Nanoscale III-V CMOS

Similar documents
III-V Channel Transistors

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

III-V CMOS: Quo Vadis?

InGaAs MOSFET Electronics

Towards Sub-10 nm Diameter InGaAs Vertical nanowire MOSFETs and TFETs

Vertical Nanowire InGaAs MOSFETs Fabricated by a Top-down Approach

InGaAs MOSFETs for CMOS:

III-V Vertical Nanowire FETs with Steep Subthreshold Towards Sub-10 nm Diameter Devices

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

III-V CMOS: the key to sub-10 nm electronics?

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

InGaAs Nanoelectronics: from THz to CMOS

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

InGaAs is a promising channel material candidate for

CMOS beyond Si: Nanometer-Scale III-V MOSFETs

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Single suspended InGaAs nanowire MOSFETs

Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mv/decade and Ion = 10 A/m for Ioff = 1 na/m at VDS = 0.

Nanometer-Scale III-V MOSFETs

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

InAs Quantum-Well MOSFET for logic and microwave applications

In principle, the high mobilities of InGaAs and

SUPPLEMENTARY INFORMATION

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

1020 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH 2016

Device architectures for the 5nm technology node and beyond Nadine Collaert

Electrical Characterization and Modeling of Gate-Last Vertical InAs Nanowire MOSFETs on Si

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program.

Self-aligned, gate-last process for vertical InAs nanowire MOSFETs on Si

EECS130 Integrated Circuit Devices

Enabling Breakthroughs In Technology

FinFET Devices and Technologies

EECS130 Integrated Circuit Devices

Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

MOS Capacitance and Introduction to MOSFETs

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Drain. Drain. [Intel: bulk-si MOSFETs]

Performance Analysis of 20 nm Pentagonal and Trapezoidal NanoWire Transistor with Si and Ge Channel

FinFET vs. FD-SOI Key Advantages & Disadvantages

Scaling of Vertical InAs GaSb Nanowire Tunneling Field-Effect Transistors on Si

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

SEVERAL III-V materials, due to their high electron

Ultra High-Speed InGaAs Nano-HEMTs

Partially-insulated MOSFET (PiFET) and Its Application to DRAM Cell Transistor

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

NW-NEMFET: Steep Subthreshold Nanowire Nanoelectromechanical Field-Effect Transistor

High-Performance Si Nanowire FET with a Semi Gate-Around Structure Suitable for Integration

45nm Bulk CMOS Within-Die Variations. Courtesy of C. Spanos (UC Berkeley) Lecture 11. Process-induced Variability I: Random

MSE 410/ECE 340: Electrical Properties of Materials Fall 2016 Micron School of Materials Science and Engineering Boise State University

Session 3: Solid State Devices. Silicon on Insulator

Session 10: Solid State Physics MOSFET

CMOS Logic Technology IEEE EDS DL

General look back at MESFET processing. General principles of heterostructure use in FETs

Performance Evaluation of MISISFET- TCAD Simulation

Power MOSFET Zheng Yang (ERF 3017,

Alternatives to standard MOSFETs. What problems are we really trying to solve?

32nm Technology and Beyond

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm

420 Intro to VLSI Design

This Week s Subject. DRAM & Flexible RRAM. p-channel MOSFET (PMOS) CMOS: Complementary Metal Oxide Semiconductor

CMOS Scaling Beyond FinFETs: Nanowires and TFETs

Transistor was first invented by William.B.Shockley, Walter Brattain and John Bardeen of Bell Labratories. In 1961, first IC was introduced.

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing

Normally-Off Operation of AlGaN/GaN Heterojunction Field-Effect Transistor with Clamping Diode

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5

Scaling and Beyond for Logic and Memories. Which perspectives?

Electronic, Magnetic, Superconducting, and Neuromorphic Devices

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling

FETs with Sub-10-nm Channel Formed by Directed Self-Assembly A MoS 2. van der Waals Heterojunction Tunnel Diode MoS 2

Transistors for VLSI, for Wireless: A View Forwards Through Fog

Advanced PDK and Technologies accessible through ASCENT

Wu Lu Department of Electrical and Computer Engineering and Microelectronics Laboratory, University of Illinois, Urbana, Illinois 61801

ECSE-6300 IC Fabrication Laboratory Lecture 7 MOSFETs. Lecture Outline

Fundamentals of III-V Semiconductor MOSFETs

ECSE-6300 IC Fabrication Laboratory Lecture 9 MOSFETs. Lecture Outline

Tunnel FET architectures and device concepts for steep slope switches Joachim Knoch

Acknowledgements. Curriculum Vitæ. List of Figures. List of Tables. 1 Introduction Si MOSFET Scaling... 2

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011

Power, speed and other highlights at IEDM

InGaAs channel MOSFET with self-aligned source/drain MBE regrowth technology

DUAL MATERIAL PILE GATE APPROACH FOR LOW LEAKAGE FINFET. Sanjay S. Chopade 1*, Dinesh V. Padole 1

Future MOSFET Devices using high-k (TiO 2 ) dielectric

Design of Tunnel FET and its Performance characteristics with various materials

Novel 14-nm Scallop-Shaped FinFETs (S-FinFETs) on Bulk-Si Substrate

High Voltage Normally-off GaN MOSC- HEMTs on Silicon Substrates for Power Switching Applications

Sub-Threshold Region Behavior of Long Channel MOSFET

GaN power electronics

III-V on Si for VLSI. 200 mm III-V on Si. Accelerating the next technology revolution. III-V nfet on 200 mm Si

Experimentally reported sub-60mv/dec

The 3 D Tri Gate transistor is a variant of the FinFET developed at UC Berkeley, and is being used in Intel s 22nmgeneration. microprocessors.

Lecture 8. Thin-Body MOSFET s Process II. Source/Drain Technologies Threshold Voltage Engineering

Performance Analysis of InGaAs Double Gate MOSFET

Modelling of electronic and transport properties in semiconductor nanowires

DESIGN OF 20 nm FinFET STRUCTURE WITH ROUND FIN CORNERS USING SIDE SURFACE SLOPE VARIATION

ADVANCED MATERIALS AND PROCESSES FOR NANOMETER-SCALE FINFETS

Introduction to VLSI ASIC Design and Technology

Transcription:

Nanoscale III-V CMOS J. A. del Alamo Microsystems Technology Laboratories Massachusetts Institute of Technology SEMI Advanced Semiconductor Manufacturing Conference Saratoga Springs, NY; May 16-19, 2016 Acknowledgements: Students and collaborators: D. Antoniadis, J. Lin, W. Lu, A. Vardi, X. Zhao Sponsors: Applied Materials, DTRA, KIST, Lam Research, Northrop Grumman, NSF, Samsung Labs at MIT: MTL, EBL

Contents 1. Motivation: Moore s Law and MOSFET scaling 2. Planar InGaAs MOSFETs 3. InGaAs FinFETs 4. Nanowire InGaAs MOSFETs 5. InGaSb p-type MOSFETs 6. Conclusions 2

1. Moore s Law at 50: the end in sight? 3

Moore s Law Moore s Law = exponential increase in transistor density Intel microprocessors 4

Moore s Law How far can Si support Moore s Law?? 5

Transistor scaling Voltage scaling Performance suffers Supply voltage: Transistor current density: Intel microprocessors Intel microprocessors Transistor performance saturated in recent years 6

Chip Price vs. Chip Cost Chip area price: Chip area cost: Intel microprocessors Holt, ISSCC 2016 Increasing chip cost might bring the end to Moore s Law 7

8

Moore s Law: it s all about MOSFET scaling 1. New device structures: Enhanced gate control improved scalability 9

Moore s Law: it s all about MOSFET scaling 2. New materials: n-channel: Si Strained Si SiGe InGaAs p-channel: Si Strained Si SiGe Ge InGaSb Future CMOS might involve: two different channel materials with two different relaxed lattice constants! del Alamo, Nature 2011 (updated) 10

III-V electronics in your pocket! 11

2. Self-aligned Planar InGaAs MOSFETs dry-etched recess selective MOCVD W Mo Lin, IEDM 2012, 2013, 2014 Lee, EDL 2014; Huang, IEDM 2014 implanted Si + selective epi reacted NiInAs Sun, IEDM 2013, 2014 Chang, IEDM 2013 12

Self-aligned Planar InGaAs MOSFETs @ MIT W Mo Recess-gate process: CMOS-compatible Refractory ohmic contacts (W/Mo) Extensive use of RIE Lin, IEDM 2012, 2013, 2014 13

Fabrication process Mo/W ohmic contact + SiO 2 hardmask SF 6, CF 4 anisotropic RIE Resist CF 4 :O 2 isotropic RIE SiO 2 W/Mo n + InGaAs/InP InGaAs/InAs InAlAs -Si InP Waldron, IEDM 2007 Cl 2 :N 2 anisotropic RIE Digital etch Finished device O 2 plasma H 2 SO 4 Pad Mo HfO 2 Lin, EDL 2014 Ohmic contact first, gate last Precise control of vertical (~1 nm), lateral (~5 nm) dimensions MOS interface exposed late in process 14

Mo Nanoscale Contacts Mo on n + -In 0.53 Ga 0.47 As: R c ~ 40 Ω.μm for L c ~ 20 nm Need low c and m Mo best contact system Average c = 0.69. m 2 Lu, EDL 2014 15

L g =20 nm InGaAs MOSFET I d (ma/ m) 1.0 L g =20 nm 0.8 0.6 0.4 0.2 R on =224 m V gs -V t = 0.5 V 0.4 V 0.0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) Lin, IEDM 2013 L g = 20 nm, L access = 15 nm MOSFET tightest III-V MOSFET made at the time 16

Highest performance InGaAs MOSFET Channel: In 0.7 Ga 0.3 As/InAs/In 0.7 Ga 0.3 As Gate oxide: HfO 2 (2.5 nm, EOT~ 0.5 nm) 3.45 ms/ m L g =70 nm: Record g m,max = 3.45 ms/ m at V ds = 0.5 V R on = 190 m Lin, EDL 2016 17

Benchmarking: g m in MOSFETs vs. HEMTs g m of InGaAs MOSFETs vs. HEMTs (any V DD, any L g ): MIT MOSFETs del Alamo, J-EDS 2016 InGaAs MOSFETs now superior to InGaAs HEMTs No sign of stalling more progress ahead! 18

Excess OFF-state current Transistor fails to turn off: I d (A/ m) 10-5 L g =500 nm 10-7 10-9 10-11 V ds V ds =0.3~0.7 V step=50 mv -0.6-0.4-0.2 0.0 V gs (V) OFF-state current enhanced with V ds Band-to-Band Tunneling (BTBT) or Gate-Induced Drain Leakage (GIDL) Lin, IEDM 2013 19

Excess OFF-state current I d (A/ m) 10-4 10-5 10-6 10-7 10-8 T=200 K V ds =0.7 V L g =80 nm 120 nm 280 nm 500 nm -0.6-0.4-0.2 0.0 V gs -V t (V) Lin, EDL 2014 Lin, TED 2015 L g OFF-state current additional bipolar gain effect due to floating body I d (A/ m) I d (A/ m) 10-5 L g =500 nm 10-7 10-9 10-11 10-5 w/ W/ BTBT+BJT w/o W/O BTBT+BJT L g =500 nm 10-7 10-9 10-11 V ds V ds =0.3~0.7 V step=50 mv -0.6-0.4-0.2 0.0 V gs (V) Simulations V ds =0.3~0.7 V step=50 mv -0.4-0.2 0.0 0.2 V gs (V) 20

Planar MOSFET scaling limit Scaling of linear subthreshold swing del Alamo, J-EDS 2016 ideal scaling λ =electrostatic scaling length Nearly ideal electrostatic scaling behavior At limit of scaling around L g ~50 nm 21

3. InGaAs FinFETs Intel Si Trigate MOSFETs 22

Bottom-up InGaAs FinFETs Aspect-Ratio Trapping Fiorenza, ECST 2010 Si Epi-grown fin inside trench Waldron, VLSI Tech 2014 23

Top-down InGaAs FinFETs Radosavljevic, IEDM 2010 dry-etched fins 60 nm Kim, IEDM 2013 24

InGaAs FinFETs: g m g m per width of gate periphery Kim, IEDM 2013 Natarajan, IEDM 2014 Oxland, EDL 2016 g m [ms/ m] 2.0 1.5 1.0 0.5 Si FinFETs 5.3 4.3 0.8 0.66 0.57 0.23 0.6 InGaAs FinFETs 0.63 0.0 0 20 40 60 W f [nm] 1 0.18 channel aspect ratio Narrowest InGaAs FinFET fin: W f =25 nm Best fin aspect ratio of InGaAs FinFET: 1 g m much lower than planar InGaAs MOSFETs Radosavljevic, IEDM 2011 Thathachary, VLSI 2015 25

InGaAs FinFETs @ MIT Key enabling technologies: BCl 3 /SiCl 4 /Ar RIE + digital etch Sub-10 nm fin width Aspect ratio > 20 Vertical sidewalls Vardi, DRC 2014, EDL 2015, IEDM 2015 26

InGaAs Double-Gate MOSFET Vardi, VLSI 2016 CMOS compatible process Mo contact-first process Fin mask left in place double-gate MOSFET 27

InGaAs Double-Gate MOSFET L g =30 nm, W f =17 nm, H c =40 nm (AR=2.3): I d [ma/ m] 1.0 L g =30 nm V GS =0.75 V W 0.8 f =17 nm 0.6 V GS =0.25 V 0.4 0.2-0.5 V 0.0 0.0 0.2 0.4 0.6 0.8 1.0 V DS [V] I d [A m] 1E-3 V DS =500 mv 1E-4 50 mv 1E-5 S sat =140 mv/dec 1E-6 DIBL=220 mv/v 1E-7 L g =30 nm W f =17 nm 1E-8-0.6-0.4-0.2 0.0 0.2 0.4 0.6 V GS [V] g m =1.12 ms/µm R on =230 Ω.µm S sat =140 mv/dec Vardi, VLSI 2016 28

InGaAs FinFETs: g m benchmarking g m per width of gate periphery g m [ms/ m] 2.0 1.5 1.0 0.5 Si FinFETs 5.3 4.3 MIT InGaAs FinFETs 3.3 5.7 1.8 2.3 0.8 0.66 0.57 0.23 0.6 InGaAs FinFETs 0.63 0.0 0 20 40 60 W f [nm] 1 0.18 First InGaAs FinFETs with W f <10 nm First InGaAs FinFETs with channel aspect ratio >1 29

InGaAs FinFETs: g m benchmarking Figure-of-merit for density: g m per fin width g m /W f [ms/ m] 20 15 10 5 5.3 MIT InGaAs FinFETs 5.7 Si FinFETs 4.3 3.3 2.31.8 0.8 InGaAs FinFETs 0.66 0.23 0.57 0.6 0.63 0 0 20 40 60 W f [nm] 1 0.18 Improved by 50% over earlier InGaAs FinFETs Still far below Si FinFETs poor sidewall charge control 30

InGaAs FinFETs: electrostatics Linear subthreshold swing scaling: del Alamo, J-EDS 2016 ideal scaling λ c =electrostatic scaling length Close to ideal scaling reveals good quality sidewalls 31

Impact of fin width on V T InGaAs doped-channel FinFETs: 50 nm thick, N D ~10 18 cm -3 Oxide: Al 2 O 3 /HfO 2 (EOT~3 nm) Strong V T sensitivity for W f < 10 nm; much worse than Si Due to quantum effects Vardi, IEDM 2015 32

4. Nanowire InGaAs MOSFETs Waldron, EDL 2014 Tanaka, APEX 2010 Persson, EDL 2012 Tomioka, Nature 2012 Nanowire MOSFET: ultimate scalable transistor Vertical NW: uncouples footprint scaling from L g and L c scaling 33

InGaAs Vertical Nanowires on Si by direct growth Au seed InAs NWs on Si by SAE Vapor-Solid-Liquid (VLS) Technique Selective-Area Epitaxy Riel, MRS Bull 2014 Björk, JCG 2012 34

InGaAs VNW-MOSFETs fabricated via top-down approach @ MIT Starting heterostructure: n + InGaAs, 70 nm i InGaAs, 80 nm n + InGaAs, 300 nm n + : 6 10 19 cm 3 Si doping Top-down approach: flexible and manufacturable Zhao, IEDM 2013 35

Key enabling technologies: RIE + digital etch RIE = BCl 3 /SiCl 4 /Ar chemistry Digital Etch (DE) = self-limiting O 2 plasma oxidation + H 2 SO 4 oxide removal RIE + 5 cycles DE Sub-20 nm NW diameter DE shrinks NW diameter by 2 nm per cycle Aspect ratio > 10 Smooth sidewalls Zhao, EDL 2014 36

Optimized RIE + Digital Etch 15 nm 240 nm Zhao, EDL 2014 Sub-20 nm resolution Aspect ratio = 16, vertical sidewall Smooth sidewall and surface 37

Tomioka, Nature 2012 Persson, DRC 2012 Process flow 38

NW-MOSFET I-V characteristics: D=40 nm I d A/ m) 350 V gs =-0.2 V to 0.7 V in 0.1 V step 300 Bottom electrode as the source (BES) 250 200 150 100 50 0 0.0 0.1 0.2 0.3 0.4 0.5 V ds (V) Single nanowire MOSFET: L ch = 80 nm 3 nm Al 2 O 3 (EOT = 1.5 nm) g m,pk =620 μs/μm @ V DS =0.5 V R on =895 Ω.μm Zhao, EDL 2016 (submitted) g m,pk ( S/ m) I d (A/ m) 700 600 500 400 300 200 100 V gs (V) V ds=0.5 V 10-4 10-5 10-6 10-7 10-8 10-9 V ds =0.5 V 0-0.4-0.2 0.0 0.2 0.4 V ds =0.05 V S=98 mv/dec, V ds =0.05 V S=110 mv/dec, V ds =0.5 V DIBL = 177 mv/v -0.4-0.2 0.0 0.2 0.4 V gs (V) 39

This work Zhao, 2016 (submitted) Best bottom up devices Berg, IEDM 2015 Vertical InGaAs NW-MOSFETs Benchmark g m,pk ( S/ m) 1400 1200 1000 800 600 400 200 0 V ds =0.5 V Tanaka, APEX 2010 Tomioka, IEDM 2011 Tomioka, Nature 2012 Persson, DRC 2012 Persson, EDL 2010 Zhao, IEDM 2013 Berg, IEDM 2015 This work 200 400 600 S sat (mv/dec) Top down approach as good as bottom up approach 40

InGaAs VNW MOSFETs: electrostatics Linear subthreshold swing scaling: del Alamo, J-EDS 2016 ideal scaling λ c =electrostatic scaling length Close to ideal scaling reveals good quality sidewalls 41

5. InGaSb p type MOSFETs Planar InGaSb MOSFET demonstrations: Nainani, IEDM 2010 Takei, Nano Lett. 2012 42

InGaSb p type FinFETs at MIT Key enabling technology: BCl 3 /N 2 RIE [digital etch under development] 20 nm fins, 20 nm spacing Lu, IEDM 2015 15 nm fins, AR>13 Smallest W f = 15 nm Aspect ratio >10 Fin angle > 85 Dense fin patterns 43

Si-compatible contacts to p + -InAs Ni/Ti/Pt/Al on p + -InAs (circular TLMs): Lu, IEDM 2015 Record ρ c : 3.5x10-8 Ω.cm 2 at 400 o C 44

InGaSb FinFETs Fin mask left in place double-gate MOSFET Channel: 10 nm In 0.27 Ga 0.73 Sb Gate oxide: 4 nm Al 2 O 3 (EOT=1.8 nm) Gate: 45 nm Mo Lu, IEDM 2015 45

InGaSb FinFETs Lu, IEDM 2015 W f = 30 100 nm L g = 0.1 1 μm N f = 70 46

InGaSb FinFET I-V characteristics L g = 100 nm, W f = 30 nm (AR=0.33) Normalized by conducting gate periphery Lu, IEDM 2015 High current Poor turn-off 47

Peak g m at T=290K: g m benchmarking Lu, IEDM 2015 g m ( S/ m) 100 This work (FinFET) In 0.27 Ga 0.73 Sb Planar MOSFETs Yuan, 2013 [7] Nainani, 2010 [8] Chu, 2014 [11] Xu, 2011 [12] Nagaiah, 2011 [13] GaSb GaSb In 0.36 Ga 0.64 Sb 10 0.01 0.1 1 10 100 L g ( m) In 0.35 Ga 0.65 Sb In 0.2 Ga 0.8 Sb First InGaSb FinFET Peak g m approaches best InGaSb planar MOSFETs 48

Conclusions 1. Great recent progress on planar, fin and nanowire III-V MOSFETs 2. Planar and multigate InGaAs MOSFETs exhibit nearly ideal electrostatic scaling behavior 3. Device performance still lacking for multigate designs 4. P-type InGaSb MOSFETs promising 49

A lot of work ahead but exciting future for III-V electronics 50