Playing card game with nite projective geometry

Size: px
Start display at page:

Download "Playing card game with nite projective geometry"

Transcription

1 Playing card game with nite projective geometry Norbert Bogya University of Szeged, Bolyai Institute CADGME, 2016 Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

2

3

4 Natural questions How can we construct such cards? Does it work with non-8 symbols? If yes, does it work with any number of symbols? (How many cards are in a deck?) How can we realise such cards? Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

5 Geometry Euclid of Alexandria 300 BCE Elements Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

6 Big problem

7 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

8 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

9 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

10 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

11 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

12 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

13 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

14 Projective plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

15 Projective plane Given any two distinct points, there is exactly one line incident with both of them. There are four points such that no line is incident with more than two of them. Parallel postulate Instead: Given any two distinct lines, there is exactly one point incident with both of them. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

16 Fano plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

17 Fano plane Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

18 Fano plane Points: {1,2,3,4,5,6,7} Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

19 Fano plane Points: {1,2,3,4,5,6,7} Lines: {{1,2,4},{1,3,7},{1,5,6},{2,3,5},{3,4,6},{4,5,7},{2,6,7}} Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

20 Fano plane Points: {1,2,3,4,5,6,7} Lines: {{1,2,4},{1,3,7},{1,5,6},{2,3,5},{3,4,6},{4,5,7},{2,6,7}} Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

21 Dobble revisited: Natural questions How can we construct such cards? Does it works with non-8 symbols? If yes, does it works with any number of symbols? (How many cards is in a deck?) How can we realise such cards? Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

22 How can we construct such cards? Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

23 How can we construct such cards? Answer is simple: nite projective planes. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

24 How can we construct such cards? Answer is simple: nite projective planes. Point = symbol Line = card Given any two distinct card, there is exactly one common symbol with both of them. Given any two distinct symbols, there is exactly one card with both of them. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

25 Does it works with non-8 symbols? l Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

26 Does it works with non-8 symbols? l l l l Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

27 Does it works with any number of symbols? No. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

28 Does it works with any number of symbols? No. Order of the projective plane # sysmbols per card n n do not exist do not exist Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

29 Does it works with any number of symbols? What are the orders such that projective planes can be constructed? Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

30 Does it works with any number of symbols? What are the orders such that projective planes can be constructed? If n is a prime power then projective planes can always be constructed. If not, then we have no idea. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

31 Does it works with any number of symbols? What are the orders such that projective planes can be constructed? If n is a prime power then projective planes can always be constructed. If not, then we have no idea. Conjecture If n is not prime power then there is no projective plane with order n. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

32 How many cards is in a deck? Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

33 How many cards is in a deck? Answer is simple: 55. (We count them.) Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

34 How many cards is in a deck? Theorem If a projective plane has a line with n + 1 points then (1) every line of the plane contains n + 1 points; (2) every point of the plane is incident with n + 1 lines; (3) the plane has n 2 + n + 1 points and (4) the plane has n 2 + n + 1 lines. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

35 How many cards is in a deck? Theorem If a projective plane has a line with n + 1 points then (1) every line of the plane contains n + 1 points; (2) every point of the plane is incident with n + 1 lines; (3) the plane has n 2 + n + 1 points and (4) the plane has n 2 + n + 1 lines. 8 symbols per card = every line contains 8 points Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

36 How many cards is in a deck? Theorem If a projective plane has a line with n + 1 points then (1) every line of the plane contains n + 1 points; (2) every point of the plane is incident with n + 1 lines; (3) the plane has n 2 + n + 1 points and (4) the plane has n 2 + n + 1 lines. 8 symbols per card = every line contains 8 points Then n = 7. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

37 How many cards is in a deck? Theorem If a projective plane has a line with n + 1 points then (1) every line of the plane contains n + 1 points; (2) every point of the plane is incident with n + 1 lines; (3) the plane has n 2 + n + 1 points and (4) the plane has n 2 + n + 1 lines. 8 symbols per card = every line contains 8 points Then n = 7. So the number of lines (cards) is = 57. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

38 How many cards is in a deck? 8 symbols per card = every line contains 8 points Then n = 7. So the number of lines (cards) is = 57. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

39 How many cards is in a deck? 8 symbols per card = every line contains 8 points Then n = 7. So the number of lines (cards) is = 57. Answer is simple: 55. Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

40 How many cards is in a deck? 8 symbols per card = every line contains 8 points Then n = 7. So the number of lines (cards) is = 57. Answer is simple: 55. Where are two missing cards? Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

41 l Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

42 l Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

43 l Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

44 How many cards is in a deck? 8 symbols per card = every line contains 8 points Then n = 7. So the number of lines (cards) is = 57. Answer is simple: 55. Where are two missing cards? Is this the real model or something else? Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

45 How can we realise such cards? Wolfram Mathematica and GAP demonstrations Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

46 The End Thank you for your attention! Norbert Bogya (Bolyai Institue) Dobble and Finite Projective Planes CADGME, / 22

A CONJECTURE ON UNIT FRACTIONS INVOLVING PRIMES

A CONJECTURE ON UNIT FRACTIONS INVOLVING PRIMES Last update: Nov. 6, 2015. A CONJECTURE ON UNIT FRACTIONS INVOLVING PRIMES Zhi-Wei Sun Department of Mathematics, Nanjing University Nanjing 210093, People s Republic of China zwsun@nju.edu.cn http://math.nju.edu.cn/

More information

2. 8, 6, 4, 2, 0,? [A] 2 [B] 2 [C] 3 [D] 1 [E] New Item. [A] 5 and 4 [B] 5 and 10 [C] 7 and 6 [D] 9 and 10

2. 8, 6, 4, 2, 0,? [A] 2 [B] 2 [C] 3 [D] 1 [E] New Item. [A] 5 and 4 [B] 5 and 10 [C] 7 and 6 [D] 9 and 10 Identify the missing number in the pattern. 1. 3, 6, 9, 12, 15,? [A] 17 [B] 12 [C] 18 [D] 19 2. 8, 6, 4, 2, 0,? [A] 2 [B] 2 [C] 3 [D] 1 [E] New Item 3. Look for a pattern to complete the table. 4 5 6 7

More information

CHAPTER 3. Parallel & Perpendicular lines

CHAPTER 3. Parallel & Perpendicular lines CHAPTER 3 Parallel & Perpendicular lines 3.1- Identify Pairs of Lines and Angles Parallel Lines: two lines are parallel if they do not intersect and are coplaner Skew lines: Two lines are skew if they

More information

Geometry Benchmark Assessment #1

Geometry Benchmark Assessment #1 Geometry Benchmark Assessment #1 Multiple Choice Circle the letter of the choice that best completes the statement or answers the question. 1. When the net is folded into the rectangular prism shown beside

More information

Parallels and Euclidean Geometry

Parallels and Euclidean Geometry Parallels and Euclidean Geometry Lines l and m which are coplanar but do not meet are said to be parallel; we denote this by writing l m. Likewise, segments or rays are parallel if they are subsets of

More information

ON SPLITTING UP PILES OF STONES

ON SPLITTING UP PILES OF STONES ON SPLITTING UP PILES OF STONES GREGORY IGUSA Abstract. In this paper, I describe the rules of a game, and give a complete description of when the game can be won, and when it cannot be won. The first

More information

The covering congruences of Paul Erdős. Carl Pomerance Dartmouth College

The covering congruences of Paul Erdős. Carl Pomerance Dartmouth College The covering congruences of Paul Erdős Carl Pomerance Dartmouth College Conjecture (Erdős, 1950): For each number B, one can cover Z with finitely many congruences to distinct moduli all > B. Erdős (1995):

More information

arxiv: v1 [math.ho] 26 Jan 2013

arxiv: v1 [math.ho] 26 Jan 2013 SPOT IT! R SOLITAIRE DONNA A. DIETZ DEPARTMENT OF MATHEMATICS AND STATISTICS AMERICAN UNIVERSITY WASHINGTON, DC, USA arxiv:1301.7058v1 [math.ho] 26 Jan 2013 Abstract. The game of Spot it R is based on

More information

The Product Rule can be viewed as counting the number of elements in the Cartesian product of the finite sets

The Product Rule can be viewed as counting the number of elements in the Cartesian product of the finite sets Chapter 6 - Counting 6.1 - The Basics of Counting Theorem 1 (The Product Rule). If every task in a set of k tasks must be done, where the first task can be done in n 1 ways, the second in n 2 ways, and

More information

Geometry Vocabulary Book

Geometry Vocabulary Book Geometry Vocabulary Book Units 2-4 Page 1 Unit 2 General Geometry Point Characteristics: Line Characteristics: Plane Characteristics: RELATED POSTULATES: Through any two points there exists exactly one

More information

8.2 Union, Intersection, and Complement of Events; Odds

8.2 Union, Intersection, and Complement of Events; Odds 8.2 Union, Intersection, and Complement of Events; Odds Since we defined an event as a subset of a sample space it is natural to consider set operations like union, intersection or complement in the context

More information

Geometry Unit 2 Review Day 1 What to expect on the test:

Geometry Unit 2 Review Day 1 What to expect on the test: Geometry Unit 2 Review Day 1 What to expect on the test: Conditional s Converse Inverse Contrapositive Bi-conditional statements Today we are going to do more work with Algebraic Proofs Counterexamples/Instances

More information

Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines

Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines Name Period GEOMETRY CHAPTER 3 Perpendicular and Parallel Lines Section 3.1 Lines and Angles GOAL 1: Relationship between lines Two lines are if they are coplanar and do not intersect. Skew lines. Two

More information

Chapter 3 Parallel and Perpendicular Lines Geometry. 4. For, how many perpendicular lines pass through point V? What line is this?

Chapter 3 Parallel and Perpendicular Lines Geometry. 4. For, how many perpendicular lines pass through point V? What line is this? Chapter 3 Parallel and Perpendicular Lines Geometry Name For 1-5, use the figure below. The two pentagons are parallel and all of the rectangular sides are perpendicular to both of them. 1. Find two pairs

More information

Round and Round. - Circle Theorems 1: The Chord Theorem -

Round and Round. - Circle Theorems 1: The Chord Theorem - - Circle Theorems 1: The Chord Theorem - A Historic Note The main ideas about plane geometry were developed by Greek scholars during the period between 600 and 300 B.C.E. Euclid established a school of

More information

2.2. Special Angles and Postulates. Key Terms

2.2. Special Angles and Postulates. Key Terms And Now From a New Angle Special Angles and Postulates. Learning Goals Key Terms In this lesson, you will: Calculate the complement and supplement of an angle. Classify adjacent angles, linear pairs, and

More information

PROPERTIES OF MERSENNE NUMBERS AND PRIMES

PROPERTIES OF MERSENNE NUMBERS AND PRIMES PROPERTIES OF MERSEE UMBERS AD PRIMES If one looks at the sequence of numbers- = 3, 7, 31, 127, 2047, 8291, 131071, 524287 one notices that its elements are, with the exception of 2047, prime numbers defined

More information

Geometry. 6.1 Perpendicular and Angle Bisectors.

Geometry. 6.1 Perpendicular and Angle Bisectors. Geometry 6.1 Perpendicular and Angle Bisectors mbhaub@mpsaz.org 6.1 Essential Question What conjectures can you make about a point on the perpendicular bisector of a segment and a point on the bisector

More information

Ch. 3 Parallel and Perpendicular Lines

Ch. 3 Parallel and Perpendicular Lines Ch. 3 Parallel and Perpendicular Lines Section 3.1 Lines and Angles 1. I CAN identify relationships between figures in space. 2. I CAN identify angles formed by two lines and a transversal. Key Vocabulary:

More information

Geometry Ch 3 Vertical Angles, Linear Pairs, Perpendicular/Parallel Lines 29 Nov 2017

Geometry Ch 3 Vertical Angles, Linear Pairs, Perpendicular/Parallel Lines 29 Nov 2017 3.1 Number Operations and Equality Algebraic Postulates of Equality: Reflexive Property: a=a (Any number is equal to itself.) Substitution Property: If a=b, then a can be substituted for b in any expression.

More information

Latin squares and related combinatorial designs. Leonard Soicher Queen Mary, University of London July 2013

Latin squares and related combinatorial designs. Leonard Soicher Queen Mary, University of London July 2013 Latin squares and related combinatorial designs Leonard Soicher Queen Mary, University of London July 2013 Many of you are familiar with Sudoku puzzles. Here is Sudoku #043 (Medium) from Livewire Puzzles

More information

Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180.

Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180. Axiom A-1: To every angle there corresponds a unique, real number, 0 < < 180. We denote the measure of ABC by m ABC. (Temporary Definition): A point D lies in the interior of ABC iff there exists a segment

More information

Geometry. Unit 3 Parallel and Perpendicular Lines. Name:

Geometry. Unit 3 Parallel and Perpendicular Lines. Name: Geometry Unit 3 Parallel and Perpendicular Lines Name: 1 Geometry Chapter 3 Parallel and Perpendicular Lines ***In order to get full credit for your assignments they must me done on time and you must SHOW

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

Angles with Parallel Lines Topic Index Geometry Index Regents Exam Prep Center

Angles with Parallel Lines Topic Index Geometry Index Regents Exam Prep Center Angles with Parallel Lines Topic Index Geometry Index Regents Exam Prep Center A transversal is a line that intersects two or more lines (in the same plane). When lines intersect, angles are formed in

More information

On Kaleidoscope Designs

On Kaleidoscope Designs On Kaleidoscope Designs Francesca Merola Roma Tre University Joint work with Marco Buratti notation (v, k, λ)-design: V = v set of points, B set of blocks, B ( V k ), B = b, such that any two points belong

More information

Math 475, Problem Set #3: Solutions

Math 475, Problem Set #3: Solutions Math 475, Problem Set #3: Solutions A. Section 3.6, problem 1. Also: How many of the four-digit numbers being considered satisfy (a) but not (b)? How many satisfy (b) but not (a)? How many satisfy neither

More information

Section continued: Counting poker hands

Section continued: Counting poker hands 1 Section 3.1.5 continued: Counting poker hands 2 Example A poker hand consists of 5 cards drawn from a 52-card deck. 2 Example A poker hand consists of 5 cards drawn from a 52-card deck. a) How many different

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM

THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM THE ASSOCIATION OF MATHEMATICS TEACHERS OF NEW JERSEY 2018 ANNUAL WINTER CONFERENCE FOSTERING GROWTH MINDSETS IN EVERY MATH CLASSROOM CREATING PRODUCTIVE LEARNING ENVIRONMENTS WEDNESDAY, FEBRUARY 7, 2018

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set

Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, 2012 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) Gazihan Alankuş (Based on original slides by Brahim Hnich

More information

Parallel Postulate. Perpendicular Postulate PARALLEL AND SKEW LINES WITH PARALLEL PLANES. Lines m and n are. Lines m and k are. Planes T and U are.

Parallel Postulate. Perpendicular Postulate PARALLEL AND SKEW LINES WITH PARALLEL PLANES. Lines m and n are. Lines m and k are. Planes T and U are. Unit 6: Parallel and Perpendicular Lines Lesson 6.1: Identify Pairs of Lines and Angles Lesson 3.1 from textbook Objectives Identify relationships between lines such as parallel and skew. Understand and

More information

(1) Page 482 #1 20. (2) Page 488 #1 14. (3) Page # (4) Page 495 #1 10. (5) Page #12 30,

(1) Page 482 #1 20. (2) Page 488 #1 14. (3) Page # (4) Page 495 #1 10. (5) Page #12 30, Geometry/Trigonometry Unit 8: Circles Notes Name: Date: Period: # (1) Page 482 #1 20 (2) Page 488 #1 14 (3) Page 488 489 #15 26 (4) Page 495 #1 10 (5) Page 495 496 #12 30, 37 39 (6) Page 502 #1 7 (7) Page

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework Student Edition Analytic Geometry Unit 1

Georgia Department of Education Common Core Georgia Performance Standards Framework Student Edition Analytic Geometry Unit 1 Analytic Geometry Unit 1 Lunch Lines Mathematical goals Prove vertical angles are congruent. Understand when a transversal is drawn through parallel lines, special angles relationships occur. Prove when

More information

Find the coordinates of the midpoint of a segment having the given endpoints.

Find the coordinates of the midpoint of a segment having the given endpoints. G.(2) Coordinate and transformational geometry. The student uses the process skills to understand the connections between algebra and geometry and uses the one- and two-dimensional coordinate systems to

More information

Equivalence classes of length-changing replacements of size-3 patterns

Equivalence classes of length-changing replacements of size-3 patterns Equivalence classes of length-changing replacements of size-3 patterns Vahid Fazel-Rezai Mentor: Tanya Khovanova 2013 MIT-PRIMES Conference May 18, 2013 Vahid Fazel-Rezai Length-Changing Pattern Replacements

More information

Outline Introduction Big Problems that Brun s Sieve Attacks Conclusions. Brun s Sieve. Joe Fields. November 8, 2007

Outline Introduction Big Problems that Brun s Sieve Attacks Conclusions. Brun s Sieve. Joe Fields. November 8, 2007 Big Problems that Attacks November 8, 2007 Big Problems that Attacks The Sieve of Eratosthenes The Chinese Remainder Theorem picture Big Problems that Attacks Big Problems that Attacks Eratosthene s Sieve

More information

Towards generalizing thrackles to arbitrary graphs

Towards generalizing thrackles to arbitrary graphs Towards generalizing thrackles to arbitrary graphs Jin-Woo Bryan Oh PRIMES-USA; Mentor: Rik Sengupta May 18, 2013 Thrackles and known results Thrackles and known results What is a thrackle? Thrackles and

More information

Enumeration of simple permutations in Av(52341,53241,52431,35142

Enumeration of simple permutations in Av(52341,53241,52431,35142 Enumeration of simple permutations in Av(52341, 53241, 52431, 35142, 42513, 351624) University of Idaho Permutation Patterns 2014 July 10, 2014 Relation to Algebraic Geometry Enumeration of Each Class

More information

UNIT PLAN. Grade Level: Unit #: 7 Unit Name: Circles

UNIT PLAN. Grade Level: Unit #: 7 Unit Name: Circles UNIT PLAN Subject: Geometry Grade Level: 10-12 Unit #: 7 Unit Name: Circles Big Idea/Theme: The understanding of properties of circles, the lines that intersect them, and the use of their special segments

More information

Discrete Structures Lecture Permutations and Combinations

Discrete Structures Lecture Permutations and Combinations Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

More information

Foundations of Projective Geometry

Foundations of Projective Geometry C H T E 15 Foundations of rojective Geometry What a delightful thing this perspective is! aolo Uccello (1379-1475) Italian ainter and Mathematician 15.1 XIMS F JECTIVE GEMETY In section 9.3 of Chapter

More information

Finite Math Section 6_4 Solutions and Hints

Finite Math Section 6_4 Solutions and Hints Finite Math Section 6_4 Solutions and Hints by Brent M. Dingle for the book: Finite Mathematics, 7 th Edition by S. T. Tan. DO NOT PRINT THIS OUT AND TURN IT IN!!!!!!!! This is designed to assist you in

More information

Pythagorean Theorem Unit

Pythagorean Theorem Unit Pythagorean Theorem Unit TEKS covered: ~ Square roots and modeling square roots, 8.1(C); 7.1(C) ~ Real number system, 8.1(A), 8.1(C); 7.1(A) ~ Pythagorean Theorem and Pythagorean Theorem Applications,

More information

LATIN SQUARES. New Developments in the Theory and Applications

LATIN SQUARES. New Developments in the Theory and Applications LATIN SQUARES New Developments in the Theory and Applications J. DENES Industrial and Scientific Consultant Formerly Head of Mathematics Institute for Research and Co-ordination of Computing Techniques

More information

Multiples and Divisibility

Multiples and Divisibility Multiples and Divisibility A multiple of a number is a product of that number and an integer. Divisibility: A number b is said to be divisible by another number a if b is a multiple of a. 45 is divisible

More information

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

copyright amberpasillas2010 What is Divisibility? Divisibility means that after dividing, there will be No remainder.

copyright amberpasillas2010 What is Divisibility? Divisibility means that after dividing, there will be No remainder. What is Divisibility? Divisibility means that after dividing, there will be No remainder. 1 356,821 Can you tell by just looking at this number if it is divisible by 2? by 5? by 10? by 3? by 9? By 6? The

More information

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 7 No. 1 (2018), pp. 37-50. c 2018 University of Isfahan www.combinatorics.ir www.ui.ac.ir PD-SETS FOR CODES RELATED

More information

Wilson s Theorem and Fermat s Theorem

Wilson s Theorem and Fermat s Theorem Wilson s Theorem and Fermat s Theorem 7-27-2006 Wilson s theorem says that p is prime if and only if (p 1)! = 1 (mod p). Fermat s theorem says that if p is prime and p a, then a p 1 = 1 (mod p). Wilson

More information

Suppose that two squares are cut from opposite corners of a chessboard. Can the remaining squares be completely covered by 31 dominoes?

Suppose that two squares are cut from opposite corners of a chessboard. Can the remaining squares be completely covered by 31 dominoes? Chapter 2 Parent Guide Reasoning in Geometry Reasoning is a thinking process that progresses logically from one idea to another. Logical reasoning advances toward a conclusion in such a way as to be understood

More information

UNIT PLAN. Big Idea/Theme: Understanding transformations of coordinate geometry and vectors allows students to study movement in the outside world.

UNIT PLAN. Big Idea/Theme: Understanding transformations of coordinate geometry and vectors allows students to study movement in the outside world. UNIT PLAN Subject: Geometry Grade Level: 10-12 Unit #: 10 Unit Name: Expansions of Coordinate Geometry Big Idea/Theme: Understanding transformations of coordinate geometry and vectors allows students to

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

Geometry Midterm Review Spring 2011 Name Date Period. 2. Name three points that are collinear Name a pair of opposite rays. 3.

Geometry Midterm Review Spring 2011 Name Date Period. 2. Name three points that are collinear Name a pair of opposite rays. 3. Name Date Period Unit 1 1. Give two other names for AB. 1. 2. Name three points that are collinear. 2. 3. Name a pair of opposite rays. 3. 4. Give another name for CD. 4. Point J is between H and K on

More information

An Introduction to Discrete Mathematics in the Classroom: Latin Squares. Students Guide

An Introduction to Discrete Mathematics in the Classroom: Latin Squares. Students Guide LatinSquares Benson/King/Mudrock An Introduction to Discrete Mathematics in the Classroom: Latin Squares Students Guide Carol T. Benson, Illinois State University Kyle P. King, University of Illinois Jeffrey

More information

Fundamental. If one event can occur m ways and another event can occur n ways, then the number of ways both events can occur is:.

Fundamental. If one event can occur m ways and another event can occur n ways, then the number of ways both events can occur is:. 12.1 The Fundamental Counting Principle and Permutations Objectives 1. Use the fundamental counting principle to count the number of ways an event can happen. 2. Use the permutations to count the number

More information

9-1: Circle Basics GEOMETRY UNIT 9. And. 9-2: Tangent Properties

9-1: Circle Basics GEOMETRY UNIT 9. And. 9-2: Tangent Properties 9-1: Circle Basics GEOMETRY UNIT 9 And 9-2: Tangent Properties CIRCLES Content Objective: Students will be able to solve for missing lengths in circles. Language Objective: Students will be able to identify

More information

Geometry - Midterm Exam Review - Chapters 1, 2

Geometry - Midterm Exam Review - Chapters 1, 2 Geometry - Midterm Exam Review - Chapters 1, 2 1. Name three points in the diagram that are not collinear. 2. Describe what the notation stands for. Illustrate with a sketch. 3. Draw four points, A, B,

More information

UNIT 14 Loci and NC: Shape, Space and Measures Transformations 3b, 3c, 3d and 3e

UNIT 14 Loci and NC: Shape, Space and Measures Transformations 3b, 3c, 3d and 3e UNIT 14 Loci and NC: Shape, Space and Measures Transformations 3b, 3c, 3d and 3e TOPICS (Text and Practice Books) St Ac Ex Sp 14.1 Drawing and Symmetry - - - 14.2 Scale Drawings - - 14.3 Constructing Triangles

More information

POKER (AN INTRODUCTION TO COUNTING)

POKER (AN INTRODUCTION TO COUNTING) POKER (AN INTRODUCTION TO COUNTING) LAMC INTERMEDIATE GROUP - 10/27/13 If you want to be a succesful poker player the first thing you need to do is learn combinatorics! Today we are going to count poker

More information

IMOK Maclaurin Paper 2014

IMOK Maclaurin Paper 2014 IMOK Maclaurin Paper 2014 1. What is the largest three-digit prime number whose digits, and are different prime numbers? We know that, and must be three of,, and. Let denote the largest of the three digits,

More information

Section V.1.Appendix. Ruler and Compass Constructions

Section V.1.Appendix. Ruler and Compass Constructions V.1.Appendix. Ruler and Compass Constructions 1 Section V.1.Appendix. Ruler and Compass Constructions Note. In this section, we explore straight edge and compass constructions. Hungerford s expression

More information

A Course in Model Theory

A Course in Model Theory A Course in Model Theory Author address: Rami Grossberg 1 DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNI- VERSITY, PITTSBURGH, PA 15213 E-mail address: rami@cmu.edu 1 This preliminary draft is

More information

A TRIBUTE TO ALEXEY AND TATIANA. by Ivan Pogildiakov

A TRIBUTE TO ALEXEY AND TATIANA. by Ivan Pogildiakov A TRIBUTE TO ALEXEY AND TATIANA by Ivan Pogildiakov Alexey, personality The lack of time, a lot of points ADVENTURER! Alexey s CV is on 9 pages! 29 years old - a full professor (a very rare fact!) Bright,

More information

(b) In the position given in the figure below, find a winning move, if any. (b) In the position given in Figure 4.2, find a winning move, if any.

(b) In the position given in the figure below, find a winning move, if any. (b) In the position given in Figure 4.2, find a winning move, if any. Math 5750-1: Game Theory Midterm Exam Mar. 6, 2015 You have a choice of any four of the five problems. (If you do all 5, each will count 1/5, meaning there is no advantage.) This is a closed-book exam,

More information

Parallel Line Converse Theorems. Key Terms

Parallel Line Converse Theorems. Key Terms A Reversed Condition Parallel Line Converse Theorems.5 Learning Goals Key Terms In this lesson, you will: Write parallel line converse conjectures. Prove parallel line converse conjectures. converse Corresponding

More information

The Fano Plane as an Octonionic Multiplication Table

The Fano Plane as an Octonionic Multiplication Table The Fano Plane as an Octonionic Multiplication Table Peter Killgore June 9, 2014 1 Introduction When considering finite geometries, an obvious question to ask is what applications such geometries have.

More information

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation.

( ) = A. 2. Write the following sets using the roster method. 3. Write the following sets using set-builder notation. 2.6. EXERISES 1. True or False? a. The empty set has no subsets. b. No set has exactly 14 distinct subsets. c. For any two finite sets and,

More information

Algebraic Analysis of Huzita s Origami

Algebraic Analysis of Huzita s Origami 1 / 19 Algebraic Analysis of Huzita s Origami Origami Operations and their Extensions Fadoua Ghourabi, Asem Kasem, Cezary Kaliszyk University of Tsukuba, Japan. Yarmouk Private University, Syria University

More information

Counting and Probability Math 2320

Counting and Probability Math 2320 Counting and Probability Math 2320 For a finite set A, the number of elements of A is denoted by A. We have two important rules for counting. 1. Union rule: Let A and B be two finite sets. Then A B = A

More information

5.3 Problem Solving With Combinations

5.3 Problem Solving With Combinations 5.3 Problem Solving With Combinations In the last section, you considered the number of ways of choosing r items from a set of n distinct items. This section will examine situations where you want to know

More information

6.1 Warm Up The diagram includes a pair of congruent triangles. Use the congruent triangles to find the value of x in the diagram.

6.1 Warm Up The diagram includes a pair of congruent triangles. Use the congruent triangles to find the value of x in the diagram. 6.1 Warm Up The diagram includes a pair of congruent triangles. Use the congruent triangles to find the value of x in the diagram. 1. 2. Write a proof. 3. Given: P is the midpoint of MN and TQ. Prove:

More information

An Aperiodic Tiling from a Dynamical System: An Exposition of An Example of Culik and Kari. S. Eigen J. Navarro V. Prasad

An Aperiodic Tiling from a Dynamical System: An Exposition of An Example of Culik and Kari. S. Eigen J. Navarro V. Prasad An Aperiodic Tiling from a Dynamical System: An Exposition of An Example of Culik and Kari S. Eigen J. Navarro V. Prasad These tiles can tile the plane But only Aperiodically Example A (Culik-Kari) Dynamical

More information

Class 8 - Sets (Lecture Notes)

Class 8 - Sets (Lecture Notes) Class 8 - Sets (Lecture Notes) What is a Set? A set is a well-defined collection of distinct objects. Example: A = {1, 2, 3, 4, 5} What is an element of a Set? The objects in a set are called its elements.

More information

Step 2: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points.

Step 2: Extend the compass from the chosen endpoint so that the width of the compass is more than half the distance between the two points. Student Name: Teacher: Date: District: Miami-Dade County Public Schools Test: 9_12 Mathematics Geometry Exam 1 Description: GEO Topic 1 Test: Tools of Geometry Form: 201 1. A student followed the given

More information

A Course in Model Theory

A Course in Model Theory A Course in Model Theory Author address: Rami Grossberg 1 DEPARTMENT OF MATHEMATICAL SCIENCES, CARNEGIE MELLON UNI- VERSITY, PITTSBURGH, PA 15213 E-mail address: rami@cmu.edu 1 This preliminary draft is

More information

Euclid s Muse MATERIALS VOCABULARY. area perimeter triangle quadrilateral rectangle line point plane. TIME: 40 minutes

Euclid s Muse MATERIALS VOCABULARY. area perimeter triangle quadrilateral rectangle line point plane. TIME: 40 minutes Euclid s Muse In this activity, participants match geometry terms to definitions and definitions to words. MATERIALS Transparency: Euclid s Muse Directions Transparency/Page: Euclid s Muse Transparency/Page:

More information

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem

INTEGRATION OVER NON-RECTANGULAR REGIONS. Contents 1. A slightly more general form of Fubini s Theorem INTEGRATION OVER NON-RECTANGULAR REGIONS Contents 1. A slightly more general form of Fubini s Theorem 1 1. A slightly more general form of Fubini s Theorem We now want to learn how to calculate double

More information

November 11, Chapter 8: Probability: The Mathematics of Chance

November 11, Chapter 8: Probability: The Mathematics of Chance Chapter 8: Probability: The Mathematics of Chance November 11, 2013 Last Time Probability Models and Rules Discrete Probability Models Equally Likely Outcomes Probability Rules Probability Rules Rule 1.

More information

Angles formed by Transversals

Angles formed by Transversals Section 3-1: Parallel Lines and Transversals SOL: None Objectives: Identify the relationships between two lines or two planes Name angles formed by a pair of lines and a transversal Vocabulary: Parallel

More information

Math Teachers' Circles. and. The Game of Set

Math Teachers' Circles. and. The Game of Set Math Teachers' Circles and The Game of Set Math Teachers' Circle of Oklahoma October 3, 2013 Judith Covington judith.covington@lsus.edu Louisiana State University Shreveport What is a Math Teacher s Circle?

More information

UNIT 10 PERIMETER AND AREA

UNIT 10 PERIMETER AND AREA UNIT 10 PERIMETER AND AREA INTRODUCTION In this Unit, we will define basic geometric shapes and use definitions to categorize geometric figures. Then we will use the ideas of measuring length and area

More information

Nu1nber Theory Park Forest Math Team. Meet #1. Self-study Packet. Problem Categories for this Meet:

Nu1nber Theory Park Forest Math Team. Meet #1. Self-study Packet. Problem Categories for this Meet: Park Forest Math Team 2017-18 Meet #1 Nu1nber Theory Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

Permutation groups, derangements and prime order elements

Permutation groups, derangements and prime order elements Permutation groups, derangements and prime order elements Tim Burness University of Southampton Isaac Newton Institute, Cambridge April 21, 2009 Overview 1. Introduction 2. Counting derangements: Jordan

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

Table of Contents. Table of Contents 1

Table of Contents. Table of Contents 1 Table of Contents 1) The Factor Game a) Investigation b) Rules c) Game Boards d) Game Table- Possible First Moves 2) Toying with Tiles a) Introduction b) Tiles 1-10 c) Tiles 11-16 d) Tiles 17-20 e) Tiles

More information

Intermediate Math Circles October 8, 2008 Number Theory I

Intermediate Math Circles October 8, 2008 Number Theory I 1 University of Waterloo Faculty of Mathematics Centre for Education in Mathematics and Computing Intermediate Math Circles October 8, 2008 Number Theory I Opening Problem I Suppose that you are given

More information

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set)

Define and Diagram Outcomes (Subsets) of the Sample Space (Universal Set) 12.3 and 12.4 Notes Geometry 1 Diagramming the Sample Space using Venn Diagrams A sample space represents all things that could occur for a given event. In set theory language this would be known as the

More information

c) What is the ratio of the length of the side of a square to the length of its diagonal? Is this ratio the same for all squares? Why or why not?

c) What is the ratio of the length of the side of a square to the length of its diagonal? Is this ratio the same for all squares? Why or why not? Tennessee Department of Education Task: Ratios, Proportions, and Similar Figures 1. a) Each of the following figures is a square. Calculate the length of each diagonal. Do not round your answer. Geometry/Core

More information

Section 6.5 Conditional Probability

Section 6.5 Conditional Probability Section 6.5 Conditional Probability Example 1: An urn contains 5 green marbles and 7 black marbles. Two marbles are drawn in succession and without replacement from the urn. a) What is the probability

More information

Numbers (8A) Young Won Lim 5/22/17

Numbers (8A) Young Won Lim 5/22/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

42 can be divided exactly by 14 and 3. can be divided exactly by and. is a product of 12 and 3. is a product of 8 and 12. and are factors of.

42 can be divided exactly by 14 and 3. can be divided exactly by and. is a product of 12 and 3. is a product of 8 and 12. and are factors of. Worksheet 2 Factors Write the missing numbers. 14 3 42 42 can be divided exactly by 14 and 3. 1. 21 5 can be divided exactly by 21 and. 2. 35 3 can be divided exactly by and. Write the missing numbers.

More information

Numbers (8A) Young Won Lim 6/21/17

Numbers (8A) Young Won Lim 6/21/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Numbers (8A) Young Won Lim 5/24/17

Numbers (8A) Young Won Lim 5/24/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Pythagoras. Euclid. Archimedes MATHEMATICS. Winter Number Land. Grade 2. Miami-Dade County Public Schools Curriculum & Instruction

Pythagoras. Euclid. Archimedes MATHEMATICS. Winter Number Land. Grade 2. Miami-Dade County Public Schools Curriculum & Instruction Pythagoras Archimedes Euclid A MATHEMATICS Winter Number Land Winter 2011-2012 Miami-Dade County Public Schools Curriculum & Instruction THE SCHOOL BOARD OF MIAMI-DADE COUNTY, FLORIDA Perla Tabares Hantman,

More information

Grade 6 Math Circles. Divisibility

Grade 6 Math Circles. Divisibility Faculty of Mathematics Waterloo, Ontario N2L 3G1 Introduction Grade 6 Math Circles November 12/13, 2013 Divisibility A factor is a whole number that divides exactly into another number without a remainder.

More information

MITOCW MITRES6_012S18_L26-06_300k

MITOCW MITRES6_012S18_L26-06_300k MITOCW MITRES6_012S18_L26-06_300k In this video, we are going to calculate interesting quantities that have to do with the short-term behavior of Markov chains as opposed to those dealing with long-term

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information