IRF6646 DirectFET Power MOSFET

Similar documents
IRF6668PbF IRF6668TRPbF

mj I AR Avalanche Currentg 7.6

IRF6602/IRF6602TR1 HEXFET Power MOSFET

IRF6645 DirectFET Power MOSFET

V DSS R DS(on) max Qg (typ.) 30V GS = 10V 57nC

IRF6641TRPbF DIGITAL AUDIO MOSFET. Key Parameters V DS 200 V R DS(ON) V GS = 10V 51 m Qg typ. 34 nc R G(int) typ. 1.0

V DSS R DS(on) max Qg. 30V 4.8m: 15nC

Approved (Not Released) V DSS R DS(on) max Qg. 30V 3.5mΩ 36nC

IRF9910PbF HEXFET Power MOSFET R DS(on) max

V DSS R DS(on) max I D. 20V GS = 10V 8.9A. 71 P A = 25 C Power Dissipation 2.0 P A = 70 C Power Dissipation Linear Derating Factor

IRLR8729PbF IRLU8729PbF HEXFET Power MOSFET

V DSS R DS(on) max Qg (typ.) 60V GS = 10V 24nC

IRLB8721PbF. V DSS R DS(on) max Qg (typ.) 30V GS = 10V 7.6nC. HEXFET Power MOSFET. Applications. Benefits. Absolute Maximum Ratings

IRFR3709ZPbF IRFU3709ZPbF

IRLR8726PbF IRLU8726PbF

IRLR8721PbF IRLU8721PbF

IRF6608. Absolute Maximum Ratings Max. Thermal Resistance. HEXFET Power MOSFET V DSS R DS(on) max Qg. 30V GS = 10V 16nC GS = 4.

V DSS R DS(on) max Qg 30V GS = 10V 5.4nC

IRLR3717 IRLU3717 HEXFET Power MOSFET

IRF7821PbF. HEXFET Power MOSFET

IRFI4212H-117P. Description. Key Parameters g V DS 100 V R DS(ON) 10V 58 m: Q g typ. 12 nc Q sw typ. 6.9 nc R G(int) typ. 3.

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.5 C/W)

IRF6612PbF IRF661TRPbF

IRF3709ZCS IRF3709ZCL

IRF6633 DirectFET Power MOSFET

IRF6655PbF IRF6655TRPbF

V DSS R DS(on) max Qg. 560 P C = 25 C Maximum Power Dissipation g 140 P C = 100 C Maximum Power Dissipation g Linear Derating Factor

IRFB4020PbF. Key Parameters V DS 200 V R DS(ON) 10V 80 m: Q g typ. 18 nc Q sw typ. 6.7 nc R G(int) typ. 3.2 Ω T J max 175 C

IRL3714Z IRL3714ZS IRL3714ZL

IRFR3704Z IRFU3704Z HEXFET Power MOSFET

SMPS MOSFET HEXFET Power MOSFET. V DSS R DS(on) max I D. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor.

Lower Conduction Losses

T J = 25 C (unless otherwise specified) Symbol Parameter Min. Typ. Max. Units V (BR)DSS DraintoSource Breakdown Voltage 24 V V (BR)DSS / T J

5.0V 5.0V. 20µs PULSE WIDTH Tj = 25 C. Tj = 150 C. V DS, Drain-to-Source Voltage (V) T J = 150 C 1.5. V GS, Gate-to-Source Voltage (V)

FASTIRFET IRFHE4250DPbF

IRLS3036PbF IRLSL3036PbF HEXFET Power MOSFET

SMPS MOSFET. V DSS R DS(on) max I D A I DM. 320 P C = 25 C Power Dissipation 260 Linear Derating Factor. V/ns T J

TO-220AB IRFB4410. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 19

SMPS MOSFET. V DSS R DS(on) max I D

IRF6614PbF IRF6614TRPbF DirectFET Power MOSFET

-280 P C = 25 C Power Dissipation 170 Linear Derating Factor. W/ C V GS Gate-to-Source Voltage ± 20

IRFZ46ZPbF IRFZ46ZSPbF IRFZ46ZLPbF

AUTOMOTIVE MOSFET TO-220AB IRL1404Z. Absolute Maximum Ratings Max. I T C = 25 C Continuous Drain Current, V 10V (Silicon Limited)

IRFR3806PbF IRFU3806PbF

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRLS3034PbF IRLSL3034PbF

V DSS R DS(on) max Qg. 380 P C = 25 C Maximum Power Dissipation 89 P C = 100 C Maximum Power Dissipation Linear Derating Factor

IRFS3004-7PPbF HEXFET Power MOSFET

Absolute Maximum Ratings Max. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRF3808S IRF3808L HEXFET Power MOSFET

Lower Conduction Losses Low Thermal Resistance to PCB ( 0.8 C/W)

SMPS MOSFET TO-220AB IRL3713. Symbol Parameter Max V DS Drain-Source Voltage 30 V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. 30 Pulsed Drain Current c. I DM P C = 25 C Maximum Power Dissipation 120 Linear Derating Factor

IRFR24N15DPbF IRFU24N15DPbF

SMPS MOSFET. V DSS R DS(on) typ. Trr typ. I D. 600V 385mΩ 130ns 15A

SMPS MOSFET. V DSS R DS(on) max I D

IRFB260NPbF HEXFET Power MOSFET

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

IRF6609. HEXFET Power MOSFET V DSS R DS(on) max Qg. 20V GS = 10V 46nC GS = 4.5V

IRFB3507PbF IRFS3507PbF IRFSL3507PbF

IRFR1018EPbF IRFU1018EPbF

SMPS MOSFET. V DSS R DS(on) max I D

SMPS MOSFET. V DS 200 V V DS (Avalanche) min. 260 V R DS(ON) 10V 54 m: T J max 175 C TO-220AB. IRFB38N20DPbF

V DSS R DS(on) max Qg. 30V 3.3m: 34nC

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET TO-220AB IRL3705Z. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) W/ C V GS Gate-to-Source Voltage ± 16

IRF3205S/L. HEXFET Power MOSFET V DSS = 55V. R DS(on) = 8.0mΩ I D = 110A

1412 P C = 25 C Maximum Power Dissipation 300 Linear Derating Factor. V/ns T J. Thermal Resistance Symbol Parameter Typ. Max.

A I T C = 25 C Continuous Drain Current, V 10V (Package Limited) 560 P C = 25 C Power Dissipation 330 Linear Derating Factor

V DSS R DS(on) max Qg 30V GS = 10V 20nC

IRFS4127PbF IRFSL4127PbF

100% Rg tested Increased Reliability. Easier Manufacturing RoHS Compliant Containing no Lead, no Bromide and no Halogen

Direct Drive at High V GS. IRF9388PbF SO8 Tube/Bulk 95 IRF9388TRPbF SO8 Tape and Reel 4000

V DSS R DS(on) max I D

P C = 100 C Power Dissipation Linear Derating Factor

V DSS R DS(on) max Qg

IRL8113 IRL8113S IRL8113L

SMPS MOSFET. V DSS R DS(on) max I D

IRFR3710ZPbF IRFU3710ZPbF HEXFET Power MOSFET

V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. I D = 140A Fast Switching

SMPS MOSFET. V DSS R DS(on) max I D

AUTOMOTIVE MOSFET. A I T C = 25 C Continuous Drain Current, V 10V (Package Limited)

IRFR4105ZPbF IRFU4105ZPbF

W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 5.3

IRF6691PbF IRF6691TRPbF

V DSS R DS(on) max Qg

AUTOMOTIVE MOSFET. 240 P C = 25 C Power Dissipation 110 Linear Derating Factor V GS Gate-to-Source Voltage ± 20

SMPS MOSFET. V DSS R DS(on) max I D

IRFR540ZPbF IRFU540ZPbF

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) Mounting Torque, 6-32 or M3 screw 1.1 (10) N m (lbf in)

30V GS = 10V 48nC GS = 4.5V

V DSS R DS(on) max (mw)

TO-220AB IRFB3307. W/ C V GS Gate-to-Source Voltage ± 20 dv/dt Peak Diode Recovery f 11. V/ns T J Operating Junction and -55 to

8 S1, D2. Storage Temperature Range Soldering Temperature, for 10 seconds 300 (1.6mm from case )

Easier Manufacturing RoHS Compliant Containing no Lead, no Bromide and no Halogen

SMPS MOSFET. V DSS R DS(on) max I D

IRL3714ZPbF IRL3714ZSPbF IRL3714ZLPbF

V DSS. W/ C V GS Gate-to-Source Voltage ±30 E AS (Thermally limited) mj T J Operating Junction and -55 to + 175

Transcription:

Typical R DS(on) (Ω) V GS, Gate-to-Source Voltage (V) l RoHS compliant containing no lead or bromide l Low Profile (<0.7 mm) l Dual Sided Cooling Compatible l Ultra Low Package Inductance l Optimized for High Frequency Switching l Ideal for High Performance Isolated Converter Primary Switch Socket l Optimized for Synchronous Rectification l Low Conduction Losses l Compatible with existing Surface Mount Techniques PD - 96995E IRF6646 DirectFET Power MOSFET Typical values (unless otherwise specified) V DSS V GS R DS(on) 80V max ±20V max 7.6mΩ@ V Q g tot Q gd V gs(th) 36nC 2nC 3.8V MN DirectFET ISOMETRIC Applicable DirectFET Outline and Substrate Outline (see p.7,8 for details) SQ SX ST MQ MX MT MN Description The IRF6646 combines the latest HEXFET Power MOSFET Silicon technology with the advanced DirectFET TM packaging to achieve the lowest on-state resistance in a package that has the footprint of an SO-8 and only 0.7 mm profile. The DirectFET package is compatible with existing layout geometries used in power applications, PCB assembly equipment and vapor phase, infra-red or convection soldering techniques, when application note AN-35 is followed regarding the manufacturing methods and processes. The DirectFET package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resistance by 80%. The IRF6646 is optimized for primary side bridge topologies in isolated DC-DC applications, for 48V(±%) or 36V to 60V ETSI input voltage range systems, and is also ideal for secondary side synchronous rectification in regulated isolated DC-DC topologies. The reduced total losses in the device coupled with the high level of thermal performance enables high efficiency and low temperatures, which are key for system reliability improvements, and makes this device ideal for high performance isolated DC-DC converters. Absolute Maximum Ratings Parameter Max. Units V DS Drain-to-Source Voltage 80 V V GS Gate-to-Source Voltage ±20 I D @ T A = 25 C Continuous Drain Current, V GS @ V e 2 I D @ T A = 70 C Continuous Drain Current, V GS @ V e 9.6 A I D @ T C = 25 C Continuous Drain Current, V GS @ V f 68 I DM Pulsed Drain Current g 96 E AS Single Pulse Avalanche Energy h 230 mj I AR Avalanche Currentg 7.2 A 0.05 0.04 0.03 0.02 0.0 0 T J = 25 C T J = 25 C I D = 7.2A 4 6 8 2 4 6 0 20 30 40 Q V GS, Gate -to -Source Voltage (V) G Total Gate Charge (nc) Fig 2. Typical Total Gate Charge vs. Gate-to-Source Fig. Typical On-Resistance vs. Gate Voltage Voltage Notes: Click on this section to link to the appropriate technical paper. T C measured with thermocouple mounted to top (Drain) of part. Click on this section to link to the DirectFET Website. Repetitive rating; pulse width limited by max. junction temperature. ƒ Surface mounted on in. square Cu board, steady state. Starting T J = 25 C, L = 8.8mH, R G = 25Ω, I AS = 7.2A. www.irf.com 2.0.0 8.0 6.0 4.0 2.0 0.0 I D = 7.2A V DS = 40V V DS = 6V /04/05

IRF6646 Static @ T J = 25 C (unless otherwise specified) Parameter Min. Typ. Max. Units BV DSS Drain-to-Source Breakdown Voltage 80 V Conditions V GS = 0V, I D = 250µA ΒV DSS / T J Breakdown Voltage Temp. Coefficient 0. V/ C Reference to 25 C, I D = ma R DS(on) Static Drain-to-Source On-Resistance 7.6 9.5 mω V GS = V, I D = 2A c V GS(th) Gate Threshold Voltage 3.0 4.9 V V DS = V GS, I D = 50µA V GS(th) / T J Gate Threshold Voltage Coefficient - mv/ C I DSS Drain-to-Source Leakage Current 20 µa V DS = 80V, V GS = 0V 250 V DS = 64V, V GS = 0V, T J = 25 C I GSS Gate-to-Source Forward Leakage 0 na V GS = 20V Gate-to-Source Reverse Leakage -0 V GS = -20V gfs Forward Transconductance 7 S V DS = V, I D = 7.2A Q g Total Gate Charge 36 50 Q gs Pre-Vth Gate-to-Source Charge 7.6 V DS = 40V Q gs2 Post-Vth Gate-to-Source Charge 2.0 nc V GS = V Q gd Gate-to-Drain Charge 2 I D = 7.2A Q godr Gate Charge Overdrive 4 See Fig. 7 Q sw Switch Charge (Q gs2 Q gd ) 4 Q oss Output Charge 8 nc V DS = 6V, V GS = 0V R G Gate Resistance.0 Ω t d(on) Turn-On Delay Time 7 V DD = 40V, V GS = Vc t r Rise Time 20 I D = 7.2A t d(off) Turn-Off Delay Time 3 ns R G =6.2Ω t f Fall Time 2 C iss Input Capacitance 2060 V GS = 0V C oss Output Capacitance 480 pf V DS = 25V C rss Reverse Transfer Capacitance 20 ƒ =.0MHz C oss Output Capacitance 280 V GS = 0V, V DS =.0V, f=.0mhz C oss Output Capacitance 3 V GS = 0V, V DS = 64V, f=.0mhz Diode Characteristics Parameter Min. Typ. Max. Units Conditions I S Continuous Source Current 2.5e MOSFET symbol (Body Diode) A showing the I SM Pulsed Source Current 96 integral reverse (Body Diode)d p-n junction diode. V SD Diode Forward Voltage.3 V T J = 25 C, I S = 7.2A, V GS = 0V c t rr Reverse Recovery Time 36 54 ns T J = 25 C, I F = 7.2A, V DD = 40V Q rr Reverse Recovery Charge 48 72 nc di/dt = 0A/µs c Notes: Pulse width 400µs; duty cycle 2%. Repetitive rating; pulse width limited by max. junction temperature. ƒ Thermally limited and used R θja to calculate. 2 www.irf.com

Absolute Maximum Ratings IRF6646 Parameter Max. Units P D @T A = 25 C Power Dissipation c 2.8 W P D @T A = 70 C Power Dissipation c.8 P D @T C = 25 C Power Dissipation f 89 T P Peak Soldering Temperature 270 C T J Operating Junction and -40 to 50 Storage Temperature Range T STG Thermal Resistance Parameter Typ. Max. Units R θja Junction-to-Ambient cg 45 R θja Junction-to-Ambient dg 2.5 R θja Junction-to-Ambient eg 20 C/W R θjc Junction-to-Case fg.4 R θj-pcb Junction-to-PCB Mounted.0 0 Thermal Response ( Z thja ) 0. 0.0 0.00 D = 0.50 0.20 0. 0.05 0.02 0.0 E-006 E-005 0.000 0.00 0.0 0. 0 Fig 3. Maximum Effective Transient Thermal Impedance, Junction-to-Ambient Notes: Surface mounted on in. square Cu board, steady state. Used double sided cooling, mounting pad. ƒ Mounted on minimum footprint full size board with metalized back and with small clip heatsink. R R R 2 R 2 R 3 R 3 τ J τ J τ τ τ 2 τ 2 τ 3 τ 3 Ci= τi/ri Ci= τi/ri SINGLE PULSE ( THERMAL RESPONSE ) Notes:. Duty Factor D = t/t2 2. Peak Tj = P dm x Zthja Tc t, Rectangular Pulse Duration (sec) R 4 R 4 τ 4 τ 4 τ A τ Ri ( C/W) τi (sec) 0.678449 0.00086 7.29903 0.57756 7.56647 8.94 9.47028 6 T C measured with thermocouple incontact with top (Drain) of part. R θ is measured at T J of approximately 90 C. Surface mounted on in. square Cu ƒ Mounted to a PCB with ƒ Mounted on minimum board (still air). small clip heatsink (still air) footprint full size board with metalized back and with small clip heatsink (still air) www.irf.com 3

C, Capacitance(pF) Typical R DS (on) ( Ω) I D, Drain-to-Source Current (Α) Typical R DS(on) (Normalized) I D, Drain-to-Source Current (A) I D, Drain-to-Source Current (A) IRF6646 0 VGS TOP 5V V 8.0V 7.0V BOTTOM 6.0V 0 6.0V VGS TOP 5V V 8.0V 7.0V BOTTOM 6.0V 6.0V 60µs PULSE WIDTH Tj = 25 C 0. 0 V DS, Drain-to-Source Voltage (V) Fig 4. Typical Output Characteristics 60µs PULSE WIDTH Tj = 50 C 0. 0 V DS, Drain-to-Source Voltage (V) Fig 5. Typical Output Characteristics 00 V DS = V 60µs PULSE WIDTH 2.0 I D = 2A V GS = V 0.5 T J = 50 C T J = 25 C T J = -40 C.0 0. 3 4 5 6 7 8 V GS, Gate-to-Source Voltage (V) Fig 6. Typical Transfer Characteristics 0.5-60 -40-20 0 20 40 60 80 0 20 40 60 T J, Junction Temperature ( C) Fig 7. Normalized On-Resistance vs. Temperature 000 00 V GS = 0V, f = MHZ C iss = C gs C gd, C ds SHORTED C rss = C gd C oss = C ds C gd C iss C oss 45 40 35 30 25 20 T J = 25 C Vgs = 7.0V Vgs = 8.0V Vgs = V Vgs = 5V 5 C rss 5 0 0 V DS, Drain-to-Source Voltage (V) Fig 8. Typical Capacitance vs.drain-to-source Voltage 0 30 50 70 90 I D, Drain Current (A) Fig 9. Typical On-Resistance vs. Drain Current 4 www.irf.com

E AS, Single Pulse Avalanche Energy (mj) I D, Drain Current (A) Typical V GS(th) Gate threshold Voltage (V) I SD, Reverse Drain Current (A) I D, Drain-to-Source Current (A) 00 0 00 0 OPERATION IN THIS AREA LIMITED BY R DS (on) IRF6646 0µsec T J = 50 C T J = 25 C T J = -40 C V GS = 0V 0 0.0 0.2 0.4 0.6 0.8.0.2.4.6 V SD, Source-to-Drain Voltage (V) Fig. Typical Source-Drain Diode Forward Voltage 0. T A = 25 C T J = 50 C msec msec Single Pulse 0.0 0.0 0..00.00 0.00 V DS, Drain-to-Source Voltage (V) Fig. Maximum Safe Operating Area 4 2 6.0 5.0 I D = 50µA I D = 250µA I D =.0mA I D =.0A 8 6 4.0 4 2 3.0 0 25 50 75 0 25 50 T A, Ambient Temperature ( C) Fig 2. Maximum Drain Current vs. Ambient Temperature 00 900 800 700 2.0 I D TOP 3.3A 4.0A BOTTOM 7.2A -75-50 -25 0 25 50 75 0 25 50 T J, Temperature ( C ) Fig 3. Typical Threshold Voltage vs. Junction Temperature 600 500 400 300 200 0 0 25 50 75 0 25 50 Starting T J, Junction Temperature ( C) Fig 4. Maximum Avalanche Energy vs. Drain Current www.irf.com 5

IRF6646 Current Regulator Same Type as D.U.T. Vds Id 2V.2µF 50KΩ.3µF Vgs D.U.T. V - DS V GS Vgs(th) 3mA I G I D Current Sampling Resistors Qgs Qgs2 Qgd Qgodr Fig 5a. Gate Charge Test Circuit Fig 5b. Gate Charge Waveform V (BR)DSS 5V tp V DS L DRIVER R G 20V V GS tp D.U.T I AS 0.0Ω - V DD A I AS Fig 6a. Unclamped Inductive Test Circuit Fig 6b. Unclamped Inductive Waveforms V DS R D V DS 90% V GS D.U.T. R G - V DD % V GS V Pulse Width µs t d(on) t r t d(off) t f Duty Factor 0. % Fig 7a. Switching Time Test Circuit Fig 7b. Switching Time Waveforms 6 www.irf.com

IRF6646 - D.U.T ƒ - Circuit Layout Considerations Low Stray Inductance Ground Plane Low Leakage Inductance Current Transformer - Reverse Recovery Current Driver Gate Drive Period P.W. D.U.T. I SD Waveform Body Diode Forward Current di/dt D.U.T. V DS Waveform Diode Recovery dv/dt D = P.W. Period V GS =V V DD * R G di/dt controlled by R G Driver same type as D.U.T. I SD controlled by Duty Factor "D" D.U.T. - Device Under Test V DD - Re-Applied Voltage Body Diode Inductor Curent Current Forward Drop Ripple 5% I SD * V GS = 5V for Logic Level Devices Fig 8. Diode Reverse Recovery Test Circuit for N-Channel HEXFET Power MOSFETs DirectFET Substrate and PCB Layout, MN Outline (Medium Size Can, N-Designation). Please see DirectFET application note AN-35 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. www.irf.com 7

IRF6646 DirectFET Outline Dimension, MN Outline (Medium Size Can, N-Designation). Please see DirectFET application note AN-35 for all details regarding the assembly of DirectFET. This includes all recommendations for stencil and substrate designs. 06'%64..0) &/'055#4'0// %&' Ã# Ã$ Ã% Ã& Ã' Ã( Ã) Ã* Ã, Ã- Ã. Ã/ Ã0 Ã2 &/'055 /'64% /0 /#: /2'4#. Ã/0 Ã/#: DirectFET Part Marking 8 www.irf.com

DirectFET Tape & Reel Dimension (Showing component orientation). IRF6646 NOTE: Controlling dimensions in mm Std reel quantity is 4800 parts. (ordered as IRF6646). For 00 parts on 7" reel, order IRF6646TR REEL DIMENSIONS STANDARD OPTION (QTY 4800) TR OPTION (QTY 00) METRIC IMPERIAL METRIC IMPERIAL CODE A B C D E F G H MIN 330.0 20.2 2.8.5 0.0 2.4.9 MAX 3.2 8.4 4.4 5.4 MIN 2.992 0.795 0.504 0.059 3.937 0.488 0.469 MAX 0.520 0.724 0.567 0.606 MIN 77.77 9.06 3.5.5 58.72.9.9 MAX 2.8 3.50 2.0 2.0 MIN 6.9 0.75 0.53 0.059 2.3 0.47 0.47 MAX 0.50 0.53 Data and specifications subject to change without notice. This product has been designed and qualified for the Consumer market. Qualification Standards can be found on IR s Web site. IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (3) 252-75 TAC Fax: (3) 252-7903 Visit us at www.irf.com for sales contact information./05 www.irf.com 9

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/