InGaAs Nanoelectronics: from THz to CMOS

Similar documents
Nanometer-Scale InGaAs Field-Effect Transistors for THz and CMOS Technologies

InGaAs MOSFET Electronics

III-V CMOS: the key to sub-10 nm electronics?

InGaAs MOSFETs for CMOS:

Sub-30 nm InAs Quantum-Well MOSFETs with Self-Aligned Metal Contacts and Sub-1 nm EOT HfO 2 Insulator

A New Self-aligned Quantum-Well MOSFET Architecture Fabricated by a Scalable Tight-Pitch Process

Nanoscale III-V CMOS

Record I on (0.50 ma/μm at V DD = 0.5 V and I off = 100 na/μm) 25 nm-gate-length ZrO 2 /InAs/InAlAs MOSFETs

III-V CMOS: Quo Vadis?

Nanometer-scale InGaAs Field-Effect Transistors for THz and CMOS technologies

InAs Quantum-Well MOSFET for logic and microwave applications

Nanoscale III-V Electronics: from Quantum-Well Planar MOSFETs to Vertical Nanowire MOSFETs

Vertical Nanowire InGaAs MOSFETs Fabricated by a Top-down Approach

III-V Channel Transistors

Record Extrinsic Transconductance (2.45 ms/μm at V DS = 0.5 V) InAs/In 0.53 Ga 0.47 As Channel MOSFETs Using MOCVD Source-Drain Regrowth

Zota, Cezar B.; Lindelow, Fredrik; Wernersson, Lars Erik; Lind, Erik

Fin-Shaped Field Effect Transistor (FinFET) Min Ku Kim 03/07/2018

Single suspended InGaAs nanowire MOSFETs

Towards Sub-10 nm Diameter InGaAs Vertical nanowire MOSFETs and TFETs

Enabling Breakthroughs In Technology

III-V Vertical Nanowire FETs with Steep Subthreshold Towards Sub-10 nm Diameter Devices

Alternative Channel Materials for MOSFET Scaling Below 10nm

Acknowledgments: This work was supported by Air Force HiREV program and the DTRA Basic Research Program.

Scaling of InGaAs MOSFETs into deep-submicron regime (invited)

Parameter Optimization Of GAA Nano Wire FET Using Taguchi Method

Beyond Transistor Scaling: New Devices for Ultra Low Energy Information Processing

Integration of III-V heterostructure tunnel FETs on Si using Template Assisted Selective Epitaxy (TASE)

EECS130 Integrated Circuit Devices

GaN MMIC PAs for MMW Applicaitons

Drain. Drain. [Intel: bulk-si MOSFETs]

Fundamentals of III-V Semiconductor MOSFETs

In principle, the high mobilities of InGaAs and

32nm Technology and Beyond

Small Signal Modelling of InGaAs/InAlAs phemt for low noise applications

EECS130 Integrated Circuit Devices

Atomic-layer deposition of ultrathin gate dielectrics and Si new functional devices

Self-Aligned-Gate GaN-HEMTs with Heavily-Doped n + -GaN Ohmic Contacts to 2DEG

A 77 GHz mhemt MMIC Chip Set for Automotive Radar Systems

SEVERAL III-V materials, due to their high electron

Electrical Characterization and Modeling of Gate-Last Vertical InAs Nanowire MOSFETs on Si

Device architectures for the 5nm technology node and beyond Nadine Collaert

Performance Analysis of 20 nm Pentagonal and Trapezoidal NanoWire Transistor with Si and Ge Channel

Ultra High-Speed InGaAs Nano-HEMTs

Transistors for VLSI, for Wireless: A View Forwards Through Fog

InGaAs is a promising channel material candidate for

Transistor Scaling in the Innovation Era. Mark Bohr Intel Senior Fellow Logic Technology Development August 15, 2011

Acknowledgements. Curriculum Vitæ. List of Figures. List of Tables. 1 Introduction Si MOSFET Scaling... 2

III-Nitride microwave switches Grigory Simin

Nanoelectronics and the Future of Microelectronics

Sub-micron technology IC fabrication process trends SOI technology. Development of CMOS technology. Technology problems due to scaling

FinFET Devices and Technologies

Advanced Digital Integrated Circuits. Lecture 2: Scaling Trends. Announcements. No office hour next Monday. Extra office hour Tuesday 2-3pm

Lecture 33 - The Short Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 30, 2007

Alternatives to standard MOSFETs. What problems are we really trying to solve?

A GaAs/AlGaAs/InGaAs PSEUDOMORPHIC HEMT STRUCTURE FOR HIGH SPEED DIGITAL CIRCUITS

CMOS beyond Si: Nanometer-Scale III-V MOSFETs

1020 IEEE TRANSACTIONS ON ELECTRON DEVICES, VOL. 63, NO. 3, MARCH 2016

Design of Gate-All-Around Tunnel FET for RF Performance

III-V on Si for VLSI. 200 mm III-V on Si. Accelerating the next technology revolution. III-V nfet on 200 mm Si

Quantum Devices and Integrated Circuits Based on Quantum Confinement in III-V Nanowire Networks Controlled by Nano-Schottky Gates

NAME: Last First Signature

Chapter 1. Introduction

Session 10: Solid State Physics MOSFET

Design & Performance Analysis of DG-MOSFET for Reduction of Short Channel Effect over Bulk MOSFET at 20nm

General look back at MESFET processing. General principles of heterostructure use in FETs

Eigen # Hole s Wavefunctions, E-k and Equi-Energy Contours from a P-FinFET. Lecture 5

MOS Capacitance and Introduction to MOSFETs

Experimentally reported sub-60mv/dec

InGaAs channel MOSFET with self-aligned source/drain MBE regrowth technology

ECE 5745 Complex Digital ASIC Design Topic 2: CMOS Devices

Nanometer-Scale III-V MOSFETs

Vertical InAs/GaAsSb/GaSb tunneling field-effect transistor on Si with S = 48 mv/decade and Ion = 10 A/m for Ioff = 1 na/m at VDS = 0.

High-Performance Si Nanowire FET with a Semi Gate-Around Structure Suitable for Integration

3-D Modelling of the Novel Nanoscale Screen-Grid Field Effect Transistor (SGFET)

3-7 Nano-Gate Transistor World s Fastest InP-HEMT

Performance Analysis of InGaAs Double Gate MOSFET

Design of THz Signal Generation Circuits Using 65nm CMOS Technologies

Galileo, Elephants, & Fast Nano-Devices

A 90 nm High Volume Manufacturing Logic Technology Featuring Novel 45 nm Gate Length Strained Silicon CMOS Transistors

mhemt based MMICs, Modules, and Systems for mmwave Applications Axel Hülsmann Axel Tessmann Jutta Kühn Oliver Ambacher

Self-aligned, gate-last process for vertical InAs nanowire MOSFETs on Si

Planarization and Regrowth of Self-Aligned Ohmic Contacts on InGaAs

Body-Biased Complementary Logic Implemented Using AlN Piezoelectric MEMS Switches

FinFET-based Design for Robust Nanoscale SRAM

Investigations on Compound Semiconductor High Electron Mobility Transistor (HEMT)

HOW TO CONTINUE COST SCALING. Hans Lebon

FinFET vs. FD-SOI Key Advantages & Disadvantages

Advanced PDK and Technologies accessible through ASCENT

Quantum-effect Resonant Tunneling Device Technology for Practical Ultra Low-power High-speed Applications

Introduction to VLSI ASIC Design and Technology

Semiconductor Memory: DRAM and SRAM. Department of Electrical and Computer Engineering, National University of Singapore

50-500GHz Wireless Technologies: Transistors, ICs, and Systems

Assoc. Prof. Dr. MONTREE SIRIPRUCHYANUN

POSTECH Activities on CMOS based Linear Power Amplifiers

High Voltage DC and RF Power Reliability of GaN HEMTs

In0.53Ga0.47As MOSFETs with 5 nm channel and self-aligned source/drain by MBE regrowth

CMOS Scaling Beyond FinFETs: Nanowires and TFETs

Progress Energy Distinguished University Professor Jay Baliga. April 11, Acknowledgements

ULTRA LOW NOISE PSEUDOMORPHIC HJ FET

Transistors for THz Systems

Transcription:

InGaAs Nanoelectronics: from THz to CMOS J. A. del Alamo Microsystems Technology Laboratories, MIT IEEE International Conference on Electron Devices and Solid-State Circuits Hong Kong, June 3, 2013 Acknowledgements: D. Antoniadis, A. Guo, D.-H. Kim, T.-W. Kim, D. Jin, J. Lin, N. Waldron, L. Xia Sponsors: Intel, FCRP-MSD Labs at MIT: MTL, NSL, SEBL 1

Outline 1. InGaAs HEMT today 2. InGaAs HEMTs towards THz operation 3. InGaAs MOSFETs: towards sub-10 nm CMOS 2

A bit of perspective Invention of AlGaAs/GaAs HEMT: Fujitsu Labs. 1980 First InAlAs/InGaAs HEMT on InP: Bell Labs. 1982 First AlGaAs/InGaAs Pseudomorphic HEMT: U. Illinois 1985 Main attraction of InGaAs: RT μ e = 6,000~30,000 cm 2 /V.s Mimura JJAPL 1980 Chen EDL 1982 Ketterson EDL 1985 3

InGaAs Electronics Today UMTS-LTE PA module Chow, MTT-S 2008 40 Gb/s modulator driver 77 GHz transceiver Carroll, MTT-S 2002 Tessmann, GaAs IC 1999 Bipolar/E-D PHEMT process Single-chip WLAN MMIC, Morkner, RFIC 2007 Henderson, Mantech 2007 4

InGaAs High Electron Mobility Transistor (HEMT) Modulation doping: 2-Dimensional Electron Gas at InAlAs/InGaAs interface 5

InGaAs HEMT: high-frequency record vs. time f T (GHz) 800 700 600 500 400 300 200 100 Teledyne/MIT: f T =688 GHz, f max =800 GHz on InP substrate on GaAs substrate 0 1980 1990 2000 2010 Year f T =710 GHz f max =478 GHz Chang APEX 2013 (NCTU) Devices fabricated at MIT Highest f T of any FET on any material system Best balanced f T and f max of any transistor on any material 6

InGaAs HEMTs: circuit demonstrations 10-stage 670 GHz LNA 80 Gb/s multiplexer IC Leong, IPRM 2012 Single-stage 500 GHz LNA Wurfl, GAAS 2004 Sarkozy, IPRM 2013 Tessmann, CSIC 2010 7

InGaAs HEMTs on InP used to map infant universe WMAP=Wilkinson Microwave Anisotropy Probe Launched 2001 Full-sky map of Cosmic Microwave Background radiation (oldest light in Universe) age of Universe: 13.73B years (±1%) http://map.gsfc.nasa.gov/ 0.1 µm InGaAs HEMT LNA Pospieszalski MTT-S 2000 8

A closer look: InGaAs HEMTs at MIT Kim, EDL 2010 - QW channel (t ch = 10 nm): InAs core InGaAs cladding e = 13,200 cm 2 /V-sec - InAlAs barrier (t ins = 4 nm) - L g = 30 nm 9

L g =30 nm InGaAs HEMT V GS = I D [ma/ m] 0.8 0.6 0.4 0.2 2.0 0.4 V 0.2 V 0 V 40 30 U g H 21 Kim, EDL 2010 3 2 0.0 0.0 0.2 0.4 0.6 0.8 g m [ms/ m] 1.5 1.0 0.5 V DS [V] Gains [db] 20 10 MSG/MAG K 1 0 K V DS = 0.5 V 0.0-0.6-0.4-0.2 0.0 0.2 V GS [V] V DS =0.5 V, V GS =0.2 V 0-1 10 9 10 10 10 11 10 12 Frequency [Hz] High transconductance: g m = 1.9 ms/μm at V DD =0.5 V First transistor of any kind with both f T and f max > 640 GHz 10

How to reach f t = 1 THz? 1200 1000 800 1 THz 30% reduction in all the parasitics 600 f T [GHz] 400 V DS = 0.6 V Measured f T 200 Modeled f T Model Projection 30 L g [nm] 100 Kim, IEDM 2011 f T = 1 THz feasible by: scaling to L g 25 nm ~30% parasitic reduction 11

Record f T InGaAs HEMTs: megatrends x=0.53 Over time: L g, In x Ga 1-x As channel x InAs L g, x InAs saturated no more progress possible? 12

Record f T InGaAs HEMTs: megatrends Over time: t ch, t ins t ch, t ins saturated no more progress possible? 13

Limit to HEMT barrier scaling: gate leakage current InGaAs HEMTs L g =40 nm V DS =0.5 V Kim, EDL 2013 At L g =30-40 nm, modern HEMTs are at the limit of scaling! 14

Solution: MOS gate! InGaAs HEMTs 10-5 x! L g =40 nm V DS =0.5 V Al 2 O 3 (3 nm)/inp (2 nm)/ingaas MOSFET Kim, EDL 2013 Need high-k gate dielectric: HEMT MOSFET! 15

InGaAs MOSFETs with f T =370 GHz (Teledyne/MIT/IntelliEpi/Sematech) Kim, APL 2012 50 40 H 21 Gains [db] 30 20 10 U g MSG f T = 370 GHz f max = 280 GHz V DS =0.5 V 0 10 9 10 10 10 11 Frequency [Hz] Channel: 10 nm In 0.7 Ga 0.3 As Barrier: 1 nm InP + 2 nm Al 2 O 3 L g = 60 nm g m = 2 ms/μm R ON = 220 Ω.μm 16

III-V MOSFET: a >30 year pursuit! GaAs Kohn, EL 1977 GaAs Mimura, EL 1978 Poor electrical characteristics due to oxide/semiconductor interface defects Fermi level pinning 17

Recent breakthrough: oxide/iii-v interfaces with unpinned Fermi level In-situ UHV Ga 2 O 3 -Gd 2 O 3 on GaAs Ex-situ ALD Al 2 O 3 on GaAs Ren, SSE 1997 Ye, EDL 2003 18

Self-cleaning during ALD ALD eliminates surface oxides that pin Fermi level: First observed with Al 2 O 3, then with other high-k dielectrics First seen in GaAs, then in other III-Vs Huang, APL 2005 Clean, smooth interface without surface oxides 19

Interface quality: Al 2 O 3 /InGaAs vs. Al 2 O 3 /Si Al 2 O 3 /Si Al 2 O 3 /InGaAs E v E c E v E c Werner, JAP 2011 Brammertz, APL 2009 Close to conduction band edge, Al 2 O 3 /InGaAs shows comparable interface state density to Al 2 O 3 /Si interface 20

Electron injection velocity: InGaAs vs. Si Measurements of electron injection velocity in HEMTs: E C v inj E V Kim, IEDM 2009 Liu, Springer 2010 Khakifirooz, TED 2008 del Alamo, Nature 2011 v inj (InGaAs) increases with InAs fraction in channel v inj (InGaAs) > 2v inj (Si) at less than half V DD ~100% ballistic transport at L g ~30 nm 21

InGaAs n-mosfet: best candidate for post-si CMOS Si CMOS scaling seriously stressed Moore s law threatened? Intel microprocessors 22

The III-V view 23

The III-V view The Si view 24

CMOS scaling in the 21 st century Si CMOS has entered era of power-constrained scaling : Microprocessor power density saturated at ~100 W/cm 2 Pop, Nano Res 2010 Future scaling demands V DD 25

How to enable further V DD reduction? Transistor is switch: Goals of scaling: reduce transistor footprint reduce V DD extract maximum I ON for given I OFF The path forward: increase electron velocity I ON tighten electron confinement S use InGaAs! 26

L g =30 nm InGaAs HEMT Subthreshold characteristics Kim, EDL 2010 10-3 10-4 V DS = 0.5 V 10-5 I D V DS = 0.05 V I D, I G [A/ m] 10-6 10-7 V DS = 0.5 V 10-8 I G 10-9 V DS = 0.05 V -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 V GS [V] S = 74 mv/dec Sharp subthreshold behavior due to tight electron confinement in quantum well 27

L g =30 nm InGaAs HEMT Subthreshold characteristics Kim, EDL 2010 10-3 10-4 I ON =0.52 ma/μm V DS = 0.5 V 10-5 I D V DS = 0.05 V I D, I G [A/ m] 10-6 10-7 I OFF =100 na/μm V DS = 0.5 V 10-8 I G 10-9 V DS = 0.05 V -1.0-0.8-0.6-0.4-0.2 0.0 0.2 0.4 V GS [V] 0.5 V S = 74 mv/dec At I OFF =100 na/μm and V DD =0.5 V, I ON =0.52 ma/μm 28

InGaAs HEMTs: Benchmarking with Si FOM that integrates short-channel effects and transport: I ON @ I OFF =100 na/µm, V DD =0.5 V Kim EDL 2010 InGaAs HEMT (MIT) IEDM 2008 InGaAs HEMTs: higher I ON for same I OFF than Si 29

III-V MOSFET: possible designs n + n + Recessed S/D QW-MOSFET Regrown S/D QW-MOSFET Trigate MOSFET Nanowire MOSFET 30

Self-Aligned InGaAs QW-MOSFETs (MIT) Scaled barrier (InP: 1 nm + HfO 2 : 2 nm) 10 nm thick channel with InAs core Tight S/D spacing (L side ~30 nm) Process designed to be compatible with Si fab Lin, IEDM 2012 L side 31

L g =30 nm Self-aligned QW-MOSFET At V DS = 0.5 V: g m = 1.4 ms/µm S = 114 mv/dec R ON = 470 m I D (A/ m) 10-3 10-4 10-5 10-6 10-7 10-8 Lin, IEDM 2012 L g =30 nm V DS =0.5 V 50 mv -0.4-0.2 0.0 0.2 V GS (V) 320 280 240 200 160 120 80 S (mv/dec) 32

Scaling and benchmarking I on ( A/ m) 500 400 300 200 100 0 I off =100 na/ m V DD =0.5 V III-V FETs MIT HEMT Planar Trigate This work 40 80 120 160 L g (nm) S min (mv/dec) Lin, IEDM 2012 160 III-V FETs V DS = 0.5 V 140 120 100 80 60 40 80 120 160 L g (nm) MIT HEMT Planar Trigate This work Superior behavior to any planar III-V MOSFET to date Matches performance of Intel s InGaAs Trigate MOSFETs [Radosavljevic, IEDM 2011] 33

Long-channel InGaAs MOSFET Barrier: InP (1 nm) + Al 2 O 3 (0.4 nm) + HfO 2 (2 nm) Lin, IEDM 2012 S = 69 mv/dec at V DS = 50 mv Close to lowest S reported in any III-V MOSFET: 66 mv/dec [Radosavljevic, IEDM 2011] 34

Regrown source/drain InGaAs QW-MOSFET on Si (HKUST) Zhou, IEDM 2012 MOCVD epi growth on Si wafer n + -InGaAs raised source/drain Self-aligned to gate Composite barrier: InAlAs (10 nm) + Al 2 O 3 (4.6 nm) 35

Characteristics of Lg=30 nm MOSFET At VDS=0.5 V: gm = 1.7 ms/µm S = 186 mv/dec RON = 157 Ω.µm Zhou, IEDM 2012 36

Multiple-gate MOSFETs # gates improved electrostatics enhanced scalability FinFET Trigate Nanowire Chen, ICSICT 2008 37

InGaAs Trigate MOSFET (Intel) Radosavljevic, IEDM 2011 H FIN =40 nm Improved subthreshold swing as fin is made thinner 38

InGaAs Nanowire MOSFET (Purdue) 30x30 nm fin L ch = 50 nm Barrier: 10 nm Al 2 O 3 # wires = 4 Gu, IEDM 2011 Gu, APL 2011 Gu, EDL 2012 I on = 720 μa/μm (86 μa/wire) g m = 0.51 ms/μm (61 μs/wire) S = 150 mv/dec 39

Conclusions: exciting future for InGaAs Most promising material for ultra-high frequency and ultra-high speed applications first THz transistor? Most promising material for n-mosfet in a post- Si CMOS logic technology first sub-10 nm CMOS logic? InGaAs + Si integration: THz + CMOS + optics integrated systems? 40