Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set

Size: px
Start display at page:

Download "Sets. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, Outline Sets Equality Subset Empty Set Cardinality Power Set"

Transcription

1 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 6, 2012 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

2 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

3 What is a Set? A set is an unordered set of collection The objects in a set are called elements or members of the set a A : a is an element of A, a belongs to A a / A : a is not an element of A, a does not belong to A One way to describe a set is to list all its elements {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} the set of digits {a, b, c, d,..., x, y, z} the set of Latin letters, alphabet A set can be an element of another set {{a,..., x, y, z}, {α, β, γ,...},...} the set of alphabets Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

4 Set Builder Large sets can be described using set builder Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

5 Set Builder Large sets can be described using set builder {x p(x)} the set of all x such that p(x) Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

6 Set Builder Large sets can be described using set builder {x p(x)} the set of all x such that p(x) {x there is y such that x = 2y} the set of all even numbers Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

7 Set Builder Large sets can be described using set builder {x p(x)} the set of all x such that p(x) {x there is y such that x = 2y} the set of all even numbers {x y (x = 2y)} the set of all even numbers Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

8 Set Builder Large sets can be described using set builder {x p(x)} the set of all x such that p(x) {x there is y such that x = 2y} the set of all even numbers {x y (x = 2y)} the set of all even numbers {x x is a black cow} the set of all black cows Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

9 Some Useful N = {0, 1, 2, 3,...} : the set of natural numbers Z = {..., 3, 2, 1, 0, 1, 2, 3,...} : the set of integers Q = { p q p, q are integers and q 0} : the set of rational numbers Z + : the set of positive integers Q + : the set of positive rationals R : the set of real numbers Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

10 Russel s Paradox We should use the set builder construction very carefully Our understanding of sets is very broad. For example, a set can be its own element Let U be the set of all sets that do not contain itself as an element: U = {x x / x} Does U contain itself? Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

11 Russel s Paradox We should use the set builder construction very carefully Our understanding of sets is very broad. For example, a set can be its own element Let U be the set of all sets that do not contain itself as an element: U = {x x / x} Does U contain itself? If yes, then U U, hence U does not satisfy the condition, and therefore U / U Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

12 Russel s Paradox We should use the set builder construction very carefully Our understanding of sets is very broad. For example, a set can be its own element Let U be the set of all sets that do not contain itself as an element: U = {x x / x} Does U contain itself? If yes, then U U, hence U does not satisfy the condition, and therefore U / U If not, then U / U, hence U does satisfy the condition, and therefore U U Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

13 Universe In theory the elements of sets can be anything. In practice, however, it is not such a good idea to allow such diversity This is why we usually have some sort of universal set or universe in mind, that contains all objects we need Example {x 1 x 10} : what is this set? {x Z 1 x 10} : set of all integers between 1 and 10 {x Q 1 x 10} : set of all rationals between 1 and 10 Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

14 Two sets are equal if and only if they have the same elements That is A = B if and only if x (x A x B) Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

15 Two sets are equal if and only if they have the same elements That is A = B if and only if x (x A x B) {1, 3, 5} = {3, 1, 5} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

16 Two sets are equal if and only if they have the same elements That is A = B if and only if x (x A x B) {1, 3, 5} = {3, 1, 5} {1, 3, 5} = {3, 1, 1, 5, 5, 5, 3, 1, 1, 5} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

17 Two sets are equal if and only if they have the same elements That is A = B if and only if x (x A x B) {1, 3, 5} = {3, 1, 5} {1, 3, 5} = {3, 1, 1, 5, 5, 5, 3, 1, 1, 5} {1, 3, 5} {3, {1}, 5} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

18 Set B is a subset of set A if every element of B is also an element of A That is B A if and only if x (x B x A) Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

19 Set B is a subset of set A if every element of B is also an element of A That is B A if and only if x (x B x A) {1, 5} {3, 1, 5} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

20 Set B is a subset of set A if every element of B is also an element of A That is B A if and only if x (x B x A) {1, 5} {3, 1, 5} {1, 3, 5} {3, 1, 1, 5, 5, 5, 3, 1, 1, 5} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

21 Set B is a subset of set A if every element of B is also an element of A That is B A if and only if x (x B x A) {1, 5} {3, 1, 5} {1, 3, 5} {3, 1, 1, 5, 5, 5, 3, 1, 1, 5} {1} {3, {1}, 5} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

22 Set B is a subset of set A if every element of B is also an element of A That is B A if and only if x (x B x A) {1, 5} {3, 1, 5} {1, 3, 5} {3, 1, 1, 5, 5, 5, 3, 1, 1, 5} {1} {3, {1}, 5} Set B is not a subset of set A if x (x B x / A) There is an element in B that is not an element of A Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

23 Set B is a subset of set A if every element of B is also an element of A That is B A if and only if x (x B x A) {1, 5} {3, 1, 5} {1, 3, 5} {3, 1, 1, 5, 5, 5, 3, 1, 1, 5} {1} {3, {1}, 5} Set B is not a subset of set A if x (x B x / A) There is an element in B that is not an element of A Another way of saying that two sets are equal is that each of them is a subset of the other A = B if and only if (A B) (B A) Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

24 Proper Set B is a proper subset of set A if it is a subset of A and is not equal to A That is B A if and only if (B A) ( x (x A x / B)) Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

25 Syllogism Theorem If A B and B C, then A C Proof. We have to prove that, for every x, if x A, then x C. Take any x such that x A. Since A B, this implies x B. Next, as B C and x B, we have x C. Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

26 Empty set is the set that has no elements and denoted by Theorem For any set A, (i) A, and (ii) A A Proof. (i) We have to prove that x (x x A). For any c, c is FALSE, hence c c A is TRUE. Then we use the rule of universal generalization. (ii) homework! Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

27 Let A be a set. If there are exactly n distinct elements in A where n is a natural number, then we say that A is a finite set and that n is the cardinality of A denoted by A = n Examples = 0 {1, 1, 2, 3, 3, 3} = 3 {1, {2, 3}, 4, 5} = 4 that are not finite are said to be infinite. Examples of infinite sets include R, Q, Z, N Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

28 Power set Given a set A, the power set of A is the set of all subsets of A denoted by P(A) Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

29 Power set Given a set A, the power set of A is the set of all subsets of A denoted by P(A) Example A = {1, 2, A} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

30 Power set Given a set A, the power set of A is the set of all subsets of A denoted by P(A) Example A = {1, 2, A} P(A) = {, {1}, {2}, {A}, {1, 2}, {1, A}, {2, A}, {1, 2, A}} Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

31 Power set Theorem If A is a finite set, then P(A) = 2 A Proof. Let A = {a 1, a 2, a 3,..., a n }. Represent each subset S of A as a string s of n bits (0 1) a i S s[i] = 1 [1]. For instance, is encoded as A itself as Such a representation is called Grey code in Grimaldi and characteristic function elsewhere Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

32 Power set Proof cont. We observe that for each bit there are two possibilities, and its value does not depend on the values of other bits. Thus we have 2x2x2x... x2 = 2 A possible subsets Gazihan Alankuş (Based on original slides by Brahim Hnich et al.)

Cardinality and Bijections

Cardinality and Bijections Countable and Cardinality and Bijections Gazihan Alankuş (Based on original slides by Brahim Hnich et al.) August 13, 2012 Countable and Countable and Countable and How to count elements in a set? How

More information

Sets. Definition A set is an unordered collection of objects called elements or members of the set.

Sets. Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Sets Definition A set is an unordered collection of objects called elements or members of the set. Examples:

More information

Class 8 - Sets (Lecture Notes)

Class 8 - Sets (Lecture Notes) Class 8 - Sets (Lecture Notes) What is a Set? A set is a well-defined collection of distinct objects. Example: A = {1, 2, 3, 4, 5} What is an element of a Set? The objects in a set are called its elements.

More information

DVA325 Formal Languages, Automata and Models of Computation (FABER)

DVA325 Formal Languages, Automata and Models of Computation (FABER) DVA325 Formal Languages, Automata and Models of Computation (FABER) Lecture 1 - Introduction School of Innovation, Design and Engineering Mälardalen University 11 November 2014 Abu Naser Masud FABER November

More information

Cardinality. Hebrew alphabet). We write S = ℵ 0 and say that S has cardinality aleph null.

Cardinality. Hebrew alphabet). We write S = ℵ 0 and say that S has cardinality aleph null. Section 2.5 1 Cardinality Definition: The cardinality of a set A is equal to the cardinality of a set B, denoted A = B, if and only if there is a one-to-one correspondence (i.e., a bijection) from A to

More information

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A.

1. The empty set is a proper subset of every set. Not true because the empty set is not a proper subset of itself! is the power set of A. MAT 101 Solutions to Sample Questions for Exam 1 True or False Questions Answers: 1F, 2F, 3F, 4T, 5T, 6T, 7T 1. The empty set is a proper subset of every set. Not true because the empty set is not a proper

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

29. Army Housing (a) (b) (c) (d) (e) (f ) Totals Totals (a) (b) (c) (d) (e) (f) Basketball Positions 32. Guard Forward Center

29. Army Housing (a) (b) (c) (d) (e) (f ) Totals Totals (a) (b) (c) (d) (e) (f) Basketball Positions 32. Guard Forward Center Infinite Sets and Their Cardinalities As mentioned at the beginning of this chapter, most of the early work in set theory was done by Georg Cantor He devoted much of his life to a study of the cardinal

More information

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018

Mathematical Foundations of Computer Science Lecture Outline August 30, 2018 Mathematical Foundations of omputer Science Lecture Outline ugust 30, 2018 ounting ounting is a part of combinatorics, an area of mathematics which is concerned with the arrangement of objects of a set

More information

Ma/CS 6a Class 16: Permutations

Ma/CS 6a Class 16: Permutations Ma/CS 6a Class 6: Permutations By Adam Sheffer The 5 Puzzle Problem. Start with the configuration on the left and move the tiles to obtain the configuration on the right. The 5 Puzzle (cont.) The game

More information

SOLUTIONS FOR PROBLEM SET 4

SOLUTIONS FOR PROBLEM SET 4 SOLUTIONS FOR PROBLEM SET 4 A. A certain integer a gives a remainder of 1 when divided by 2. What can you say about the remainder that a gives when divided by 8? SOLUTION. Let r be the remainder that a

More information

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1: Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

More information

Cardinality revisited

Cardinality revisited Cardinality revisited A set is finite (has finite cardinality) if its cardinality is some (finite) integer n. Two sets A,B have the same cardinality iff there is a one-to-one correspondence from A to B

More information

Strings. A string is a list of symbols in a particular order.

Strings. A string is a list of symbols in a particular order. Ihor Stasyuk Strings A string is a list of symbols in a particular order. Strings A string is a list of symbols in a particular order. Examples: 1 3 0 4 1-12 is a string of integers. X Q R A X P T is a

More information

1. Functions and set sizes 2. Infinite set sizes. ! Let X,Y be finite sets, f:x!y a function. ! Theorem: If f is injective then X Y.

1. Functions and set sizes 2. Infinite set sizes. ! Let X,Y be finite sets, f:x!y a function. ! Theorem: If f is injective then X Y. 2 Today s Topics: CSE 20: Discrete Mathematics for Computer Science Prof. Miles Jones 1. Functions and set sizes 2. 3 4 1. Functions and set sizes! Theorem: If f is injective then Y.! Try and prove yourself

More information

Two congruences involving 4-cores

Two congruences involving 4-cores Two congruences involving 4-cores ABSTRACT. The goal of this paper is to prove two new congruences involving 4- cores using elementary techniques; namely, if a 4 (n) denotes the number of 4-cores of n,

More information

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors?

In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? What can we count? In how many ways can we paint 6 rooms, choosing from 15 available colors? What if we want all rooms painted with different colors? In how many different ways 10 books can be arranged

More information

COUNTING AND PROBABILITY

COUNTING AND PROBABILITY CHAPTER 9 COUNTING AND PROBABILITY Copyright Cengage Learning. All rights reserved. SECTION 9.2 Possibility Trees and the Multiplication Rule Copyright Cengage Learning. All rights reserved. Possibility

More information

Section Summary. Permutations Combinations Combinatorial Proofs

Section Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Section Summary Permutations Combinations Combinatorial Proofs Permutations Definition: A permutation of a set of distinct objects is an ordered arrangement of these objects. An ordered arrangement

More information

CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

More information

Slide 1 Math 1520, Lecture 13

Slide 1 Math 1520, Lecture 13 Slide 1 Math 1520, Lecture 13 In chapter 7, we discuss background leading up to probability. Probability is one of the most commonly used pieces of mathematics in the world. Understanding the basic concepts

More information

Discrete Mathematics with Applications MATH236

Discrete Mathematics with Applications MATH236 Discrete Mathematics with Applications MATH236 Dr. Hung P. Tong-Viet School of Mathematics, Statistics and Computer Science University of KwaZulu-Natal Pietermaritzburg Campus Semester 1, 2013 Tong-Viet

More information

Week 3-4: Permutations and Combinations

Week 3-4: Permutations and Combinations Week 3-4: Permutations and Combinations February 20, 2017 1 Two Counting Principles Addition Principle. Let S 1, S 2,..., S m be disjoint subsets of a finite set S. If S = S 1 S 2 S m, then S = S 1 + S

More information

It is important that you show your work. The total value of this test is 220 points.

It is important that you show your work. The total value of this test is 220 points. June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

CITS2211 Discrete Structures Turing Machines

CITS2211 Discrete Structures Turing Machines CITS2211 Discrete Structures Turing Machines October 23, 2017 Highlights We have seen that FSMs and PDAs are surprisingly powerful But there are some languages they can not recognise We will study a new

More information

Principle of Inclusion-Exclusion Notes

Principle of Inclusion-Exclusion Notes Principle of Inclusion-Exclusion Notes The Principle of Inclusion-Exclusion (often abbreviated PIE is the following general formula used for finding the cardinality of a union of finite sets. Theorem 0.1.

More information

Compound Probability. Set Theory. Basic Definitions

Compound Probability. Set Theory. Basic Definitions Compound Probability Set Theory A probability measure P is a function that maps subsets of the state space Ω to numbers in the interval [0, 1]. In order to study these functions, we need to know some basic

More information

Pattern Avoidance in Unimodal and V-unimodal Permutations

Pattern Avoidance in Unimodal and V-unimodal Permutations Pattern Avoidance in Unimodal and V-unimodal Permutations Dido Salazar-Torres May 16, 2009 Abstract A characterization of unimodal, [321]-avoiding permutations and an enumeration shall be given.there is

More information

Dynamic Games: Backward Induction and Subgame Perfection

Dynamic Games: Backward Induction and Subgame Perfection Dynamic Games: Backward Induction and Subgame Perfection Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu Jun 22th, 2017 C. Hurtado (UIUC - Economics)

More information

18 Completeness and Compactness of First-Order Tableaux

18 Completeness and Compactness of First-Order Tableaux CS 486: Applied Logic Lecture 18, March 27, 2003 18 Completeness and Compactness of First-Order Tableaux 18.1 Completeness Proving the completeness of a first-order calculus gives us Gödel s famous completeness

More information

Sec$on Summary. Permutations Combinations Combinatorial Proofs

Sec$on Summary. Permutations Combinations Combinatorial Proofs Section 6.3 Sec$on Summary Permutations Combinations Combinatorial Proofs 2 Coun$ng ordered arrangements Ex: How many ways can we select 3 students from a group of 5 students to stand in line for a picture?

More information

In this paper, we discuss strings of 3 s and 7 s, hereby dubbed dreibens. As a first step

In this paper, we discuss strings of 3 s and 7 s, hereby dubbed dreibens. As a first step Dreibens modulo A New Formula for Primality Testing Arthur Diep-Nguyen In this paper, we discuss strings of s and s, hereby dubbed dreibens. As a first step towards determining whether the set of prime

More information

Discrete Structures Lecture Permutations and Combinations

Discrete Structures Lecture Permutations and Combinations Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

More information

PUZZLES ON GRAPHS: THE TOWERS OF HANOI, THE SPIN-OUT PUZZLE, AND THE COMBINATION PUZZLE

PUZZLES ON GRAPHS: THE TOWERS OF HANOI, THE SPIN-OUT PUZZLE, AND THE COMBINATION PUZZLE PUZZLES ON GRAPHS: THE TOWERS OF HANOI, THE SPIN-OUT PUZZLE, AND THE COMBINATION PUZZLE LINDSAY BAUN AND SONIA CHAUHAN ADVISOR: PAUL CULL OREGON STATE UNIVERSITY ABSTRACT. The Towers of Hanoi is a well

More information

Equivalence classes of length-changing replacements of size-3 patterns

Equivalence classes of length-changing replacements of size-3 patterns Equivalence classes of length-changing replacements of size-3 patterns Vahid Fazel-Rezai Mentor: Tanya Khovanova 2013 MIT-PRIMES Conference May 18, 2013 Vahid Fazel-Rezai Length-Changing Pattern Replacements

More information

Tiling Problems. This document supersedes the earlier notes posted about the tiling problem. 1 An Undecidable Problem about Tilings of the Plane

Tiling Problems. This document supersedes the earlier notes posted about the tiling problem. 1 An Undecidable Problem about Tilings of the Plane Tiling Problems This document supersedes the earlier notes posted about the tiling problem. 1 An Undecidable Problem about Tilings of the Plane The undecidable problems we saw at the start of our unit

More information

Applications of Fermat s Little Theorem and Congruences

Applications of Fermat s Little Theorem and Congruences Applications of Fermat s Little Theorem and Congruences Definition: Let m be a positive integer. Then integers a and b are congruent modulo m, denoted by a b mod m, if m (a b). Example: 3 1 mod 2, 6 4

More information

Finite and Infinite Sets

Finite and Infinite Sets Finite and Infinite Sets MATH 464/506, Real Analysis J. Robert Buchanan Department of Mathematics Summer 2007 Basic Definitions Definition The empty set has 0 elements. If n N, a set S is said to have

More information

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1

TOPOLOGY, LIMITS OF COMPLEX NUMBERS. Contents 1. Topology and limits of complex numbers 1 TOPOLOGY, LIMITS OF COMPLEX NUMBERS Contents 1. Topology and limits of complex numbers 1 1. Topology and limits of complex numbers Since we will be doing calculus on complex numbers, not only do we need

More information

Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Combinatorics: The Fine Art of Counting Week 6 Lecture Notes Discrete Probability Note Binomial coefficients are written horizontally. The symbol ~ is used to mean approximately equal. Introduction and

More information

CSCI3390-Lecture 8: Undecidability of a special case of the tiling problem

CSCI3390-Lecture 8: Undecidability of a special case of the tiling problem CSCI3390-Lecture 8: Undecidability of a special case of the tiling problem February 16, 2016 Here we show that the constrained tiling problem from the last lecture (tiling the first quadrant with a designated

More information

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions

SETS OBJECTIVES EXPECTED BACKGROUND KNOWLEDGE 1.1 SOME STANDARD NOTATIONS. Sets. MODULE - I Sets, Relations and Functions 1 SETS Let us consider the following situation : One day Mrs. and Mr. Mehta went to the market. Mr. Mehta purchased the following objects/items. "a toy, one kg sweets and a magazine". Where as Mrs. Mehta

More information

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z

4. Let U = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, X = {2, 3, 4}, Y = {1, 4, 5}, Z = {2, 5, 7}. Find a) (X Y) b) X Y c) X (Y Z) d) (X Y) Z Exercises 1. Write formal descriptions of the following sets. a) The set containing the numbers 1, 10, and 100 b) The set containing all integers that are greater than 5 c) The set containing all natural

More information

CSE 21 Mathematics for Algorithm and System Analysis

CSE 21 Mathematics for Algorithm and System Analysis CSE 21 Mathematics for Algorithm and System Analysis Unit 1: Basic Count and List Section 3: Set CSE21: Lecture 3 1 Reminder Piazza forum address: http://piazza.com/ucsd/summer2013/cse21/hom e Notes on

More information

Counting in Algorithms

Counting in Algorithms Counting Counting in Algorithms How many comparisons are needed to sort n numbers? How many steps to compute the GCD of two numbers? How many steps to factor an integer? Counting in Games How many different

More information

CSCI 2200 Foundations of Computer Science (FoCS) Solutions for Homework 7

CSCI 2200 Foundations of Computer Science (FoCS) Solutions for Homework 7 CSCI 00 Foundations of Computer Science (FoCS) Solutions for Homework 7 Homework Problems. [0 POINTS] Problem.4(e)-(f) [or F7 Problem.7(e)-(f)]: In each case, count. (e) The number of orders in which a

More information

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules

Lecture 2: Sum rule, partition method, difference method, bijection method, product rules Lecture 2: Sum rule, partition method, difference method, bijection method, product rules References: Relevant parts of chapter 15 of the Math for CS book. Discrete Structures II (Summer 2018) Rutgers

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

Chapter 1. Set Theory

Chapter 1. Set Theory Chapter 1 Set Theory 1 Section 1.1: Types of Sets and Set Notation Set: A collection or group of distinguishable objects. Ex. set of books, the letters of the alphabet, the set of whole numbers. You can

More information

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions

BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 2006 Senior Preliminary Round Problems & Solutions BRITISH COLUMBIA SECONDARY SCHOOL MATHEMATICS CONTEST, 006 Senior Preliminary Round Problems & Solutions 1. Exactly 57.4574% of the people replied yes when asked if they used BLEU-OUT face cream. The fewest

More information

Introduction to Computational Manifolds and Applications

Introduction to Computational Manifolds and Applications IMPA - Instituto de Matemática Pura e Aplicada, Rio de Janeiro, RJ, Brazil Introduction to Computational Manifolds and Applications Part 1 - Foundations Prof. Jean Gallier jean@cis.upenn.edu Department

More information

Math 127: Equivalence Relations

Math 127: Equivalence Relations Math 127: Equivalence Relations Mary Radcliffe 1 Equivalence Relations Relations can take many forms in mathematics. In these notes, we focus especially on equivalence relations, but there are many other

More information

Solution: This is sampling without repetition and order matters. Therefore

Solution: This is sampling without repetition and order matters. Therefore June 27, 2001 Your name It is important that you show your work. The total value of this test is 220 points. 1. (10 points) Use the Euclidean algorithm to solve the decanting problem for decanters of sizes

More information

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin

THE PIGEONHOLE PRINCIPLE. MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin THE PIGEONHOLE PRINCIPLE MARK FLANAGAN School of Electrical and Electronic Engineering University College Dublin The Pigeonhole Principle: If n + 1 objects are placed into n boxes, then some box contains

More information

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP

A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 6 (2006), #A31 A STUDY OF EULERIAN NUMBERS FOR PERMUTATIONS IN THE ALTERNATING GROUP Shinji Tanimoto Department of Mathematics, Kochi Joshi University

More information

Outline. Sets of Gluing Data. Constructing Manifolds. Lecture 3 - February 3, PM

Outline. Sets of Gluing Data. Constructing Manifolds. Lecture 3 - February 3, PM Constructing Manifolds Lecture 3 - February 3, 2009-1-2 PM Outline Sets of gluing data The cocycle condition Parametric pseudo-manifolds (PPM s) Conclusions 2 Let n and k be integers such that n 1 and

More information

Minimal generating sets of Weierstrass semigroups of certain m-tuples on the norm-trace function field

Minimal generating sets of Weierstrass semigroups of certain m-tuples on the norm-trace function field Minimal generating sets of Weierstrass semigroups of certain m-tuples on the norm-trace function field Gretchen L. Matthews and Justin D. Peachey Abstract. The norm-trace function field is a generalization

More information

Sec 5.1 The Basics of Counting

Sec 5.1 The Basics of Counting 1 Sec 5.1 The Basics of Counting Combinatorics, the study of arrangements of objects, is an important part of discrete mathematics. In this chapter, we will learn basic techniques of counting which has

More information

Sample Spaces, Events, Probability

Sample Spaces, Events, Probability Sample Spaces, Events, Probability CS 3130/ECE 3530: Probability and Statistics for Engineers August 28, 2014 Sets A set is a collection of unique objects. Sets A set is a collection of unique objects.

More information

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction

PD-SETS FOR CODES RELATED TO FLAG-TRANSITIVE SYMMETRIC DESIGNS. Communicated by Behruz Tayfeh Rezaie. 1. Introduction Transactions on Combinatorics ISSN (print): 2251-8657, ISSN (on-line): 2251-8665 Vol. 7 No. 1 (2018), pp. 37-50. c 2018 University of Isfahan www.combinatorics.ir www.ui.ac.ir PD-SETS FOR CODES RELATED

More information

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10?

What is counting? (how many ways of doing things) how many possible ways to choose 4 people from 10? Chapter 5. Counting 5.1 The Basic of Counting What is counting? (how many ways of doing things) combinations: how many possible ways to choose 4 people from 10? how many license plates that start with

More information

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch )

CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch ) CS1802 Discrete Structures Recitation Fall 2017 October 9-12, 2017 CS1802 Week 6: Sets Operations, Product Sum Rule Pigeon Hole Principle (Ch 8.5-9.3) Sets i. Set Notation: Draw an arrow from the box on

More information

Computing and Communications 2. Information Theory -Channel Capacity

Computing and Communications 2. Information Theory -Channel Capacity 1896 1920 1987 2006 Computing and Communications 2. Information Theory -Channel Capacity Ying Cui Department of Electronic Engineering Shanghai Jiao Tong University, China 2017, Autumn 1 Outline Communication

More information

THE use of balanced codes is crucial for some information

THE use of balanced codes is crucial for some information A Construction for Balancing Non-Binary Sequences Based on Gray Code Prefixes Elie N. Mambou and Theo G. Swart, Senior Member, IEEE arxiv:70.008v [cs.it] Jun 07 Abstract We introduce a new construction

More information

Simple permutations and pattern restricted permutations

Simple permutations and pattern restricted permutations Simple permutations and pattern restricted permutations M.H. Albert and M.D. Atkinson Department of Computer Science University of Otago, Dunedin, New Zealand. Abstract A simple permutation is one that

More information

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other.

5. (1-25 M) How many ways can 4 women and 4 men be seated around a circular table so that no two women are seated next to each other. A.Miller M475 Fall 2010 Homewor problems are due in class one wee from the day assigned (which is in parentheses. Please do not hand in the problems early. 1. (1-20 W A boo shelf holds 5 different English

More information

Cardinality of Accumulation Points of Infinite Sets

Cardinality of Accumulation Points of Infinite Sets International Mathematical Forum, Vol. 11, 2016, no. 11, 539-546 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/imf.2016.6224 Cardinality of Accumulation Points of Infinite Sets A. Kalapodi CTI

More information

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES

STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES STRATEGY AND COMPLEXITY OF THE GAME OF SQUARES FLORIAN BREUER and JOHN MICHAEL ROBSON Abstract We introduce a game called Squares where the single player is presented with a pattern of black and white

More information

ON SPLITTING UP PILES OF STONES

ON SPLITTING UP PILES OF STONES ON SPLITTING UP PILES OF STONES GREGORY IGUSA Abstract. In this paper, I describe the rules of a game, and give a complete description of when the game can be won, and when it cannot be won. The first

More information

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition

Topic 1: defining games and strategies. SF2972: Game theory. Not allowed: Extensive form game: formal definition SF2972: Game theory Mark Voorneveld, mark.voorneveld@hhs.se Topic 1: defining games and strategies Drawing a game tree is usually the most informative way to represent an extensive form game. Here is one

More information

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n

The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n Chapter 5 Chapter Summary 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.5 Generalized Permutations and Combinations Section 5.1 The Product Rule The Product

More information

Constructions of Coverings of the Integers: Exploring an Erdős Problem

Constructions of Coverings of the Integers: Exploring an Erdős Problem Constructions of Coverings of the Integers: Exploring an Erdős Problem Kelly Bickel, Michael Firrisa, Juan Ortiz, and Kristen Pueschel August 20, 2008 Abstract In this paper, we study necessary conditions

More information

Permutations and Combinations

Permutations and Combinations Permutations and Combinations Introduction Permutations and combinations refer to number of ways of selecting a number of distinct objects from a set of distinct objects. Permutations are ordered selections;

More information

The Hex game and its mathematical side

The Hex game and its mathematical side The Hex game and its mathematical side Antonín Procházka Laboratoire de Mathématiques de Besançon Université Franche-Comté Lycée Jules Haag, 19 mars 2013 Brief history : HEX was invented in 1942

More information

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games

Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games Game Theory and Algorithms Lecture 19: Nim & Impartial Combinatorial Games May 17, 2011 Summary: We give a winning strategy for the counter-taking game called Nim; surprisingly, it involves computations

More information

Citation for published version (APA): Nutma, T. A. (2010). Kac-Moody Symmetries and Gauged Supergravity Groningen: s.n.

Citation for published version (APA): Nutma, T. A. (2010). Kac-Moody Symmetries and Gauged Supergravity Groningen: s.n. University of Groningen Kac-Moody Symmetries and Gauged Supergravity Nutma, Teake IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please

More information

I.M.O. Winter Training Camp 2008: Invariants and Monovariants

I.M.O. Winter Training Camp 2008: Invariants and Monovariants I.M.. Winter Training Camp 2008: Invariants and Monovariants n math contests, you will often find yourself trying to analyze a process of some sort. For example, consider the following two problems. Sample

More information

On uniquely k-determined permutations

On uniquely k-determined permutations On uniquely k-determined permutations Sergey Avgustinovich and Sergey Kitaev 16th March 2007 Abstract Motivated by a new point of view to study occurrences of consecutive patterns in permutations, we introduce

More information

International Journal of Combinatorial Optimization Problems and Informatics. E-ISSN:

International Journal of Combinatorial Optimization Problems and Informatics. E-ISSN: International Journal of Combinatorial Optimization Problems and Informatics E-ISSN: 2007-1558 editor@ijcopi.org International Journal of Combinatorial Optimization Problems and Informatics México Karim,

More information

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter.

Three Pile Nim with Move Blocking. Arthur Holshouser. Harold Reiter. Three Pile Nim with Move Blocking Arthur Holshouser 3600 Bullard St Charlotte, NC, USA Harold Reiter Department of Mathematics, University of North Carolina Charlotte, Charlotte, NC 28223, USA hbreiter@emailunccedu

More information

Grade 7/8 Math Circles February 21 st /22 nd, Sets

Grade 7/8 Math Circles February 21 st /22 nd, Sets Faculty of Mathematics Waterloo, Ontario N2L 3G1 Sets Grade 7/8 Math Circles February 21 st /22 nd, 2017 Sets Centre for Education in Mathematics and Computing A set is a collection of unique objects i.e.

More information

Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation.

Know how to represent permutations in the two rowed notation, and how to multiply permutations using this notation. The third exam will be on Monday, November 21, 2011. It will cover Sections 5.1-5.5. Of course, the material is cumulative, and the listed sections depend on earlier sections, which it is assumed that

More information

A theorem on the cores of partitions

A theorem on the cores of partitions A theorem on the cores of partitions Jørn B. Olsson Department of Mathematical Sciences, University of Copenhagen Universitetsparken 5,DK-2100 Copenhagen Ø, Denmark August 9, 2008 Abstract: If s and t

More information

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS.

ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. ON THE PERMUTATIONAL POWER OF TOKEN PASSING NETWORKS. M. H. ALBERT, N. RUŠKUC, AND S. LINTON Abstract. A token passing network is a directed graph with one or more specified input vertices and one or more

More information

Solutions to the 2004 CMO written March 31, 2004

Solutions to the 2004 CMO written March 31, 2004 Solutions to the 004 CMO written March 31, 004 1. Find all ordered triples (x, y, z) of real numbers which satisfy the following system of equations: xy = z x y xz = y x z yz = x y z Solution 1 Subtracting

More information

Computability. What can be computed?

Computability. What can be computed? Computability What can be computed? Computability What can be computed? read/write tape 0 1 1 0 control Computability What can be computed? read/write tape 0 1 1 0 control Computability What can be computed?

More information

Information Theory and Communication Optimal Codes

Information Theory and Communication Optimal Codes Information Theory and Communication Optimal Codes Ritwik Banerjee rbanerjee@cs.stonybrook.edu c Ritwik Banerjee Information Theory and Communication 1/1 Roadmap Examples and Types of Codes Kraft Inequality

More information

2. Nine points are distributed around a circle in such a way that when all ( )

2. Nine points are distributed around a circle in such a way that when all ( ) 1. How many circles in the plane contain at least three of the points (0, 0), (0, 1), (0, 2), (1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2)? Solution: There are ( ) 9 3 = 8 three element subsets, all

More information

Math 475, Problem Set #3: Solutions

Math 475, Problem Set #3: Solutions Math 475, Problem Set #3: Solutions A. Section 3.6, problem 1. Also: How many of the four-digit numbers being considered satisfy (a) but not (b)? How many satisfy (b) but not (a)? How many satisfy neither

More information

Solutions for the Practice Questions

Solutions for the Practice Questions Solutions for the Practice Questions Question 1. Find all solutions to the congruence 13x 12 (mod 35). Also, answer the following questions about the solutions to the above congruence. Are there solutions

More information

Walking on Numbers and a Self-Referential Formula

Walking on Numbers and a Self-Referential Formula Walking on Numbers and a Self-Referential Formula Awesome Math Summer Camp, Cornell University August 3, 2017 Coauthors for Walking on Numbers Figure: Kevin Kupiec, Marina Rawlings and me. Background Walking

More information

SYMMETRIES OF FIBONACCI POINTS, MOD m

SYMMETRIES OF FIBONACCI POINTS, MOD m PATRICK FLANAGAN, MARC S. RENAULT, AND JOSH UPDIKE Abstract. Given a modulus m, we examine the set of all points (F i,f i+) Z m where F is the usual Fibonacci sequence. We graph the set in the fundamental

More information

Permutations. = f 1 f = I A

Permutations. = f 1 f = I A Permutations. 1. Definition (Permutation). A permutation of a set A is a bijective function f : A A. The set of all permutations of A is denoted by Perm(A). 2. If A has cardinality n, then Perm(A) has

More information

MATHEMATICS LEVEL: (B - Γ Λυκείου)

MATHEMATICS LEVEL: (B - Γ Λυκείου) MATHEMATICS LEVEL: 11 12 (B - Γ Λυκείου) 10:00 11:00, 20 March 2010 THALES FOUNDATION 1 3 points 1. Using the picture to the right we can observe that 1+3+5+7 = 4 x 4. What is the value of 1 + 3 + 5 +

More information

With Question/Answer Animations. Chapter 6

With Question/Answer Animations. Chapter 6 With Question/Answer Animations Chapter 6 Chapter Summary The Basics of Counting The Pigeonhole Principle Permutations and Combinations Binomial Coefficients and Identities Generalized Permutations and

More information

X = {1, 2,...,n} n 1f 2f 3f... nf

X = {1, 2,...,n} n 1f 2f 3f... nf Section 11 Permutations Definition 11.1 Let X be a non-empty set. A bijective function f : X X will be called a permutation of X. Consider the case when X is the finite set with n elements: X {1, 2,...,n}.

More information

Pin-Permutations and Structure in Permutation Classes

Pin-Permutations and Structure in Permutation Classes and Structure in Permutation Classes Frédérique Bassino Dominique Rossin Journées de Combinatoire de Bordeaux, feb. 2009 liafa Main result of the talk Conjecture[Brignall, Ruškuc, Vatter]: The pin-permutation

More information

CMPS 12A Introduction to Programming Programming Assignment 5 In this assignment you will write a Java program that finds all solutions to the n-queens problem, for. Begin by reading the Wikipedia article

More information

INFLUENCE OF ENTRIES IN CRITICAL SETS OF ROOM SQUARES

INFLUENCE OF ENTRIES IN CRITICAL SETS OF ROOM SQUARES INFLUENCE OF ENTRIES IN CRITICAL SETS OF ROOM SQUARES Ghulam Chaudhry and Jennifer Seberry School of IT and Computer Science, The University of Wollongong, Wollongong, NSW 2522, AUSTRALIA We establish

More information

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions

Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions CS 70 Discrete Mathematics and Probability Theory Spring 2018 Ayazifar and Rao Midterm 2 Solutions PRINT Your Name: Oski Bear SIGN Your Name: OS K I PRINT Your Student ID: CIRCLE your exam room: Pimentel

More information