Solutions for the Practice Questions

Size: px
Start display at page:

Download "Solutions for the Practice Questions"

Transcription

1 Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions x such that x gives a remainder of 1 when divided by 48? Are there solutions x such that x gives a remainder of 1 when divided by 49? SOLUTION. Since gcd(13, 35) = 1, we know that the congruence 13x 12 (mod 35) has exact one incongruent solution modulo 35. That is, the solutions are given by x a (mod 35), where a is an integer. The integer a is any one of the solutions. We can find the solutions by solving the linear Diophantine equation 13x 35y = 12. We have a straightforward method for solving such an equation. However, one can often find some shortcuts by being observant. One might notice that 13 3 = 39 4 (mod 35) and (mod 35). Thus, a = 9 satisfies the congruence 13a 12 (mod 35) and the general solution to the congruence 13x 12 (mod 35) is therefore given by x 9 (mod 35). If one also wants x to give a remainder of 1 when divided by 48, then one wants x to satisfy the two congruences x 9 (mod 35) and x 1 (mod 48). Since gcd(35, 48) = 1, the Chinese Remainder Theorem implies that infinitely many such integers x will exist. Finally, if we want x to give a remainder of 1 when divided by 49, then we want x to satisfy the two congruences x 9 (mod 35) and x 1 (mod 49). Since gcd(35, 49) = 7 1, we cannot use the Chinese Remainder Theorem. In this particular situation, notice that x 9 (mod 35) implies that x 9 (mod 7). However, x 1 (mod 49) implies that x 1 (mod 7). The existence of an integer x satisfying both congruences would imply that 9 1 (mod 7). However, 9 1 (mod 7). We can therefore conclude that no such solutions x exist. Question 2. This question concerns the Diophantine equation x 2 35y 2 = 11. The purpose of this question is to prove that this Diophantine equation has no solutions. Suppose to the contrary that x = a and y = b is a solution to that equation, where a, b Z. 1

2 (a) Prove that gcd(a, 11) = 1 and gcd(b, 11) = 1. SOLUTION. Since 11 is a prime, we must just show that 11 a and 11 b. We are given that a 2 35b 2 = 11. It follows that a 2 35b 2 (mod 11). If 11 a, then a 0 (mod 11) and hence 35b (mod 11). It would then follow that 11 35b 2. Thus, 11 35bb. One of the versions of Euclid s Lemma then would imply that 11 b, using the fact that Thus, we have shown that 11 a = 11 b. On the other hand, if 11 b, then 35b (mod 11) and hence a 2 0 (mod 11). Thus, 11 a 2. Euclid s Lemma would then imply that 11 a. This shows that 11 b = 11 a. In summary, we have shown that 11 a 11 b. To show that 11 a and 11 b, assume to the contrary that 11 a or 11 b. As we showed above, it then follows that 11 a and 11 b. Thus, we have a = 11k and b == 11j, where k, j Z. Since a 2 35b 2 = 11, we obtain 11 = a 2 35b 2 = (11k) 2 35(11j) 2 = 11 2 (k 2 35j 2 ) = 11 2 q, where q = k 2 35j 2. Note that q Z. Hence we obtain that This is not true, and hence we have obtained a contradiction. It follows that 11 a and 11 b, as we wanted to show. (b) Show that 35b 2 a 2 (mod 11). By raising both sides of this congruence to a certain power, show that you can obtain a contradiction. SOLUTION. Since 11 a and 11 b, it follows from Fermat s Little Theorem that a 10 1 (mod 11) and b 10 1 (mod 11). As we already observed in part (a), we have 35b 2 a 2 (mod 11). Raise both sides to the 5-th power. We obtain 35 5 (b 2 ) 5 (a 2 ) 5 (mod 11). However, (b 2 ) 5 = b 10 1 (mod 11) and (a 2 ) 5 = a 10 1 (mod 11). Thus, we obtain (mod 11). Now 35 2 (mod 11). Therefore, we have (mod 11). But 2 5 = (mod 11) and hence (mod 11). We have obtained a contradiction. 2

3 Question 3. Find all solutions to the congruence x 5 1 (mod 11213). (Remark: You may use the fact that is a prime.) SOLUTION. Suppose that x = a is a solution. Then a 5 1 (mod 11213). Obviously, a 0 (mod 11213). This is so because a 0 (mod 11213) implies that a (mod 11213). But 0 1 (mod 11213). It follows that a. Since is prime, we have gcd(a, 11213) = 1. We can define ord (a). Denote this quantity by e. Since a 5 1 (mod 11213). It follows that e divides 5. Thus, e = 1 or e = 5. However, is a prime, and we therefore know that e divides = This implies that e 5 since It follows that e = 1. We have a e 1 (mod 11213). Since e = 1, it follows that a 1 (mod 11213). Conversely, if a is any integer such that a 1 (mod 11213), then we also have the congruence a 5 1 (mod 11213). We have proved that x = a is a solution to the congruence x 5 1 (mod 11213) if and only if a 1 (mod 11213). Thus, the solutions to the stated congruence are described by x 1 (mod 11213). In other words, the solutions are the integers which give a remainder of 1 when divided by Question 4. Suppose that a, b, c Z and that m is a positive integer. Assume that gcd(a, m) = 1 and gcd(b, m) = 1. Assume that c ab (mod m). Prove that gcd(c 3, m) = 1. SOLUTION. By Divisibility Proposition 14, we know that gcd(ab, m) = 1. Since c ab (mod m), Congruence Property 8 tells us that gcd(c, m) = gcd(ab, m) and hence gcd(c, m) = 1. Divisibility Proposition 14 then implies that gcd(ccc, m) = 1. Therefore, we have shown that gcd(c 3, m) = 1. Question 6. Find all primes p such that ord p ( 5) = 2. Find all primes p such that ord p ( 5) = 3. Find all primes p such that ord p (3) = 8. SOLUTION. Let p be a prime. If ord p ( 5) = 2, then ( 5) 2 1 (mod p). Thus, 25 1 (mod p). Therefore, p 24. Therefore, either p = 2 or p = 3. However, notice that ( 5) 1 1 (mod 2) and ( 5) 1 1 (mod 3). We see that ord 2 ( 5) = 1 and ord 3 ( 5) = 1. We conclude that no primes p exist with the property ord p ( 5) = 2. 3

4 If ord p ( 5) = 3, then ( 5) 3 1 (mod p). Thus (mod p). It follows that p divides 126 = Thus, p = 2 or p = 3 or p = 7. However, ord 2 ( 5) = 1 and ord 3 ( 5) = 1, and hence the primes 2 and 3 don t have the stated property. Now for p = 7 divides -126 and so we do have ( 5) 3 1 (mod 7). But ( 5) 1 1 (mod 7). This suffices to show that ord 7 ( 5) = 3. The prime p = 7 is the only prime with the stated property. Finally, consider the property ord p (3) = 8. This implies that (mod p), but (mod p). Conversely, if (mod p), but (mod p)., the it follows that ord p (3) divides 8, but does not divide 4. This means that ord p (3) = 8. We have shown that ord p (3) = (mod p), but (mod p). Thus, we must find the primes p which divide 3 8 1, but do not divide Now = (3 4 1)( ) = The primes p which divide are 2, 5, and 41. The first two primes divide The prime 41 does not divide Thus, p = 41 is the only prime with the stated property. Question 7. This question concerns the integer n = Prove that if p is a prime which divides n, then p 1 (mod 16). The smallest prime p satisfying p 1 (mod 16) is p = 17. Prove that 17 n. SOLUTION. Note that n = Suppose that p is a prime and that p n. This means that (mod p). Observe that p 10. To see this, note that if p 10, then (mod p). Since p n, we have (mod p) and therefore we would have 1 0 (mod p). That is clearly impossible. Thus, p 10 and therefore, since p is a prime, it follows that gcd(10, p) = 1. We can then define e = ord p (10). We will determine e exactly. Since p 10, we have p 2. Therefore, 1 1 (mod p). Thus, (mod p). This shows that (mod p). Therefore, e 8. We are using Congruence Theorem 5, part (a). Furthermore, the fact that (mod p) implies that (10 8 ) 2 ( 1) 2 (mod p). Therefore, we have (mod p). 4

5 Using Congruence Theorem 5(a) again, it follows that e 16. The positive divisors of 16 are 1, 2, 4, 8, and 16. Except for 16, all of those divisors of 16 actually divide 8. Since e 16, but e 8, it follows that e = 16. Finally, we use Congruence Theorem 8. That theorem asserts that e divides p 1. Therefore, 16 divides p 1. We have proved that which is what we wanted to prove. p 1 (mod 16) Now we will verify that 17 divides n. We have 10 2 = (mod 17), (mod 17), (mod 17) and therefore 17 indeed divides = n. Question 8. Find the remainder when is divided by 99. We use Casting Out Nines, to conclude that (mod 9). We have also proved a result concerning congruences modulo 11 which gives (mod 11). Let n = Then n 8 (mod 9) and n 4 (mod 11). Let e 1 = 11 5 = 55 and let e 2 = 9 5 = 45. Then e 1 1 (mod 9), e 1 0 (mod 11), e 2 0 (mod 9), e 2 1 (mod 11). Let a = 8e 1 +4e 2 = Then we have shown in class that the two congruences n 8 (mod 9) and n 4 (mod 11) are equivalent to the single congruence n a (mod 9 11). Thus, n (mod 99) Now and (mod 99) ( 9) (mod 99) 5

6 and hence n (mod 99). It follows that the remainder when n is divided by 99 is equal to 26. Question 9. Find the remainder when is divided by 7. SOLUTION. By Fermat s Little Theorem, we have (mod 7), (mod 7), (mod 7). Thus 2 19 = (2 6 ) (mod 7), (mod 7) and = (3 6 ) (mod 7). Furthermore, 13 1 (mod 7) and 29 1 (mod 7). Hence ( 1) 11 1 (mod 7) and (mod 7). Putting all of these facts together, we obtain ( 1) (mod 7) and therefore the given integer gives a remainder of 5 when divided by 7. 6

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

SOLUTIONS TO PROBLEM SET 5. Section 9.1

SOLUTIONS TO PROBLEM SET 5. Section 9.1 SOLUTIONS TO PROBLEM SET 5 Section 9.1 Exercise 2. Recall that for (a, m) = 1 we have ord m a divides φ(m). a) We have φ(11) = 10 thus ord 11 3 {1, 2, 5, 10}. We check 3 1 3 (mod 11), 3 2 9 (mod 11), 3

More information

Number Theory/Cryptography (part 1 of CSC 282)

Number Theory/Cryptography (part 1 of CSC 282) Number Theory/Cryptography (part 1 of CSC 282) http://www.cs.rochester.edu/~stefanko/teaching/11cs282 1 Schedule The homework is due Sep 8 Graded homework will be available at noon Sep 9, noon. EXAM #1

More information

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively.

b) Find all positive integers smaller than 200 which leave remainder 1, 3, 4 upon division by 3, 5, 7 respectively. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). Solution: a) Fermat s Little

More information

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory

Number Theory - Divisibility Number Theory - Congruences. Number Theory. June 23, Number Theory - Divisibility - Congruences June 23, 2014 Primes - Divisibility - Congruences Definition A positive integer p is prime if p 2 and its only positive factors are itself and 1. Otherwise, if p 2, then p

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Carmen s Core Concepts (Math 135)

Carmen s Core Concepts (Math 135) Carmen s Core Concepts (Math 135) Carmen Bruni University of Waterloo Week 7 1 Congruence Definition 2 Congruence is an Equivalence Relation (CER) 3 Properties of Congruence (PC) 4 Example 5 Congruences

More information

Math 255 Spring 2017 Solving x 2 a (mod n)

Math 255 Spring 2017 Solving x 2 a (mod n) Math 255 Spring 2017 Solving x 2 a (mod n) Contents 1 Lifting 1 2 Solving x 2 a (mod p k ) for p odd 3 3 Solving x 2 a (mod 2 k ) 5 4 Solving x 2 a (mod n) for general n 9 1 Lifting Definition 1.1. Let

More information

Assignment 2. Due: Monday Oct. 15, :59pm

Assignment 2. Due: Monday Oct. 15, :59pm Introduction To Discrete Math Due: Monday Oct. 15, 2012. 11:59pm Assignment 2 Instructor: Mohamed Omar Math 6a For all problems on assignments, you are allowed to use the textbook, class notes, and other

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #2: practice MATH 311 Intro to Number Theory midterm: Thursday, Oct 20 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

Exam 1 7 = = 49 2 ( ) = = 7 ( ) =

Exam 1 7 = = 49 2 ( ) = = 7 ( ) = Exam 1 Problem 1. a) Define gcd(a, b). Using Euclid s algorithm comute gcd(889, 168). Then find x, y Z such that gcd(889, 168) = x 889 + y 168 (check your answer!). b) Let a be an integer. Prove that gcd(3a

More information

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation.

The congruence relation has many similarities to equality. The following theorem says that congruence, like equality, is an equivalence relation. Congruences A congruence is a statement about divisibility. It is a notation that simplifies reasoning about divisibility. It suggests proofs by its analogy to equations. Congruences are familiar to us

More information

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method

6. Find an inverse of a modulo m for each of these pairs of relatively prime integers using the method Exercises Exercises 1. Show that 15 is an inverse of 7 modulo 26. 2. Show that 937 is an inverse of 13 modulo 2436. 3. By inspection (as discussed prior to Example 1), find an inverse of 4 modulo 9. 4.

More information

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02

Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Collection of rules, techniques and theorems for solving polynomial congruences 11 April 2012 at 22:02 Public Polynomial congruences come up constantly, even when one is dealing with much deeper problems

More information

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers.

Solutions to Exam 1. Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively prime positive integers. Solutions to Exam 1 Problem 1. a) State Fermat s Little Theorem and Euler s Theorem. b) Let m, n be relatively rime ositive integers. Prove that m φ(n) + n φ(m) 1 (mod mn). c) Find the remainder of 1 008

More information

Discrete Math Class 4 ( )

Discrete Math Class 4 ( ) Discrete Math 37110 - Class 4 (2016-10-06) 41 Division vs congruences Instructor: László Babai Notes taken by Jacob Burroughs Revised by instructor DO 41 If m ab and gcd(a, m) = 1, then m b DO 42 If gcd(a,

More information

The Chinese Remainder Theorem

The Chinese Remainder Theorem The Chinese Remainder Theorem 8-3-2014 The Chinese Remainder Theorem gives solutions to systems of congruences with relatively prime moduli The solution to a system of congruences with relatively prime

More information

Primitive Roots. Chapter Orders and Primitive Roots

Primitive Roots. Chapter Orders and Primitive Roots Chapter 5 Primitive Roots The name primitive root applies to a number a whose powers can be used to represent a reduced residue system modulo n. Primitive roots are therefore generators in that sense,

More information

NUMBER THEORY AMIN WITNO

NUMBER THEORY AMIN WITNO NUMBER THEORY AMIN WITNO.. w w w. w i t n o. c o m Number Theory Outlines and Problem Sets Amin Witno Preface These notes are mere outlines for the course Math 313 given at Philadelphia

More information

ALGEBRA: Chapter I: QUESTION BANK

ALGEBRA: Chapter I: QUESTION BANK 1 ALGEBRA: Chapter I: QUESTION BANK Elements of Number Theory Congruence One mark questions: 1 Define divisibility 2 If a b then prove that a kb k Z 3 If a b b c then PT a/c 4 If a b are two non zero integers

More information

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number.

PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. PT. Primarity Tests Given an natural number n, we want to determine if n is a prime number. (PT.1) If a number m of the form m = 2 n 1, where n N, is a Mersenne number. If a Mersenne number m is also a

More information

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand.

Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating by hand. Midterm #: practice MATH Intro to Number Theory midterm: Thursday, Nov 7 Please print your name: Calculators will not be permitted on the exam. The numbers on the exam will be suitable for calculating

More information

Numbers (8A) Young Won Lim 5/22/17

Numbers (8A) Young Won Lim 5/22/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Numbers (8A) Young Won Lim 6/21/17

Numbers (8A) Young Won Lim 6/21/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Numbers (8A) Young Won Lim 5/24/17

Numbers (8A) Young Won Lim 5/24/17 Numbers (8A Copyright (c 2017 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Fermat s little theorem. RSA.

Fermat s little theorem. RSA. .. Computing large numbers modulo n (a) In modulo arithmetic, you can always reduce a large number to its remainder a a rem n (mod n). (b) Addition, subtraction, and multiplication preserve congruence:

More information

x 8 (mod 15) x 8 3 (mod 5) eli 2 2y 6 (mod 10) y 3 (mod 5) 6x 9 (mod 11) y 3 (mod 11) So y = 3z + 3u + 3w (mod 990) z = (990/9) (990/9) 1

x 8 (mod 15) x 8 3 (mod 5) eli 2 2y 6 (mod 10) y 3 (mod 5) 6x 9 (mod 11) y 3 (mod 11) So y = 3z + 3u + 3w (mod 990) z = (990/9) (990/9) 1 Exercise help set 6/2011 Number Theory 1. x 2 0 (mod 2) x 2 (mod 6) x 2 (mod 3) a) x 5 (mod 7) x 5 (mod 7) x 8 (mod 15) x 8 3 (mod 5) (x 8 2 (mod 3)) So x 0y + 2z + 5w + 8u (mod 210). y is not needed.

More information

Congruence. Solving linear congruences. A linear congruence is an expression in the form. ax b (modm)

Congruence. Solving linear congruences. A linear congruence is an expression in the form. ax b (modm) Congruence Solving linear congruences A linear congruence is an expression in the form ax b (modm) a, b integers, m a positive integer, x an integer variable. x is a solution if it makes the congruence

More information

University of British Columbia. Math 312, Midterm, 6th of June 2017

University of British Columbia. Math 312, Midterm, 6th of June 2017 University of British Columbia Math 312, Midterm, 6th of June 2017 Name (please be legible) Signature Student number Duration: 90 minutes INSTRUCTIONS This test has 7 problems for a total of 100 points.

More information

1.6 Congruence Modulo m

1.6 Congruence Modulo m 1.6 Congruence Modulo m 47 5. Let a, b 2 N and p be a prime. Prove for all natural numbers n 1, if p n (ab) and p - a, then p n b. 6. In the proof of Theorem 1.5.6 it was stated that if n is a prime number

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

A REMARK ON A PAPER OF LUCA AND WALSH 1. Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China. Min Tang 2.

A REMARK ON A PAPER OF LUCA AND WALSH 1. Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China. Min Tang 2. #A40 INTEGERS 11 (2011) A REMARK ON A PAPER OF LUCA AND WALSH 1 Zhao-Jun Li Department of Mathematics, Anhui Normal University, Wuhu, China Min Tang 2 Department of Mathematics, Anhui Normal University,

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 24 February 2012 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the

More information

Solutions for the Practice Final

Solutions for the Practice Final Solutions for the Practice Final 1. Ian and Nai play the game of todo, where at each stage one of them flips a coin and then rolls a die. The person who played gets as many points as the number rolled

More information

Introduction to Modular Arithmetic

Introduction to Modular Arithmetic 1 Integers modulo n 1.1 Preliminaries Introduction to Modular Arithmetic Definition 1.1.1 (Equivalence relation). Let R be a relation on the set A. Recall that a relation R is a subset of the cartesian

More information

Foundations of Cryptography

Foundations of Cryptography Foundations of Cryptography Ville Junnila viljun@utu.fi Department of Mathematics and Statistics University of Turku 2015 Ville Junnila viljun@utu.fi Lecture 10 1 of 17 The order of a number (mod n) Definition

More information

Modular Arithmetic. Kieran Cooney - February 18, 2016

Modular Arithmetic. Kieran Cooney - February 18, 2016 Modular Arithmetic Kieran Cooney - kieran.cooney@hotmail.com February 18, 2016 Sums and products in modular arithmetic Almost all of elementary number theory follows from one very basic theorem: Theorem.

More information

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties.

LECTURE 3: CONGRUENCES. 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. LECTURE 3: CONGRUENCES 1. Basic properties of congruences We begin by introducing some definitions and elementary properties. Definition 1.1. Suppose that a, b Z and m N. We say that a is congruent to

More information

Practice Midterm 2 Solutions

Practice Midterm 2 Solutions Practice Midterm 2 Solutions May 30, 2013 (1) We want to show that for any odd integer a coprime to 7, a 3 is congruent to 1 or 1 mod 7. In fact, we don t need the assumption that a is odd. By Fermat s

More information

Wilson s Theorem and Fermat s Theorem

Wilson s Theorem and Fermat s Theorem Wilson s Theorem and Fermat s Theorem 7-27-2006 Wilson s theorem says that p is prime if and only if (p 1)! = 1 (mod p). Fermat s theorem says that if p is prime and p a, then a p 1 = 1 (mod p). Wilson

More information

Math 412: Number Theory Lecture 6: congruence system and

Math 412: Number Theory Lecture 6: congruence system and Math 412: Number Theory Lecture 6: congruence system and classes Gexin Yu gyu@wm.edu College of William and Mary Chinese Remainder Theorem Chinese Remainder Theorem: let m 1, m 2,..., m k be pairwise coprimes.

More information

Solutions for the 2nd Practice Midterm

Solutions for the 2nd Practice Midterm Solutions for the 2nd Practice Midterm 1. (a) Use the Euclidean Algorithm to find the greatest common divisor of 44 and 17. The Euclidean Algorithm yields: 44 = 2 17 + 10 17 = 1 10 + 7 10 = 1 7 + 3 7 =

More information

Modular Arithmetic. claserken. July 2016

Modular Arithmetic. claserken. July 2016 Modular Arithmetic claserken July 2016 Contents 1 Introduction 2 2 Modular Arithmetic 2 2.1 Modular Arithmetic Terminology.................. 2 2.2 Properties of Modular Arithmetic.................. 2 2.3

More information

An elementary study of Goldbach Conjecture

An elementary study of Goldbach Conjecture An elementary study of Goldbach Conjecture Denise Chemla 26/5/2012 Goldbach Conjecture (7 th, june 1742) states that every even natural integer greater than 4 is the sum of two odd prime numbers. If we

More information

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013

CMPSCI 250: Introduction to Computation. Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 CMPSCI 250: Introduction to Computation Lecture #14: The Chinese Remainder Theorem David Mix Barrington 4 October 2013 The Chinese Remainder Theorem Infinitely Many Primes Reviewing Inverses and the Inverse

More information

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g.,

An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., Binary exponentiation An interesting class of problems of a computational nature ask for the standard residue of a power of a number, e.g., What are the last two digits of the number 2 284? In the absence

More information

Data security (Cryptography) exercise book

Data security (Cryptography) exercise book University of Debrecen Faculty of Informatics Data security (Cryptography) exercise book 1 Contents 1 RSA 4 1.1 RSA in general.................................. 4 1.2 RSA background.................................

More information

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick

#A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS. Thomas A. Plick #A3 INTEGERS 17 (2017) A NEW CONSTRAINT ON PERFECT CUBOIDS Thomas A. Plick tomplick@gmail.com Received: 10/5/14, Revised: 9/17/16, Accepted: 1/23/17, Published: 2/13/17 Abstract We show that out of the

More information

MATH 13150: Freshman Seminar Unit 15

MATH 13150: Freshman Seminar Unit 15 MATH 1310: Freshman Seminar Unit 1 1. Powers in mod m arithmetic In this chapter, we ll learn an analogous result to Fermat s theorem. Fermat s theorem told us that if p is prime and p does not divide

More information

Two congruences involving 4-cores

Two congruences involving 4-cores Two congruences involving 4-cores ABSTRACT. The goal of this paper is to prove two new congruences involving 4- cores using elementary techniques; namely, if a 4 (n) denotes the number of 4-cores of n,

More information

Distribution of Primes

Distribution of Primes Distribution of Primes Definition. For positive real numbers x, let π(x) be the number of prime numbers less than or equal to x. For example, π(1) = 0, π(10) = 4 and π(100) = 25. To use some ciphers, we

More information

CHAPTER 2. Modular Arithmetic

CHAPTER 2. Modular Arithmetic CHAPTER 2 Modular Arithmetic In studying the integers we have seen that is useful to write a = qb + r. Often we can solve problems by considering only the remainder, r. This throws away some of the information,

More information

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00

Solutions to Problem Set 6 - Fall 2008 Due Tuesday, Oct. 21 at 1:00 18.781 Solutions to Problem Set 6 - Fall 008 Due Tuesday, Oct. 1 at 1:00 1. (Niven.8.7) If p 3 is prime, how many solutions are there to x p 1 1 (mod p)? How many solutions are there to x p 1 (mod p)?

More information

Constructions of Coverings of the Integers: Exploring an Erdős Problem

Constructions of Coverings of the Integers: Exploring an Erdős Problem Constructions of Coverings of the Integers: Exploring an Erdős Problem Kelly Bickel, Michael Firrisa, Juan Ortiz, and Kristen Pueschel August 20, 2008 Abstract In this paper, we study necessary conditions

More information

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017

Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 Name: Cryptography Math 1580 Silverman First Hour Exam Mon Oct 2, 2017 INSTRUCTIONS Read Carefully Time: 50 minutes There are 5 problems. Write your name legibly at the top of this page. No calculators

More information

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005

MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 MATH 324 Elementary Number Theory Solutions to Practice Problems for Final Examination Monday August 8, 2005 Deartment of Mathematical and Statistical Sciences University of Alberta Question 1. Find integers

More information

ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey

ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey ON MODULI FOR WHICH THE FIBONACCI SEQUENCE CONTAINS A COMPLETE SYSTEM OF RESIDUES S. A. BURR Belt Telephone Laboratories, Inc., Whippany, New Jersey Shah [1] and Bruckner [2] have considered the problem

More information

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI

LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI LECTURE 7: POLYNOMIAL CONGRUENCES TO PRIME POWER MODULI 1. Hensel Lemma for nonsingular solutions Although there is no analogue of Lagrange s Theorem for prime power moduli, there is an algorithm for determining

More information

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2

To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we. The first (and most delicate) case concerns 2 Quadratic Reciprocity To be able to determine the quadratic character of an arbitrary number mod p (p an odd prime), we need to be able to evaluate q for any prime q. The first (and most delicate) case

More information

Final exam. Question Points Score. Total: 150

Final exam. Question Points Score. Total: 150 MATH 11200/20 Final exam DECEMBER 9, 2016 ALAN CHANG Please present your solutions clearly and in an organized way Answer the questions in the space provided on the question sheets If you run out of room

More information

FORBIDDEN INTEGER RATIOS OF CONSECUTIVE POWER SUMS

FORBIDDEN INTEGER RATIOS OF CONSECUTIVE POWER SUMS FORBIDDEN INTEGER RATIOS OF CONSECUTIVE POWER SUMS IOULIA N. BAOULINA AND PIETER MOREE To the memory of Prof. Wolfgang Schwarz Abstract. Let S k (m) := 1 k + 2 k +... + (m 1) k denote a power sum. In 2011

More information

ON THE EQUATION a x x (mod b) Jam Germain

ON THE EQUATION a x x (mod b) Jam Germain ON THE EQUATION a (mod b) Jam Germain Abstract. Recently Jimenez and Yebra [3] constructed, for any given a and b, solutions to the title equation. Moreover they showed how these can be lifted to higher

More information

L29&30 - RSA Cryptography

L29&30 - RSA Cryptography L29&30 - RSA Cryptography CSci/Math 2112 20&22 July 2015 1 / 13 Notation We write a mod n for the integer b such that 0 b < n and a b (mod n). 2 / 13 Calculating Large Powers Modulo n Example 1 What is

More information

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m.

p 1 MAX(a,b) + MIN(a,b) = a+b n m means that m is a an integer multiple of n. Greatest Common Divisor: We say that n divides m. Great Theoretical Ideas In Computer Science Steven Rudich CS - Spring Lecture Feb, Carnegie Mellon University Modular Arithmetic and the RSA Cryptosystem p- p MAX(a,b) + MIN(a,b) = a+b n m means that m

More information

Sheet 1: Introduction to prime numbers.

Sheet 1: Introduction to prime numbers. Option A Hand in at least one question from at least three sheets Sheet 1: Introduction to prime numbers. [provisional date for handing in: class 2.] 1. Use Sieve of Eratosthenes to find all prime numbers

More information

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography

Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Discrete Mathematics & Mathematical Reasoning Multiplicative Inverses and Some Cryptography Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete

More information

MATH 135 Algebra, Solutions to Assignment 7

MATH 135 Algebra, Solutions to Assignment 7 MATH 135 Algebra, Solutions to Assignment 7 1: (a Find the smallest non-negative integer x such that x 41 (mod 9. Solution: The smallest such x is the remainder when 41 is divided by 9. We have 41 = 9

More information

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014

Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 7 Public Key Cryptography Great Ideas in Theoretical Computer Science Saarland University, Summer 2014 Cryptography studies techniques for secure communication in the presence of third parties. A typical

More information

Public Key Encryption

Public Key Encryption Math 210 Jerry L. Kazdan Public Key Encryption The essence of this procedure is that as far as we currently know, it is difficult to factor a number that is the product of two primes each having many,

More information

Goldbach Conjecture (7 th june 1742)

Goldbach Conjecture (7 th june 1742) Goldbach Conjecture (7 th june 1742) We note P the odd prime numbers set. P = {p 1 = 3, p 2 = 5, p 3 = 7, p 4 = 11,...} n 2N\{0, 2, 4}, p P, p n/2, q P, q n/2, n = p + q We call n s Goldbach decomposition

More information

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained.

Introduction. and Z r1 Z rn. This lecture aims to provide techniques. CRT during the decription process in RSA is explained. THE CHINESE REMAINDER THEOREM INTRODUCED IN A GENERAL KONTEXT Introduction The rst Chinese problem in indeterminate analysis is encountered in a book written by the Chinese mathematician Sun Tzi. The problem

More information

Zhanjiang , People s Republic of China

Zhanjiang , People s Republic of China Math. Comp. 78(2009), no. 267, 1853 1866. COVERS OF THE INTEGERS WITH ODD MODULI AND THEIR APPLICATIONS TO THE FORMS x m 2 n AND x 2 F 3n /2 Ke-Jian Wu 1 and Zhi-Wei Sun 2, 1 Department of Mathematics,

More information

Number Theory. Konkreetne Matemaatika

Number Theory. Konkreetne Matemaatika ITT9131 Number Theory Konkreetne Matemaatika Chapter Four Divisibility Primes Prime examples Factorial Factors Relative primality `MOD': the Congruence Relation Independent Residues Additional Applications

More information

Number Theory for Cryptography

Number Theory for Cryptography Number Theory for Cryptography 密碼學與應用 海洋大學資訊工程系 丁培毅 Congruence Modulo Operation: Question: What is 12 mod 9? Answer: 12 mod 9 3 or 12 3 (mod 9) 12 is congruent to 3 modulo 9 Definition: Let a, r, m (where

More information

by Michael Filaseta University of South Carolina

by Michael Filaseta University of South Carolina by Michael Filaseta University of South Carolina Background: A covering of the integers is a system of congruences x a j (mod m j, j =, 2,..., r, with a j and m j integral and with m j, such that every

More information

Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS

Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS Degree project NUMBER OF PERIODIC POINTS OF CONGRUENTIAL MONOMIAL DYNAMICAL SYSTEMS Author: MD.HASIRUL ISLAM NAZIR BASHIR Supervisor: MARCUS NILSSON Date: 2012-06-15 Subject: Mathematics and Modeling Level:

More information

arxiv: v3 [math.co] 4 Dec 2018 MICHAEL CORY

arxiv: v3 [math.co] 4 Dec 2018 MICHAEL CORY CYCLIC PERMUTATIONS AVOIDING PAIRS OF PATTERNS OF LENGTH THREE arxiv:1805.05196v3 [math.co] 4 Dec 2018 MIKLÓS BÓNA MICHAEL CORY Abstract. We enumerate cyclic permutations avoiding two patterns of length

More information

Outline Introduction Big Problems that Brun s Sieve Attacks Conclusions. Brun s Sieve. Joe Fields. November 8, 2007

Outline Introduction Big Problems that Brun s Sieve Attacks Conclusions. Brun s Sieve. Joe Fields. November 8, 2007 Big Problems that Attacks November 8, 2007 Big Problems that Attacks The Sieve of Eratosthenes The Chinese Remainder Theorem picture Big Problems that Attacks Big Problems that Attacks Eratosthene s Sieve

More information

PRIMES IN SHIFTED SUMS OF LUCAS SEQUENCES. Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania

PRIMES IN SHIFTED SUMS OF LUCAS SEQUENCES. Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania #A52 INTEGERS 17 (2017) PRIMES IN SHIFTED SUMS OF LUCAS SEQUENCES Lenny Jones Department of Mathematics, Shippensburg University, Shippensburg, Pennsylvania lkjone@ship.edu Lawrence Somer Department of

More information

Multiples and Divisibility

Multiples and Divisibility Multiples and Divisibility A multiple of a number is a product of that number and an integer. Divisibility: A number b is said to be divisible by another number a if b is a multiple of a. 45 is divisible

More information

Modular Arithmetic: refresher.

Modular Arithmetic: refresher. Lecture 7. Outline. 1. Modular Arithmetic. Clock Math!!! 2. Inverses for Modular Arithmetic: Greatest Common Divisor. Division!!! 3. Euclid s GCD Algorithm. A little tricky here! Clock Math If it is 1:00

More information

The covering congruences of Paul Erdős. Carl Pomerance Dartmouth College

The covering congruences of Paul Erdős. Carl Pomerance Dartmouth College The covering congruences of Paul Erdős Carl Pomerance Dartmouth College Conjecture (Erdős, 1950): For each number B, one can cover Z with finitely many congruences to distinct moduli all > B. Erdős (1995):

More information

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence.

Linear Congruences. The solutions to a linear congruence ax b (mod m) are all integers x that satisfy the congruence. Section 4.4 Linear Congruences Definition: A congruence of the form ax b (mod m), where m is a positive integer, a and b are integers, and x is a variable, is called a linear congruence. The solutions

More information

MAT Modular arithmetic and number theory. Modular arithmetic

MAT Modular arithmetic and number theory. Modular arithmetic Modular arithmetic 1 Modular arithmetic may seem like a new and strange concept at first The aim of these notes is to describe it in several different ways, in the hope that you will find at least one

More information

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography

Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Mathematics Explorers Club Fall 2012 Number Theory and Cryptography Chapter 0: Introduction Number Theory enjoys a very long history in short, number theory is a study of integers. Mathematicians over

More information

ON SPLITTING UP PILES OF STONES

ON SPLITTING UP PILES OF STONES ON SPLITTING UP PILES OF STONES GREGORY IGUSA Abstract. In this paper, I describe the rules of a game, and give a complete description of when the game can be won, and when it cannot be won. The first

More information

SMT 2013 Advanced Topics Test Solutions February 2, 2013

SMT 2013 Advanced Topics Test Solutions February 2, 2013 1. How many positive three-digit integers a c can represent a valid date in 2013, where either a corresponds to a month and c corresponds to the day in that month, or a corresponds to a month and c corresponds

More information

Variations on a Theme of Sierpiński

Variations on a Theme of Sierpiński 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 10 (2007), Article 07.4.4 Variations on a Theme of Sierpiński Lenny Jones Department of Mathematics Shippensburg University Shippensburg, Pennsylvania

More information

MA/CSSE 473 Day 9. The algorithm (modified) N 1

MA/CSSE 473 Day 9. The algorithm (modified) N 1 MA/CSSE 473 Day 9 Primality Testing Encryption Intro The algorithm (modified) To test N for primality Pick positive integers a 1, a 2,, a k < N at random For each a i, check for a N 1 i 1 (mod N) Use the

More information

Cryptography, Number Theory, and RSA

Cryptography, Number Theory, and RSA Cryptography, Number Theory, and RSA Joan Boyar, IMADA, University of Southern Denmark November 2015 Outline Symmetric key cryptography Public key cryptography Introduction to number theory RSA Modular

More information

Math 124 Homework 5 Solutions

Math 124 Homework 5 Solutions Math 12 Homework 5 Solutions by Luke Gustafson Fall 2003 1. 163 1 2 (mod 2 gives = 2 the smallest rime. 2a. First, consider = 2. We know 2 is not a uadratic residue if and only if 3, 5 (mod 8. By Dirichlet

More information

Divisibility. Igor Zelenko. SEE Math, August 13-14, 2012

Divisibility. Igor Zelenko. SEE Math, August 13-14, 2012 Divisibility Igor Zelenko SEE Math, August 13-14, 2012 Before getting started Below is the list of problems and games I prepared for our activity. We will certainly solve/discuss/play only part of them

More information

Application: Public Key Cryptography. Public Key Cryptography

Application: Public Key Cryptography. Public Key Cryptography Application: Public Key Cryptography Suppose I wanted people to send me secret messages by snail mail Method 0. I send a padlock, that only I have the key to, to everyone who might want to send me a message.

More information

Modular arithmetic Math 2320

Modular arithmetic Math 2320 Modular arithmetic Math 220 Fix an integer m 2, called the modulus. For any other integer a, we can use the division algorithm to write a = qm + r. The reduction of a modulo m is the remainder r resulting

More information

Math 319 Problem Set #7 Solution 18 April 2002

Math 319 Problem Set #7 Solution 18 April 2002 Math 319 Problem Set #7 Solution 18 April 2002 1. ( 2.4, problem 9) Show that if x 2 1 (mod m) and x / ±1 (mod m) then 1 < (x 1, m) < m and 1 < (x + 1, m) < m. Proof: From x 2 1 (mod m) we get m (x 2 1).

More information

The Strong Finiteness of Double Mersenne Primes and the Infinity of Root Mersenne Primes and Near-square Primes of Mersenne Primes

The Strong Finiteness of Double Mersenne Primes and the Infinity of Root Mersenne Primes and Near-square Primes of Mersenne Primes The Strong Finiteness of Double Mersenne Primes and the Infinity of Root Mersenne Primes and Near-square Primes of Mersenne Primes Pingyuan Zhou E-mail:zhoupingyuan49@hotmail.com Abstract In this paper

More information

LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS

LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS LUCAS-SIERPIŃSKI AND LUCAS-RIESEL NUMBERS DANIEL BACZKOWSKI, OLAOLU FASORANTI, AND CARRIE E. FINCH Abstract. In this paper, we show that there are infinitely many Sierpiński numbers in the sequence of

More information

SYMMETRIES OF FIBONACCI POINTS, MOD m

SYMMETRIES OF FIBONACCI POINTS, MOD m PATRICK FLANAGAN, MARC S. RENAULT, AND JOSH UPDIKE Abstract. Given a modulus m, we examine the set of all points (F i,f i+) Z m where F is the usual Fibonacci sequence. We graph the set in the fundamental

More information

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers);

Cryptography. 2. decoding is extremely difficult (for protection against eavesdroppers); 18.310 lecture notes September 2, 2013 Cryptography Lecturer: Michel Goemans 1 Public Key Cryptosystems In these notes, we will be concerned with constructing secret codes. A sender would like to encrypt

More information

Discrete Square Root. Çetin Kaya Koç Winter / 11

Discrete Square Root. Çetin Kaya Koç  Winter / 11 Discrete Square Root Çetin Kaya Koç koc@cs.ucsb.edu Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2017 1 / 11 Discrete Square Root Problem The discrete square root problem is defined as the computation

More information