. The application eparsketch uses a multi-touch tablet where students can create 2D parametric drawings by using freehand sketches to define the geometric elements (line, arc, circle and ellipse). Combined shapes, which are automatically broken down into basic elements, are also supported. These sketches are automatically recognized by the software and converted to parametric entities, such as those usually employed in modern 3D CAD systems. The drawn shapes can be controlled using a set of gestures (symbolic codes) representing geometric constraints (parallel, perpendicular, tangent, vertical, horizontal or concentric), dimensional constraints (linear, diameters or radii) and delete command. Fig. 1. Inking mode operation: drawing a dimensional constraint.

3 The application eparsketch uses a single-touch and multitouch gesture alphabet to distinguish between the two basic modes of operation: inking and visualization. Inking allows the creation of drawing entities, supporting both thick and thin lines. This mode follows technical drawing conventions where thick lines are related to edges and object contours, and thin lines are used for dimensions and other types of annotations. In the context of our application, drawing with a finger on the screen means thin (Fig. 1) and putting two or more fingers together means thick. The whole hand is used to delete elements. Fig. 3. Sketching sequence in exercise to learn how many dimensions are needed (II): students dimension a given shape (dimensional control). Visualization mode is controlled by a set of multi-touch gestures where several fingers (pan function) can be used, or two hands at the same time (zoom and rotation). This is similar to the functionality found in modern multi-touch smartphones and tablets. The sketching methodology that is supported by the application follows the typical steps employed by engineers for creating technical sketches. This is an important point, as students do not need to learn any special sketching tools or program commands. They can apply the rules they have learnt previously. We conducted a pilot study of our application with freshman engineering students to test the usability of the software. We used two types of exercises in this study. The first group of exercises was defined to assist students in finding how many dimensions are needed to fully-define a drawing, and a second group was used to select what set of dimensions is appropriate. Fig. 2. Sketching sequence in exercise to learn how many dimensions are needed (I): students define, constrain and edit a shape. B. Exercises to learn how many dimensions are needed The first type of exercise is based on drawing creation and dimensioning. As the user is editing, constraining and dimensioning the corresponding sketch, the system reports the current number of degrees of freedom, which is indicative of the number of missing dimensions. The sketching sequences presented in Fig. 2, Fig. 3 and Fig. 4 illustrate the process. In this type of exercise, the student defines the geometry of the 2D shape (the strokes made by the user are interpreted as geometric entities) which is automatically corrected, adjusted, and connected to other existing elements in the drawing (Fig. 2). Once the user has entered the complete sketch outline, the shape can be edited, dimensioned, and constrained. The user can manage the geometric entities and the geometric constraints using a set of gestures (where the strokes are interpreted as commands). Therefore, if the user wants to generate design alternatives, or adjust some sketch features to reach a specific dimensional condition, the system provides parametric capabilities and handwritten dimensional control to the two-dimensional freehand sections (Fig. 3). The majority of gestures are inspired by the conventional symbols used in technical drafting. During the sketching process, the system

4 provides feedback with the remaining number of degrees of freedom that need to be constrained. This is used to inform the student if the sketch is over- or under-defined (Fig. 4). C. Exercises to learn what set of dimensions to use In this type of exercises, a drawing without dimensions is presented to the student (Fig. 5 and Fig. 6). The student is asked to add dimensions. When the student finishes the sketch, the system reports the correct dimensions (in green color), the incorrect dimensions (in red color), and adds the dimensions that were missed by the student (in orange). The application has successfully solved all proposed exercises, and the dimensions drawn by the user are compared with the correct set dimensions of the solution. a) Sketch presented to the student b) Dimensions created by the student c) eparsketch correction Fig. 5. Sketching sequence in exercise to select the correct set of dimensions to use (I): dimensioning symmetrical parts. Fig. 4. Sketching sequence in exercise to learn how many dimensions are needed (III): students dimension a given shape. D. Preliminary studies Our preliminary experience with students shows that multitouch interfaces are a powerful tool to capture students attention. They stimulate and build positive attitudes in students toward dimensioning tasks. Initial tests have revealed encouraging results. Students with an engineering background find the system very natural and the learning process very effective. They enjoy the simplicity of the interface and value the powerful control of the sketched geometry. We have tested our application in multiple Tablet-PC s running Microsoft Windows 7, supporting pen-input using a stylus. The parametric engine used to power the system, Siemens 2DCM, is only available for the Windows platform, which is a limitation in terms of portability to Android and ios tablets.

5 Although some manufacturers have decided to exclude pen input from their current models of tablet devices, our experience in the context of this work suggests that, for sketching and technical work, users can greatly benefit from the precision offered by a stylus instead of a pure touch-based drawing. a) Sketch presented to the student ACKNOWLEDGMENTS This work was partially supported by the Spanish Ministry of Economy and Competitiveness (Project ref. TIN C02-01). b) Dimensions created by the student c) eparsketch correction Fig. 6. Sketching sequence in exercise to select the correct set of dimensions to use (II): rounds and location dimensions. From a usability standpoint, preliminary tests show that a pure tactile management system is not as effective as the combination of pen-input (for sketching) and multi-touch gestures (for visualization tasks, such as zoom, pan and rotate). The screen size is a limiting factor for using a pure multi-touch operation, as users feel less precise in the drawing tasks. REFERENCES [1] ABET. Criteria for accrediting engineering programs, Accreditation Board for Engineering and Technology. Baltimore, Maryland., [2] Barr, R. E. (2004). The Current Status of Graphical Communication in Engineering Education. Proceedings of 34th ASEE/IEEE Frontiers in Education Conference (pp. S1D8-13). Savannah, GA. [3] Latif, N., & Graham, D. (1999). Dimensioning through understanding geometry ASEE Annual Conference Proceedings, pp [4] Irwin, J. (2007). Embedded design in parametric modeling and CAM ASEE Annual Conference and Exposition, Conference Proceedings. [5] Hewerdine, K. P., Leake, J. M., & Hall, W. B. (2011). Linking CAD and metrology to explain, demonstrate, and teach geometric dimensioning and tolerancing ASEE Annual Conference and Exposition, Conference Proceedings. [6] McInnis, J., Sobin, A., Bertozzi, N., & Planchard, M. (2010). Online Working Drawing Review and Assessment. Engineering Design Graphics Journal, 74(1), 1-7. [7] Martínez, M. L., & Félez, J. (2006). An Oriented Constraint Solving- Based Methodology Approach to Learn Dimensioning. International Journal of Engineering Education, 22(2), [8] Bertoline, G. R., Wiebe, E. N., Miller, C. L., & Nasman, L. O. (1995). Engineering Graphics Communication. Burr Ridge, IL: Richard D. Irwin. [9] Naya, F., Contero, M., Aleixos, N., Company, P. (2007). ParSketch: A Sketch-Based Interface for a 2D Parametric Geometry Editor. In: Jacko, J.A. (ed.) Human-Computer Interaction. Interaction Platforms and Techniques. LNCS, vol. 4551, pp V. CONCLUSIONS In this paper, an educational software application for dimensioning is presented. It was designed for multi-touch tablet devices to assist engineering students in learning proper dimensioning practices and standards. Our application allows students to create freehand sketches, apply dimensions, and receive immediate feedback about the completeness and correctness of their work. The interface was intentionally designed to simulate a traditional sketching environment, and it offers a promising alternative for self-learning complex topics such as dimensioning. Preliminary results from our tests show that multi-touch interfaces are an effective way to stimulate students, capture their attention, and build a positive attitude toward dimensioning tasks. Participants found the application intuitive and very easy to learn.

Mechanical Drawing. Unit 2 Study Guide for Chapters 6-10

Mechanical Drawing. Unit 2 Study Guide for Chapters 6-10 Mechanical Drawing Unit 2 Study Guide for Chapters 6-10 Chapter 6 Multiview Drawing Section 6.1 Understanding Orthographic Projection A. Technical Drawing: How can a technical drawing give more accurate

More information

Geometric dimensioning & tolerancing (Part 1) KCEC 1101

Geometric dimensioning & tolerancing (Part 1) KCEC 1101 Geometric dimensioning & tolerancing (Part 1) KCEC 1101 Introduction Before an object can be built, complete information about both the size and shape of the object must be available. The exact shape of

More information

ENGINEERING GRAPHICS ESSENTIALS. (A Text and Lecture Aid) Second Edition. Kirstie Plantenberg University of Detroit Mercy SDC PUBLICATIONS

ENGINEERING GRAPHICS ESSENTIALS. (A Text and Lecture Aid) Second Edition. Kirstie Plantenberg University of Detroit Mercy SDC PUBLICATIONS ENGINEERING GRAPHICS ESSENTIALS (A Text and Lecture Aid) Second Edition Kirstie Plantenberg University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com

More information

SOLIDWORKS 2015 and Engineering Graphics

SOLIDWORKS 2015 and Engineering Graphics SOLIDWORKS 2015 and Engineering Graphics An Integrated Approach Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

Activity 5.2 Making Sketches in CAD

Activity 5.2 Making Sketches in CAD Activity 5.2 Making Sketches in CAD Introduction It would be great if computer systems were advanced enough to take a mental image of an object, such as the thought of a sports car, and instantly generate

More information

Creo Parametric 2.0: Introduction to Solid Modeling. Creo Parametric 2.0: Introduction to Solid Modeling

Creo Parametric 2.0: Introduction to Solid Modeling. Creo Parametric 2.0: Introduction to Solid Modeling Creo Parametric 2.0: Introduction to Solid Modeling 1 2 Part 1 Class Files... xiii Chapter 1 Introduction to Creo Parametric... 1-1 1.1 Solid Modeling... 1-4 1.2 Creo Parametric Fundamentals... 1-6 Feature-Based...

More information

Technical Drawing 101 with AutoCAD 2018

Technical Drawing 101 with AutoCAD 2018 Technical Drawing 101 with AutoCAD 2018 A Multidisciplinary Guide to Drafting Theory and Practice with Video Instruction Douglas Smith Antonio Ramirez Ashleigh Fuller SDC PUBLICATIONS Better Textbooks.

More information

and Engineering Graphics

and Engineering Graphics SOLIDWORKS 2018 and Engineering Graphics An Integrated Approach Randy H. Shih SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following

More information

CAD & BSI Theory. Arbroath Academy - Technology Department - National 5 Graphic Communication

CAD & BSI Theory. Arbroath Academy - Technology Department - National 5 Graphic Communication CAD & BSI Theory These symbols are drawn from BSI. Building Drawing Symbols You may be required to use these symbols in your assignment or project, or be asked questions about them in your exam. You must

More information

A Concise Introduction to Engineering Graphics

A Concise Introduction to Engineering Graphics A Concise Introduction to Engineering Graphics Fourth Edition Including Worksheet Series A Timothy J. Sexton, Professor Department of Industrial Technology Ohio University BONUS Book on CD: TECHNICAL GRAPHICS

More information

CHAPTER 01 PRESENTATION OF TECHNICAL DRAWING. Prepared by: Sio Sreymean

CHAPTER 01 PRESENTATION OF TECHNICAL DRAWING. Prepared by: Sio Sreymean CHAPTER 01 PRESENTATION OF TECHNICAL DRAWING Prepared by: Sio Sreymean 2015-2016 Why do we need to study this subject? Effectiveness of Graphics Language 1. Try to write a description of this object. 2.

More information

Multiviews and Auxiliary Views

Multiviews and Auxiliary Views Multiviews and Auxiliary Views Multiviews and Auxiliary Views Objectives Explain orthographic and multiview projection. Identifying the six principal views. Apply standard line practices to multiviews

More information

Chapter 1. Creating, Profiling, Constraining, and Dimensioning the Basic Sketch. Learning Objectives. Commands Covered

Chapter 1. Creating, Profiling, Constraining, and Dimensioning the Basic Sketch. Learning Objectives. Commands Covered Chapter 1 Creating, Profiling, Constraining, and Dimensioning the Basic Sketch Learning Objectives After completing this chapter, you will be able to: Draw the basic outline (sketch) of designer model.

More information

Spatial Demonstration Tools for Teaching Geometric Dimensioning and Tolerancing (GD&T) to First-Year Undergraduate Engineering Students

Spatial Demonstration Tools for Teaching Geometric Dimensioning and Tolerancing (GD&T) to First-Year Undergraduate Engineering Students Paper ID #17885 Spatial Demonstration Tools for Teaching Geometric Dimensioning and Tolerancing (GD&T) to First-Year Undergraduate Engineering Students Miss Myela A. Paige, Georgia Institute of Technology

More information

Chapter 8. Technical Drawings

Chapter 8. Technical Drawings Chapter 8 Technical Drawing Technical Drawings Multiview drawings Also called three-view drawings Simple objects take three views Front, top, one side Title block Identifies who did the design Gives date,

More information

2. To develop basic skills in the use of drawing instruments and drafting techniques.

2. To develop basic skills in the use of drawing instruments and drafting techniques. IT-111 ENGINEERING DRAFTING SYLLABUS Instructor: R. Edward Rode= Office: Room 110-4, Anzalone Hall Hours: Refer to Schedule Phone: (985-549-2092) Fax : (985-549-5532) Email : erode@selu.edu Course Title:

More information

Chapter 2: Dimensioning Basic Topics Advanced Topics Exercises

Chapter 2: Dimensioning Basic Topics Advanced Topics Exercises Chapter 2: Dimensioning Basic Topics Advanced Topics Exercises Dimensioning: Basic Topics Summary 2-1) Detailed Drawings 2-2) Learning to Dimension 2-3) Dimension Appearance and Techniques. 2-4) Dimensioning

More information

Computer Aided Design I

Computer Aided Design I Black Horse Pike Regional School District 580 Erial Road, Blackwood, NJ 08012 Computer Aided Design I COURSE OF STUDY Technology Department Written by: Ken Whalen, Steve Arena and Vince Mannino Date: May

More information

Engineering Graphics Educational Outcomes for the Global Engineer: An Update. R. E. Barr The University of Texas at Austin.

Engineering Graphics Educational Outcomes for the Global Engineer: An Update. R. E. Barr The University of Texas at Austin. Engineering Graphics Educational Outcomes for the Global Engineer: An Update R. E. Barr The University of Texas at Austin Introduction Graphics has always been the language of engineering and the preferred

More information

DFTG-1305 Technical Drafting Prof. Francis Ha

DFTG-1305 Technical Drafting Prof. Francis Ha DFTG-1305 Technical Drafting Prof. Francis Ha Session 5 Dimensioning Geisecke s textbook: 14 th Ed. Chapter 10 p. 362 15 th Ed. Chapter 11 p. 502 Update: 17-0508 Dimensioning Part 1 of 2 Dimensioning Summary

More information

Autodesk Inventor Module 17 Angles

Autodesk Inventor Module 17 Angles Inventor Self-paced ecourse Autodesk Inventor Module 17 Angles Learning Outcomes When you have completed this module, you will be able to: 1 Describe drawing inclined lines, aligned and angular dimensions,

More information

Engineering Graphics with SOLIDWORKS 2016 and Video Instruction

Engineering Graphics with SOLIDWORKS 2016 and Video Instruction Engineering Graphics with SOLIDWORKS 2016 and Video Instruction A Step-by-Step Project Based Approach David C. Planchard, CSWP, SOLIDWORKS Accredited Educator SDC PUBLICATIONS Better Textbooks. Lower Prices.

More information

Creo Parametric 4.0 Basic Design

Creo Parametric 4.0 Basic Design Creo Parametric 4.0 Basic Design Contents Table of Contents Introduction...1 Objective of This Textbook...1 Textbook Outline...2 Textbook Conventions...3 Exercise Files...3 System Configuration...4 Notes

More information

CAD-CAM-CAE Examples

CAD-CAM-CAE Examples CAD-CAM-CAE Examples example title: example number: example level: CAx system: Related material part with TÁMOP Job Description: Shaft type component (CAD) ÓE-A06a basic - medium - advanced CATIA v5 CAD

More information

Spokane Public Schools Course: Drafting and Design Technology

Spokane Public Schools Course: Drafting and Design Technology Spokane Public Schools Drafting and Design Technology Course: Drafting and Design Technology Total Framework Hours up to: 180 hours CIP Code: 140102 Exploratory Preparatory Date Last Modified: 4/2/2015

More information

IED Detailed Outline. Unit 1 Design Process Time Days: 16 days. An engineering design process involves a characteristic set of practices and steps.

IED Detailed Outline. Unit 1 Design Process Time Days: 16 days. An engineering design process involves a characteristic set of practices and steps. IED Detailed Outline Unit 1 Design Process Time Days: 16 days Understandings An engineering design process involves a characteristic set of practices and steps. Research derived from a variety of sources

More information

Virtual CAD Parts to Enhance Learning of Geometric Dimensioning and Tolerancing. Lawrence E. Carlson University of Colorado at Boulder

Virtual CAD Parts to Enhance Learning of Geometric Dimensioning and Tolerancing. Lawrence E. Carlson University of Colorado at Boulder Virtual CAD Parts to Enhance Learning of Geometric Dimensioning and Tolerancing Lawrence E. Carlson University of Colorado at Boulder Introduction Geometric dimensioning and tolerancing (GD&T) is an important

More information

Sketching & Auto CAD (Computer Aided Design) - Mechanical Design

Sketching & Auto CAD (Computer Aided Design) - Mechanical Design Western Technical College 10606113 Sketching & Auto CAD (Computer Aided Design) - Mechanical Design Course Outcome Summary Course Information Description Career Cluster Instructional Level Total Credits

More information

Advanced Computer Aided Design COURSE OUTLINE

Advanced Computer Aided Design COURSE OUTLINE Advanced Computer Aided Design COURSE OUTLINE 1. Course Title: Advanced Computer Aided Design 2. CBEDS Title: Computer Aided Drafting/Design 3. CBEDS Number: 5705 4. Job Titles: Framers Construction Inspectors

More information

Alternatively, the solid section can be made with open line sketch and adding thickness by Thicken Sketch.

Alternatively, the solid section can be made with open line sketch and adding thickness by Thicken Sketch. Sketcher All feature creation begins with two-dimensional drawing in the sketcher and then adding the third dimension in some way. The sketcher has many menus to help create various types of sketches.

More information

Chapter 2. Drawing Sketches for Solid Models. Learning Objectives

Chapter 2. Drawing Sketches for Solid Models. Learning Objectives Chapter 2 Drawing Sketches for Solid Models Learning Objectives After completing this chapter, you will be able to: Start a new template file to draw sketches. Set up the sketching environment. Use various

More information

ENGINEERING GRAPHICS ESSENTIALS

ENGINEERING GRAPHICS ESSENTIALS ENGINEERING GRAPHICS ESSENTIALS with AutoCAD 2012 Instruction Introduction to AutoCAD Engineering Graphics Principles Hand Sketching Text and Independent Learning CD Independent Learning CD: A Comprehensive

More information

Introduction to CATIA V5

Introduction to CATIA V5 Introduction to CATIA V5 Release 17 (A Hands-On Tutorial Approach) Kirstie Plantenberg University of Detroit Mercy SDC PUBLICATIONS Schroff Development Corporation www.schroff.com Better Textbooks. Lower

More information

Using Think-Aloud Exercises to Reveal Students Solid Modeling Strategies

Using Think-Aloud Exercises to Reveal Students Solid Modeling Strategies Using Think-Aloud Exercises to Reveal Students Solid Modeling Strategies Jonathan Leith, Holly K. Ault Mechanical Engineering Department Worcester Polytechnic Institute Abstract This paper describes the

More information

Starting a 3D Modeling Part File

Starting a 3D Modeling Part File 1 How to Create a 3D Model and Corresponding 2D Drawing with Dimensions, GDT (Geometric Dimensioning and Tolerance) Symbols and Title Block in SolidWorks 2013-2014 By Edward Locke This tutorial will introduce

More information

Mechanical Design CATIA - Interactive Drafting 1 (ID1) CATIA V5R20

Mechanical Design CATIA - Interactive Drafting 1 (ID1) CATIA V5R20 Mechanical Design CATIA - Interactive Drafting 1 (ID1) CATIA V5R20 Mechanical Design CATIA - Interactive Drafting Address 2D design and drawing production requirements. Product overview Interactive Drafting

More information

Shaft Hanger - SolidWorks

Shaft Hanger - SolidWorks ME-430 INTRODUCTION TO COMPUTER AIDED DESIGN Shaft Hanger - SolidWorks BY: DR. HERLI SURJANHATA ASSIGNMENT Submit TWO isometric views of the Shaft Hanger with your report, 1. Shaded view of the trimetric

More information

Student Name: Teacher: Date: District: Rowan. Assessment: 9_12 T and I IC61 - Drafting I Test 2. Description: Drafting 1 - Test 6.

Student Name: Teacher: Date: District: Rowan. Assessment: 9_12 T and I IC61 - Drafting I Test 2. Description: Drafting 1 - Test 6. Student Name: Teacher: Date: District: Rowan Assessment: 9_12 T and I IC61 - Drafting I Test 2 Description: Drafting 1 - Test 6 Form: 501 1. 2X on a hole note means: A. Double the size of the hole. B.

More information

Engineering Graphics with SolidWorks 2012

Engineering Graphics with SolidWorks 2012 INSIDE: Video Instruction DVD An audio/visual presentation of the tutorial projects Engineering Graphics with SolidWorks 2012 and Video Instruction DVD A Step-by-Step Project Based Approach Introductory

More information

ENGINEERING GRAPHICS ESSENTIALS

ENGINEERING GRAPHICS ESSENTIALS ENGINEERING GRAPHICS ESSENTIALS with AutoCAD 2012 Instruction Introduction to AutoCAD Engineering Graphics Principles Hand Sketching Text and Independent Learning CD Independent Learning CD: A Comprehensive

More information

DIMENSIONING ENGINEERING DRAWINGS

DIMENSIONING ENGINEERING DRAWINGS DIMENSIONING ENGINEERING DRAWINGS An engineering drawing must be properly dimensioned in order to convey the designer s intent to the end user. Dimensions provide the information needed to specify the

More information

ADA Curriculum for Pre-Engineering Students Correlation Guide

ADA Curriculum for Pre-Engineering Students Correlation Guide ADA Curriculum for Pre-Engineering Students Correlation Guide Madsen/Autodesk Inventor 7: Basics Through Advanced Note: The concepts presented in the ADA Curriculum are covered in the text as they pertain

More information

Honors Drawing/Design for Production (DDP)

Honors Drawing/Design for Production (DDP) Honors Drawing/Design for Production (DDP) Unit 1: Design Process Time Days: 49 days Lesson 1.1: Introduction to a Design Process (11 days): 1. There are many design processes that guide professionals

More information

Content Map For Career & Technology

Content Map For Career & Technology Content Strand: Applied Academics CT-DD1-1 CT-DD2-1 CT-DD3-1 CT-DD4-1 Use math concepts in Use math concepts in Use math concepts in Use math concepts in design and engineering design and engineering design

More information

1. Open the Feature Modeling demo part file on the EEIC website. Ask student about which constraints needed to Fully Define.

1. Open the Feature Modeling demo part file on the EEIC website. Ask student about which constraints needed to Fully Define. BLUE boxed notes are intended as aids to the lecturer RED boxed notes are comments that the lecturer could make Control + Click HERE to view enlarged IMAGE and Construction Strategy he following set of

More information

ENGINEERING GRAPHICS ESSENTIALS

ENGINEERING GRAPHICS ESSENTIALS ENGINEERING GRAPHICS ESSENTIALS Text and Digital Learning KIRSTIE PLANTENBERG FIFTH EDITION SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com ACCESS CODE UNIQUE CODE INSIDE

More information

Software Development & Education Center NX 8.5 (CAD CAM CAE)

Software Development & Education Center NX 8.5 (CAD CAM CAE) Software Development & Education Center NX 8.5 (CAD CAM CAE) Detailed Curriculum Overview Intended Audience Course Objectives Prerequisites How to Use This Course Class Standards Part File Naming Seed

More information

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ADVANCED MECHANICAL DRAWING CID 1220

PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ADVANCED MECHANICAL DRAWING CID 1220 PELLISSIPPI STATE TECHNICAL COMMUNITY COLLEGE MASTER SYLLABUS ADVANCED MECHANICAL DRAWING CID 1220 Class Hours: 3.0 Credit Hours: 4.0 Laboratory Hours: 3.0 Date Revised: Fall 00 NOTE: This course is not

More information

CAD Mechanical Design I

CAD Mechanical Design I EXAM INFORMATION Items 58 Points 85 Prerequisites NONE Course Length ONE SEMESTER Career Cluster ARCHITECTURE AND CONSTRUCTION MANUFACTURING SCIENCE, TECHNOLOGY, ENGINEERING AND MATHEMATICS Performance

More information

Introduction to Autodesk Inventor for F1 in Schools (Australian Version)

Introduction to Autodesk Inventor for F1 in Schools (Australian Version) Introduction to Autodesk Inventor for F1 in Schools (Australian Version) F1 in Schools race car In this course you will be introduced to Autodesk Inventor, which is the centerpiece of Autodesk s Digital

More information

Engineering Working Drawings Basics

Engineering Working Drawings Basics Engineering Working Drawings Basics Engineering graphics is an effective way of communicating technical ideas and it is an essential tool in engineering design where most of the design process is graphically

More information

Training Guide Basics

Training Guide Basics Training Guide Basics 2014, Missler Software. 7, Rue du Bois Sauvage F-91055 Evry, FRANCE Web: www.topsolid.com E-mail: info@topsolid.com All rights reserved. TopSolid Design Basics This information is

More information

An Introduction to Autodesk Inventor 2011 and AutoCAD Randy H. Shih SDC PUBLICATIONS. Schroff Development Corporation

An Introduction to Autodesk Inventor 2011 and AutoCAD Randy H. Shih SDC PUBLICATIONS.   Schroff Development Corporation An Introduction to Autodesk Inventor 2011 and AutoCAD 2011 Randy H. Shih SDC PUBLICATIONS www.sdcpublications.com Schroff Development Corporation An Introduction to Autodesk Inventor 2011 and AutoCAD 2011

More information

Engineering Graphics Essentials with AutoCAD 2015 Instruction

Engineering Graphics Essentials with AutoCAD 2015 Instruction Kirstie Plantenberg Engineering Graphics Essentials with AutoCAD 2015 Instruction Text and Video Instruction Multimedia Disc SDC P U B L I C AT I O N S Better Textbooks. Lower Prices. www.sdcpublications.com

More information

3. The dimensioning SYMBOLS for arcs and circles should be given:

3. The dimensioning SYMBOLS for arcs and circles should be given: Draft Student Name: Teacher: District: Date: Wake County Test: 9_12 T and I IC61 - Drafting I Test 2 Description: 4.08 Dimensioning Form: 501 1. The MINIMUM amount of space between two, ADJACENT DIMENSION

More information

GstarCAD Mechanical 2015 Help

GstarCAD Mechanical 2015 Help 1 Chapter 1 GstarCAD Mechanical 2015 Introduction Abstract GstarCAD Mechanical 2015 drafting/design software, covers all fields of mechanical design. It supplies the latest standard parts library, symbols

More information

Chapter 1 Overview of an Engineering Drawing

Chapter 1 Overview of an Engineering Drawing Chapter 1 Overview of an Engineering Drawing TOPICS Graphics language Engineering drawing Projection methods Orthographic projection Drawing standards TOPICS Traditional Drawing Tools Lettering Freehand

More information

Beginner s Guide to SolidWorks Alejandro Reyes, MSME Certified SolidWorks Professional and Instructor SDC PUBLICATIONS

Beginner s Guide to SolidWorks Alejandro Reyes, MSME Certified SolidWorks Professional and Instructor SDC PUBLICATIONS Beginner s Guide to SolidWorks 2008 Alejandro Reyes, MSME Certified SolidWorks Professional and Instructor SDC PUBLICATIONS Schroff Development Corporation www.schroff.com www.schroff-europe.com Part Modeling

More information

UNIT Lines and Symbols

UNIT Lines and Symbols 3 UNIT Lines and Symbols Various lines on a drawing have different meanings. They may appear solid, broken, thick, or thin. Each is designed to help the blueprint reader make an interpretation. The standards

More information

2004 Academic Challenge

2004 Academic Challenge 2004 Academic Challenge ENGINEERING GRAPHICS TEST - SECTIONAL Engineering Graphics Test Production Team Ryan Brown, Illinois State University Author/Team Coordinator Kevin Devine, Illinois State University

More information

Siemens NX11 tutorials. The angled part

Siemens NX11 tutorials. The angled part Siemens NX11 tutorials The angled part Adaptation to NX 11 from notes from a seminar Drive-to-trial organized by IBM and GDTech. This tutorial will help you design the mechanical presented in the figure

More information

Chapter 2. Isometric Projection and Multi View Drawings. Below are the desired outcomes and usage competencies based on the completion of Chapter 2.

Chapter 2. Isometric Projection and Multi View Drawings. Below are the desired outcomes and usage competencies based on the completion of Chapter 2. Chapter 2 Below are the desired outcomes and usage competencies based on the completion of Chapter 2. Desired Outcomes: Understand Isometric Projection and 2D sketching. Knowledge of additional Projection

More information

Spatula. Spatula SW 2015 Design & Communication Graphics Page 1

Spatula. Spatula SW 2015 Design & Communication Graphics Page 1 Spatula Introduction: The model shown in the picture is made of three parts, - the base, the washer and the handle. The base requires the use of Spline and Style Spline command, Slot command and Mirror

More information

UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS

UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS UNIT 5a STANDARD ORTHOGRAPHIC VIEW DRAWINGS 5.1 Introduction Orthographic views are 2D images of a 3D object obtained by viewing it from different orthogonal directions. Six principal views are possible

More information

SolidWorks Part I - Basic Tools SDC. Includes. Parts, Assemblies and Drawings. Paul Tran CSWE, CSWI

SolidWorks Part I - Basic Tools SDC. Includes. Parts, Assemblies and Drawings. Paul Tran CSWE, CSWI SolidWorks 2015 Part I - Basic Tools Includes CSWA Preparation Material Parts, Assemblies and Drawings Paul Tran CSWE, CSWI SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered

More information

DFTG Blueprint Reading and Sketching

DFTG Blueprint Reading and Sketching Course Syllabus DFTG 1325 - Blueprint Reading and Sketching Catalog Description: An introduction to reading and interpreting working drawings for fabrication processes and associated trades. Use of sketching

More information

Contents. Notes on the use of this publication

Contents. Notes on the use of this publication Contents Preface xxiii Scope Notes on the use of this publication xxv xxvi 1 Layout of drawings 1 1.1 General 1 1.2 Drawing sheets 1 1.3 Title block 2 1.4 Borders and frames 2 1.5 Drawing formats 2 1.6

More information

Lesson 6 2D Sketch Panel Tools

Lesson 6 2D Sketch Panel Tools Lesson 6 2D Sketch Panel Tools Inventor s Sketch Tool Bar contains tools for creating the basic geometry to create features and parts. On the surface, the Geometry tools look fairly standard: line, circle,

More information

Computer Aided Drawing: An Overview

Computer Aided Drawing: An Overview Computer Aided Drawing: An Overview Dr. H. Hirani Department of Mechanical Engineering INDIAN INSTITUTE OF TECHNOLOGY BOMBAY Powai, Mumbai-76 hirani@me.iitb.ac.in Drawing: Machine/ Engineering/ Technical

More information

AC : CLARIFICATIONS OF RULE 2 IN TEACHING GEOMETRIC DIMENSIONING AND TOLERANCING

AC : CLARIFICATIONS OF RULE 2 IN TEACHING GEOMETRIC DIMENSIONING AND TOLERANCING AC 2007-337: CLARIFICATIONS OF RULE 2 IN TEACHING GEOMETRIC DIMENSIONING AND TOLERANCING Cheng Lin, Old Dominion University Alok Verma, Old Dominion University American Society for Engineering Education,

More information

Clarifications of a Datum Axis or Centerplane Specifying in Maximum Material Condition of Geometric Dimensioning and Tolerancing

Clarifications of a Datum Axis or Centerplane Specifying in Maximum Material Condition of Geometric Dimensioning and Tolerancing Paper ID #5813 Clarifications of a Datum Axis or Centerplane Specifying in Maximum Material Condition of Geometric Dimensioning and Tolerancing Dr. Cheng Y. Lin P.E., Old Dominion University Dr. Lin is

More information

ACT-IED-1. Students will identify the disciplines related to engineering drawing and design professions.

ACT-IED-1. Students will identify the disciplines related to engineering drawing and design professions. PROGRAM CONCENTRATION: CAREER PATHWAY: COURSE TITLE: Architecture, Construction, Communications & Transportation Engineering Drawing & Design Introduction to Engineering Drawing and Design Introduction

More information

Lesson 4 Holes and Rounds

Lesson 4 Holes and Rounds Lesson 4 Holes and Rounds 111 Figure 4.1 Breaker OBJECTIVES Sketch arcs in sections Create a straight hole through a part Complete a Sketched hole Understand the Hole Tool Use Info to extract information

More information

2003 Academic Challenge

2003 Academic Challenge Worldwide Youth in Science and Engineering 2003 Academic Challenge ENGINEERING GRAPHICS TEST - REGIONAL Engineering Graphics Test Production Team Ryan Brown, Illinois State University Author/Team Coordinator

More information

Test Code: 8294 / Version 1

Test Code: 8294 / Version 1 Pennsylvania Customized Assessment Blueprint Test Code: 8294 / Version 1 Copyright 2014. All Rights Reserved. General Assessment Information Blueprint Contents General Assessment Information Written Assessment

More information

Higher Graphic Communication. Homework. Knowledge and Interpretation. Name. Page

Higher Graphic Communication. Homework. Knowledge and Interpretation. Name. Page Higher Graphic Communication Homework Knowledge and Interpretation Name Page Homework 1 Q1. For each of the following lines name each and explain where it would be used on a drawing. A coloured electronic

More information

Introduction to ANSYS DesignModeler

Introduction to ANSYS DesignModeler Lecture 4 Planes and Sketches 14. 5 Release Introduction to ANSYS DesignModeler 2012 ANSYS, Inc. November 20, 2012 1 Release 14.5 Preprocessing Workflow Geometry Creation OR Geometry Import Geometry Operations

More information

Autodesk AutoCAD 2013 Fundamentals

Autodesk AutoCAD 2013 Fundamentals Autodesk AutoCAD 2013 Fundamentals Elise Moss SDC P U B L I C AT I O N S Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to learn more

More information

2003 Academic Challenge

2003 Academic Challenge Worldwide Youth in Science and Engineering 2003 Academic Challenge ENGINEERING GRAPHICS TEST - SECTIONAL Engineering Graphics Test Production Team Ryan Brown, Illinois State University Author/Team Coordinator

More information

Introduction to Sheet Metal Features SolidWorks 2009

Introduction to Sheet Metal Features SolidWorks 2009 SolidWorks 2009 Table of Contents Introduction to Sheet Metal Features Base Flange Method Magazine File.. 3 Envelopment & Development of Surfaces.. 14 Development of Transition Pieces.. 23 Conversion to

More information

GL5: Visualisation and reading drawings

GL5: Visualisation and reading drawings 436-105 Engineering Communications GL5:1 GL5: Visualisation and reading drawings Being able to both: represent a 3D object in multiview drawings interpret a multiview drawing to visualise a 3D object is

More information

Lesson 4 Extrusions OBJECTIVES. Extrusions

Lesson 4 Extrusions OBJECTIVES. Extrusions Lesson 4 Extrusions Figure 4.1 Clamp OBJECTIVES Create a feature using an Extruded protrusion Understand Setup and Environment settings Define and set a Material type Create and use Datum features Sketch

More information

Engineering & Computer Graphics Workbook Using SolidWorks 2014

Engineering & Computer Graphics Workbook Using SolidWorks 2014 Engineering & Computer Graphics Workbook Using SolidWorks 2014 Ronald E. Barr Thomas J. Krueger Davor Juricic SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org)

More information

Parametric Modeling with

Parametric Modeling with Parametric Modeling with UGS NX 6 Randy H. Shih Oregon Institute of Technology SDC PUBLICATIONS Schroff Development Corporation www.schroff.com Better Textbooks. Lower Prices. Parametric Modeling with

More information

MODELING FOR THE END GAME > USABLE PARTS

MODELING FOR THE END GAME > USABLE PARTS MODELING FOR THE END GAME > USABLE PARTS Mark Nielsen TechAzul 310-729-6275 liveworx.com # L I V E W O R X MARK NIELSEN Founder TechAzul BS & MS Mechanical Engineering, University of California, Berkeley

More information

A Significant Reverse Engineering Project Experience within an Engineering Graphics Class

A Significant Reverse Engineering Project Experience within an Engineering Graphics Class Paper ID #7577 A Significant Reverse Engineering Project Experience within an Engineering Graphics Class Prof. Douglas Howard Ross, University of Alabama, Birmingham Douglas H. Ross (M 11) received a B.S.

More information

Drawing and Detailing with SolidWorks 2014

Drawing and Detailing with SolidWorks 2014 r n fo io n at io c at tifi ar er ep c pr WT es D R u d Pcl In C S W e th W E N Drawing and Detailing with SolidWorks 2014 Referencing the ASME Y14 Engineering Drawing and Related Documentation Practices

More information

DRAFT MECHANICAL DRAWING

DRAFT MECHANICAL DRAWING Industrial Technology History of Drafting 9-12 Curriculum Standard One: The student will understand, classify, and be familiar with historical events, from cave writings to computer aided drafting systems,

More information

Engineering & Computer Graphics Workbook Using SOLIDWORKS

Engineering & Computer Graphics Workbook Using SOLIDWORKS Engineering & Computer Graphics Workbook Using SOLIDWORKS 2017 Ronald E. Barr Thomas J. Krueger Davor Juricic SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org)

More information

1. is the modification of an existing product or process. A. Invention C. Recreation B. Innovation D. Enhancement

1. is the modification of an existing product or process. A. Invention C. Recreation B. Innovation D. Enhancement Introduction to Engineering Design Lewis-Palmer School District #38, Monument, Colorado Fall Semester 2008 Final Exam 1. is the modification of an existing product or process. A. Invention C. Recreation

More information

Measurement and Tolerances

Measurement and Tolerances Measurement and Tolerances Alessandro Anzalone, Ph.D. Hillsborough Community College, Brandon Campus Measurement and Tolerances Sections: 1. Meaning of Tolerance 2. Geometric Dimensioning and Tolerancing

More information

Activity Pegboard Toy

Activity Pegboard Toy Activity 1.5.5 Pegboard Toy Purpose When you receive a toy, what is the first thing you wonder about it? Do you wonder how it works? Have you ever wondered who designed it or who may have made decisions

More information

Designing in the context of an assembly

Designing in the context of an assembly SIEMENS Designing in the context of an assembly spse01670 Proprietary and restricted rights notice This software and related documentation are proprietary to Siemens Product Lifecycle Management Software

More information

1: INTRODUCTION TO AUTOCAD

1: INTRODUCTION TO AUTOCAD AutoCAD syllabus 1: INTRODUCTION TO AUTOCAD Starting AutoCAD AutoCAD Screen Components Drawing Area Command Window Navigation bar Status bar Invoking Commands in AutoCAD Keyboard Ribbon Application Menu

More information

Elementary Dimensioning

Elementary Dimensioning Elementary Dimensioning Standards Institutions ANSI - American National Standards Institute - creates the engineering standards for North America. ISO - International Organization for Standardization -

More information

Technology Education Grades Drafting I

Technology Education Grades Drafting I Technology Education Grades 9-12 Drafting I 46 Grade Level: 9, 10, 11, 12 Technology Education, Grades 9-12 Drafting I Prerequisite: None Drafting I is an elective course which provides students the opportunity

More information

Principles and Practice:

Principles and Practice: Principles and Practice: An Integrated Approach to Engineering Graphics and AutoCAD 2014 Randy H. Shih Multimedia Disc SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Video presentations

More information

MODELING AND DESIGN C H A P T E R F O U R

MODELING AND DESIGN C H A P T E R F O U R MODELING AND DESIGN C H A P T E R F O U R OBJECTIVES 1. Identify and specify basic geometric elements and primitive shapes. 2. Select a 2D profile that best describes the shape of an object. 3. Identify

More information

AutoCAD 2018 Fundamentals

AutoCAD 2018 Fundamentals Autodesk AutoCAD 2018 Fundamentals Elise Moss SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit the following websites to learn more about

More information