Computation of Lightning Impulse Backflashover Outages Rates on High Voltage Transmission Lines

Size: px
Start display at page:

Download "Computation of Lightning Impulse Backflashover Outages Rates on High Voltage Transmission Lines"

Transcription

1 International Journal of Automation and Power Engineering (IJAPE) Volume Issue, January DOI:./ijape... omputation of Lightning Impulse Backflashover Outages Rates on High Voltage Transmission Lines M. H. Shwehdi *, S. Raja Mohammad * Electrical Engineering Department/ King Faisal University Hofuf Saudi Arabia * mshwehdi@kfu.edu.sa; rsumsudeen@kfu.edu.sa Abstract Lightning impulse has been one of the important problems for insulation design of power systems and it is still the main cause of outages of transmission and distribution lines. The lightning return stroke current and the charge delivered by the stroke are the most important parameters to assess the severity of lightning strokes to power lines and apparatus. This paper presents the effects of many tower, ground parameters on the backfloshover voltage level. Also demonstrate the results used to determine the lightning backflashovers level on KV transmission lines utilized by Saudi Electric ompany (SE) in Saudi Arabia, using two well known approaches IGRE, and the simplified method. The studies include lightning flashovers, backflash analysis, as dependent on the tower design parameters which is considered the main parameters that reduce the rate of lightning bachflashovers in the transmission lines. The study results can be applied to reduce the number lightning flashovers and therefore reduce the transmission lines outages Keywords Lightning Flashovers; Backflash Analysis; Lightning Arresters Introduction The lightning return stroke current and the charge delivered by the stroke are the most important parameters to assess the severity of lightning strokes to power lines and apparatus. The return stroke current is characterized by a rapid rise to the peak, Ip, within a few microseconds and then a relatively slow decay, reaching half of the peak value in tens of microseconds. The return stroke current is specified by its peak value and its waveshape. The wave shape, in turn, is specified by the time from zero to the peak value (tf, front time) and by the time to its subsequent decay to its half value (th, tail time). The tail time being several orders of magnitude longer than the front time, its statistical variation is of lesser importance in the computation of the generated voltage. The generated voltage is a function of the peak current for both the direct and indirect strokes. For backflashes in direct strokes and for indirect strokes the generated voltage is higher the shorter the front time of the return stroke current. The front time (and the tail time, to a lesser extent), influence the withstand capability (volt time characteristics) of the power apparatus. The charge in a stroke signifies the energy transferred to the struck object. The ancillary equipment (e.g., surge protectors) connected near the struck point will be damaged if the charge content of the stroke exceeds the withstand capability of the equipment. The return stroke velocity will affect the component of the voltage which is generated by the induction field of the lightning stroke. Field tests have shown that the parameters of the first stroke are different from that of the subsequent strokes. Lightning Flashes Lightning damages a power apparatus in two ways: (i) it raises the voltage across an apparatus such that the terminals across the struck apparatus spark over causing a short circuit of the system or the voltage punctures through the apparatus electrical insulation, causing permanent damage. (ii) The energy of the lightning stroke may exceed the energy handling capability of the apparatus, causing meltdown or fracture. A lightning flash generally consists of several strokes which lower charges, negative or positive, from the cloud to the ground. The first stroke is most often more severe than the subsequent strokes. Low current continues to flow between two strokes, thus increasing the total energy injected to the struck object. The transient voltage from the lightning strike is generated by: (i) direct stroke and (ii) indirect stroke. For direct

2 International Journal of Automation and Power Engineering (IJAPE) Volume Issue, January strike, it can strike an apparatus. In that case, the apparatus will be permanently damaged. Most often, lightning strikes the phase conductor of the power line. In that case, a traveling voltage wave is generated on the line; it travels along the line and is impressed across the terminals of an apparatus or most often the insulator between the phase conductor and the crossarm of the tower at the end of the span. If the voltage is high enough, the insulator flashes over causing a short circuit of the system. Many overhead power lines are equipped with shield wires to shield the phase conductors. Even then, shielding failures occur when lightning bypasses the shield wires and strikes a phase conductor. When lightning strikes a tower, a traveling voltage is generated which travels back and forth along the tower, being reflected at the tower footing and at the tower top, thus raising the voltages at the cross arms and stressing the insulators. The insulator will flash over if this transient voltage exceeds it s withstand level (backflash). Even if lightning strikes a shield wire, the generated traveling voltage wave will travel to the nearest tower, produce multiple reflections along the tower, causing backflash across an insulator. When lightning hits the ground several hundred meters away from the line (indirect stroke), the electric and magnetic fields of the lightning channel can induce high voltage on the line for the insulators of the low voltage distribution lines to spark over causing a short circuit of the system. Thus, assuming the lightning channel to be a current source, the transient voltages across the insulator of a phase conductor are generated in three ways: (i) lightning striking the phase conductor (shielding failure), (ii) lightning striking the tower or the shield wire (backflash), and (iii) lightning striking the nearby ground (indirect stroke). The severity of these three types of transient voltages is influenced by different lightning parameters. The significance of lightning parameters on power systems is gauged by the severity of the transient overvoltage s they create and the consequent damages to the power system. As mentioned before, these overvoltages are generated by three different ways. omputation of Backflash Rate The overhead ground wires or shield wires have been located so as to minimize the number of lightning strokes that terminate on the phase conductor. The remaining and vast majority of strokes and flashes now terminate on the overhead ground wires. A stroke that forces current to flow down the tower and out on the ground wires. Thus voltage is built up across the line insulation. If these voltages equal or exceed the line FO, flashover occurs. This event is called a backflash. By referring to figure, equations for the crest voltage, the voltage at the tower top prior to any reflections from the footing resistance, and the final voltage can be derived as follows: VTT KspKTT I VTA KspKTA I (.) V R I F e FIG. SURGE VOLTAGES AT THE TOWER AND AROSS THE INSULATION And the current through the footing resistance is Re IR I (.) Ri Where TT KTT Re T ZT t f TA KTA Re T ZT t f (.) KSP R T T S T S T S R T R T... t f t f t f For these equations: Z gri Z T R Z g R i i Re T Ri ZT Ri Ri R (.) Ri Also, the tail of the voltages can be conservatively approximated by a time constant τ: T S (.) Ri That is, the equation for the tail of the surge is ( tt f )/ ett VF e (.) To be complete the definition of the variables are: tf= time to crest of the stroke current, μs

3 International Journal of Automation and Power Engineering (IJAPE) Volume Issue, January = coupling factor ZT= surge impedance of the tower, ohms = surge impedance of the ground wires, ohms TT= tower travel time, μs TA=tower travel time to any location on the tower A, μs TS= travel time of a span, μs I= stroke current, KA IR= current through footing of struck tower, KA Ro= measured or low current footing resistance, ohms Ri= impulse or high current footing resistance, ohms = time constant of tail, μs Now, to provide first estimate of the backflash rate, the BFR, examine figure. The surge voltage on the ground wires produces a surge voltage on the phase conductor equal to the coupling factor times the voltage on the ground wires, or VTT. Also note that the voltage VTA is located on the tower opposite the phase conductor. Therefore, the crest voltage across the insulation V is V IKTA KTT KSP (.) Also, note that the crest voltage VIF across the insulation caused by the footing resistance is VIF Re I (.) For a flashover to occur, the voltage across the insulator V, must be equal to or greater than the FO of the insulation. Replacing V of Eq. (.) with FO, the current obtained is the critical current I at and above which flashover occurs, i.e., FO I (.) KTA KTT KSP Since KTT is in many cases approximately equal to KTA, then approximately, FO I (.) KTT KSP The probability of a flashover is the probability that the stroke current I equals or exceeds the critical current I, or Pr ob I I P I f I di (.) The backflash rate BFR is this probability times the number of strokes, NL, that terminate on the ground wires, or BFR= P I (.) L N Where. h Sg NL Ng (.) Where h is the tower height (meters), Sg is the I horizontal distance between the ground wires (meters), and Ng is the ground flash density (flashes/km year), thus the BFR is in terms of flashovers per km years. The equations for KTT and KI show that the voltage across the insulation increases as the time to crest of the stroke current decreases. This is caused by the tower component of voltage. Thus the critical current increases as the time to crest increases. Therefore, theoretically, all fronts should be considered. To do this, the equation for BFR should be changed to the following: BFR=. NL P(I) (.) alculations & Results The KV HV line of figure whose characteristics are given in table, are used to calculate the backflash rate using different methods. Also, this case study will include the following.. The effect of decrease of resistance from Ro versus Ri.. One versus two shield wires. The effect of under built shield or ground wire FIG. KV TOWER DIMENSIONS As shown in the figure & the backflash rate for the above mentioned high voltage lines with span length of meters and FO of KV has been calculated by using IGRE method software and simplified method. The comparison appears acceptable for the line with tower height of meters, but for tower height of meters the simplified method is inadequate. So, the IGRE method is always the proper tool. BFR, Flashovers/ km-yrs X Ro, ohms IGRE Simplified FIG. OMPARISON OF BFR S FOR IGRE METHOD AND SIMPLIFIED METHOD, KV DOUBLE IRUIT TOWERS WITH TWO GROUND WIRES AND HEIGHT OF METERS

4 International Journal of Automation and Power Engineering (IJAPE) Volume Issue, January BFR, Flashovers/km-yrs X Ro, ohms Simplified IGRE FIG. OMPARISON OF BFR S FOR IGRE METHOD AND SIMPLIFIED METHOD, KV DOUBLE IRUIT TOWERS WITH TWO GROUND WIRES AND HEIGHT OF METERS Using the IGRE method, the BFR of the single circuit KV is shown in Fig. as a function of RO with the ratio ρ/ro as a parameter. To illustrate the effect of the decrease of resistance with current, a curve labeled Ri=RO for which the footing resistance is not decreased is also presented. BFR, Flashovers/km-yrs X Ro, ohms p/ro= p/ro= p/ro= FIG. EFFET OF DEREASE TO HIGH URRENT FOOTING RESISTANE For some applications, where the cost of two shield wires is not economically and technically justified, or where there is low ground flash density, a single shield wire can be used. The single wire increases the value of Re, decreases the coupling factor, and thus increase the BFR. To illustrate, the curves of Fig. have been constructed to compare one and two shield wires for a KV double circuit line and two shield wires for a single circuit KV line. Using one shield wire on the double circuit line essentially doubles the BFR as compared to the two shield wire case. BFR, Flashovers/km-yrs X, ohms Grd Wire Grd Wire FIG. TWO SHIELD WIRES FOR THE KV DOUBLE IRUIT LINE WITH HEIGHT OF M DEREASE THE BFR, P/RO= A ground wire located below the phase conductors cannot truthfully be called a shield wire, since it has no shielding function. Rather, its function is to increase the coupling factor to the lower phases, those phases that are most likely to flashover. For example, for the KV double circuit, two ground wire line with a shield wire height of meters and coupling factor to the top, middle, and bottom phase of.,., and., respectively, installing a ground wire at meters above ground at the center of the tower increases these coupling factors to.,., and., respectively. Thus all coupling factors are increased and are more uniform. Figure shows the dramatic decrease in BFR for this case. BFR, Flashovers/km-yrs X Ro, ohms Grd Wires Grd Wires+under built grd wire FIG. AN UNDERBUILT GROUND WIRE DEREASES THE BFR, KV DOUBLE IRUIT LINE WITH HEIGHT OF M, P/RO= onclusion The most significant parameters of the lightning return stroke to estimate the severity on the power system are: (i) peak current, (ii) current front time, (iii) velocity and (iv) total charge of the flash. insulator string voltage, and hence the outage rate due to backflash. The electromagnetic fields of the lightning channel and the magnetic fields of the traveling current waves along the power line tower will significantly affect the Analytical methods to estimate the backflash outage rate have been proposed, which should result in better prediction of the lightning performance of overhead power lines. Equations were developed to estimate the BFR that include the tower component of voltage; using the IGRE method. This method is sufficiently complex so that the use of the computer program is suggested. The effect of decrease of the concentrated grounds value on the BFR was addressed. Also, the effect of the number of shield wires as well as adding under built shield or ground wire were highlighted. The KV line design from utility is considered very highly engineered, using two ground shield wires with. meter span at each side made almost a full cover for both circuits. This tower can be considered as lightning proof.

5 International Journal of Automation and Power Engineering (IJAPE) Volume Issue, January AKNOWLEDGMENT The authors express appreciation to The Deanship of Research of King Faisal University for continued facilities and financial support. REFERENES Andrew R. Hileman, Insulation oordination for Power Systems, Eastern Hemisphere Distribution, New York,. Dennis W. Lenk, F. Richard Stockum & David E. Grimes, A new approach to distribution arrester design, IEEE Transactions on power delivery, vol., No., April. P. howdhuri, A.K. Mishra and B.W. Mconnell, ʺVolt time characteristics of short air gaps under nonstandard lightning voltage wavesʺ, ibid., Vol., No., pp.,. P. howdhuri, A.K., ʺParameters of Lighting Strokes and Their effect on Power Systemsʺ, Vol., No., pp.,. P. howdhuri, A.K., S. Li and P. Yan ʺRigorous analysis of back flashover outages caused by direct lightning strokes to overhead power linesʺ, IEEE Proceedings,. P. howdhuri, J. G. Anderson, W. A. hisholm, T. E. Field, M. Ishii, J. A. Martinez, M. B. Marz, J. McDaniel, T. R. McDermott, A. M. Mousa,T. Narita, D. K. Nichols, and T. A. Short, Parameters of Lightning Strokes: A Review, IEEE Transactions and Power delivery, March,. R. Thottappillil and M. A. Uman, omparison of lightning return stroke models, J. Geophys. Res., vol., pp.,. V. ooray and R. E. Orville, The effect of the variation of current amplitude, current rise time and return stroke velocity along the return stroke channel on the electromagnetic fields generated by the return stroke, J. Geophys. Res., vol., pp.,.

Parameters Affecting the Back Flashover across the Overhead Transmission Line Insulator Caused by Lightning

Parameters Affecting the Back Flashover across the Overhead Transmission Line Insulator Caused by Lightning Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 10), Cairo University, Egypt, December 19-21, 2010, Paper ID 111. Parameters Affecting the Back Flashover across the

More information

Analysis of lightning performance of 132KV transmission line by application of surge arresters

Analysis of lightning performance of 132KV transmission line by application of surge arresters Analysis of lightning performance of 132KV transmission line by application of surge arresters S. Mohajer yami *, A. Shayegani akmal, A.Mohseni, A.Majzoobi High Voltage Institute,Tehran University,Iran

More information

PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS

PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS 29 th International Conference on Lightning Protection 23 rd 26 th June 2008 Uppsala, Sweden PREVENTING FLASHOVER NEAR A SUBSTATION BY INSTALLING LINE SURGE ARRESTERS Ivo Uglešić Viktor Milardić Božidar

More information

Lightning performance of a HV/MV substation

Lightning performance of a HV/MV substation Lightning performance of a HV/MV substation MAHMUD TAINBA, LAMBOS EKONOMOU Department of Electrical and Electronic Engineering City University London Northampton Square, London EC1V HB United Kingdom emails:

More information

Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters

Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters IEEE PES General Meeting June 23-27, 27, 2007, Tampa Lightning Flashover Rate of an Overhead Transmission Line Protected by Surge Arresters Juan A. Martinez Univ. Politècnica Catalunya Barcelona, Spain

More information

The Many Uses of Transmission Line Arresters

The Many Uses of Transmission Line Arresters Introduction It was not realized at the time, but the 1992 introduction of the polymer-housed transmission line arrester (TLA) was clearly a game changer in the practice of lightning protection of transmission

More information

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages

Session Four: Practical Insulation Co-ordination for Lightning Induced Overvoltages Session Four: ractical Insulation Co-ordination Session Four: ractical Insulation Co-ordination for Lightning Induced Overvoltages Jason Mayer Technical Director, Energy Services, Aurecon Introduction

More information

The Effect of Lightning Parameters on Induced Voltages Caused by Nearby Lightning on Overhead Distribution Conducting Line.

The Effect of Lightning Parameters on Induced Voltages Caused by Nearby Lightning on Overhead Distribution Conducting Line. The Effect of Lightning Parameters on Induced Voltages Caused by Nearby Lightning on Overhead Distribution Conducting Line. J.O. Adepitan, Ph.D. 1 and Prof. E.O. Oladiran 2 1 Department of Physics and

More information

B2-301 IMPROVING DOUBLE CIRCUIT TRANSMISSION LINE RELIABILITY THROUGH LIGHTNING DESIGN

B2-301 IMPROVING DOUBLE CIRCUIT TRANSMISSION LINE RELIABILITY THROUGH LIGHTNING DESIGN 21, rue d'artois, F-7008 Paris http://www.cigre.org B2-301 Session 200 CIGRÉ IMPROVING DOUBLE CIRCUIT TRANSMISSION LINE RELIABILITY THROUGH LIGHTNING DESIGN J. A. (TONY) GILLESPIE & GLENN STAPLETON Powerlink

More information

ABSTRACTS of SESSION 6

ABSTRACTS of SESSION 6 ABSTRACTS of SESSION 6 Paper n 1 Lightning protection of overhead 35 kv lines by antenna-module long flashover arresters Abstract: A long-flashover arrester (LFA) of a new antenna-module type is suggested

More information

Modeling of overhead transmission lines with line surge arresters for lightning overvoltages. Poland

Modeling of overhead transmission lines with line surge arresters for lightning overvoltages. Poland Application of Line Surge Arresters in Power Distribution and Transmission Systems COLLOQUIUM Cavtat 2008 Modeling of overhead transmission lines with line surge arresters for lightning overvoltages M.

More information

2000 Mathematics Subject Classification: 68Uxx/Subject Classification for Computer Science. 281, 242.2

2000 Mathematics Subject Classification: 68Uxx/Subject Classification for Computer Science. 281, 242.2 ACTA UNIVERSITATIS APULENSIS Special Issue SIMULATION OF LIGHTNING OVERVOLTAGES WITH ATP-EMTP AND PSCAD/EMTDC Violeta Chiş, Cristina Băla and Mihaela-Daciana Crăciun Abstract. Currently, several offline

More information

Lightning Performance Improvement of 115 kv and 24 kv Circuits by External Ground in MEA s Distribution System

Lightning Performance Improvement of 115 kv and 24 kv Circuits by External Ground in MEA s Distribution System Lightning Performance Improvement of 115 kv and 24 kv Circuits by External Ground in MEA s Distribution System A. Phayomhom and S. Sirisumrannukul Abstract This paper presents the guidelines for preparing

More information

The line-lightning performance and mitigation studies of shielded steelstructure

The line-lightning performance and mitigation studies of shielded steelstructure The line-lightning performance and mitigation studies of shielded steelstructure distribution lines ASNAWI MOHD BUSRAH, MALIK MOHAMAD Energy System Group TNB Research Sdn Bhd No 1, Lorong Ayer Hitam, 43000

More information

Simplified Approach to Calculate the Back Flashover Voltage of Shielded H.V. Transmission Line Towers

Simplified Approach to Calculate the Back Flashover Voltage of Shielded H.V. Transmission Line Towers Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 1), Cairo University, Egypt, December 19-1, 1, Paper ID 1. Simplified Approach to Calculate the Back Flashover Voltage

More information

Substation Insulation Coordination Study

Substation Insulation Coordination Study [Type the document title] Substation nsulation Coordination Study MEG Energy Christina Lake Regional Project nsulation Coordination Schematic X0057 15km Lines TWR3 TWR2 TWR1 Afrm1 16 230k Source CCT 100

More information

Utility System Lightning Protection

Utility System Lightning Protection Utility System Lightning Protection Many power quality problems stem from lightning. Not only can the high-voltage impulses damage load equipment, but the temporary fault that follows a lightning strike

More information

ABSTRACT 1.0 INTRODUCTION LIST OF SYMBOLS

ABSTRACT 1.0 INTRODUCTION LIST OF SYMBOLS Lightning protection of pole-mounted transformers and its applications in Sri Lanka Prof. J R Lucas* and D A J Nanayakkara # *University of Moratuwa, # Lanka Transformers Limited ABSTRACT This paper presents

More information

Simulation of Lightning Transients on 110 kv overhead-cable transmission line using ATP-EMTP

Simulation of Lightning Transients on 110 kv overhead-cable transmission line using ATP-EMTP Simulation of Lightning Transients on 110 kv overhead-cable transmission line using ATP-EMTP Kresimir Fekete 1, Srete Nikolovski 2, Goran Knezević 3, Marinko Stojkov 4, Zoran Kovač 5 # Power System Department,

More information

Lightning Overvoltage Performance of 110 kv Air-Insulated Substation

Lightning Overvoltage Performance of 110 kv Air-Insulated Substation Lightning Overvoltage Performance of 11 kv Air-Insulated Substation B. Filipović-Grčić, B. Franc, I. glešić, V. Milardić, A. Tokić Abstract--This paper presents the analysis of lightning overvoltage performance

More information

TECHNICAL NOTE 2.0. Overvoltages origin and magnitudes Overvoltage protection

TECHNICAL NOTE 2.0. Overvoltages origin and magnitudes Overvoltage protection ECHNICAL NOE 2.0 Overvoltages origin and magnitudes Overvoltage protection he ECHNICAL NOES (N) are intended to be used in conjunction with the APPLICAION GIDELINES Overvoltage protection Metaloxide surge

More information

Maximum Lightning Overvoltage along a Cable due to Shielding Failure

Maximum Lightning Overvoltage along a Cable due to Shielding Failure Maximum Lightning Overvoltage along a Cable due to Shielding Failure Thor Henriksen Abstract--This paper analyzes the maximum lightning overvoltage due to shielding failure along a cable inserted in an

More information

Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet

Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet ArresterWorks Insulation Coordination Fundamentals Where Arrester and Insulator Characteristics Meet 6/23/2012 Jonathan Woodworth Transient overvoltages are a fact of life on power systems. Arresters can

More information

INSTALLATION OF LSA ON A 400 KV DOUBLE-CIRCUIT LINE IN RUSSIA

INSTALLATION OF LSA ON A 400 KV DOUBLE-CIRCUIT LINE IN RUSSIA Application of Line Surge Arresters in Power Distribution and Transmission Systems COLLOQUIUM Cavtat 2008 INSTALLATION OF LSA ON A 400 KV DOUBLE-CIRCUIT LINE IN RUSSIA L. STENSTRÖM 1), J. TAYLOR, N.T.

More information

Electric Stresses on Surge Arrester Insulation under Standard and

Electric Stresses on Surge Arrester Insulation under Standard and Chapter 5 Electric Stresses on Surge Arrester Insulation under Standard and Non-standard Impulse Voltages 5.1 Introduction Metal oxide surge arresters are used to protect medium and high voltage systems

More information

Lightning overvoltage and protection of power substations

Lightning overvoltage and protection of power substations Lightning overvoltage and protection of power substations Mahmud Trainba 1, Christos A. Christodoulou 2, Vasiliki Vita 1,2, Lambros Ekonomou 1,2 1 Department of Electrical and Electronic Engineering, City,

More information

Hazard of Induced Overvoltage to Power Distribution Lines Jiang Jun, Zhao Rui, Chen Jingyang, Tian Hua, Han Lin

Hazard of Induced Overvoltage to Power Distribution Lines Jiang Jun, Zhao Rui, Chen Jingyang, Tian Hua, Han Lin 4th International Conference on Machinery, Materials and Computing Technology (ICMMCT 2016) Hazard of Induced Overvoltage to Power Distribution Lines Jiang Jun, Zhao Rui, Chen Jingyang, Tian Hua, Han Lin

More information

Effective Elimination Factors to the Generated Lightning Flashover in High Voltage Transmission Network

Effective Elimination Factors to the Generated Lightning Flashover in High Voltage Transmission Network International Journal on Electrical Engineering and Informatics - Volume 9, Number, September 7 Effective Elimination Factors to the Generated Lightning Flashover in High Voltage Transmission Network Abdelrahman

More information

Analysis of current distribution among long-flashover arresters for 10 kv overhead line protection against direct lightning strikes

Analysis of current distribution among long-flashover arresters for 10 kv overhead line protection against direct lightning strikes 2014 International onference on Lightning Protection (ILP), Shanghai, hina nalysis of current distribution among long-flashover arresters for 10 kv overhead line protection against direct lightning strikes

More information

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS

When surge arres t ers are installed close to a power transformer, overvoltage TRANSFORMER IN GRID ABSTRACT KEYWORDS TRANSFORMER IN GRID When surge arres t ers are installed close to a power transformer, they provide protection against lightning overvoltage ABSTRACT The aim of this research article is to determine the

More information

Effect of Surge Arrester on Overhead Transmission Lines as Shield against Over Voltage

Effect of Surge Arrester on Overhead Transmission Lines as Shield against Over Voltage Effect of Surge Arrester on Overhead Transmission Lines as Shield against Over Voltage Swati Agrawal Assistant Professor, MATS University, Raipur (C.G) Abstract: This paper describes the usage of surge

More information

Study of Tower Grounding Resistance Effected Back Flashover to 500 kv Transmission Line in Thailand by using ATP/EMTP

Study of Tower Grounding Resistance Effected Back Flashover to 500 kv Transmission Line in Thailand by using ATP/EMTP Study of Tower Grounding Resistance Effected Back Flashover to 500 kv Transmission Line in Thailand by using ATP/EMTP B. Marungsri, S. Boonpoke, A. Rawangpai, A. Oonsivilai, and C. Kritayakornupong Abstract

More information

Research on Lightning Over-voltage and Lightning Protection of 500kV. HGIS Substation

Research on Lightning Over-voltage and Lightning Protection of 500kV. HGIS Substation International Conference on Manufacturing Science and Engineering (ICMSE 2015) Research on Lightning Over-voltage and Lightning Protection of 500kV HGIS Substation Tong Wang1, a *and Youping Fan1, b 1

More information

Analysis of Arrester Energy for 132kV Overhead Transmission Line due to Back Flashover and Shielding Failure

Analysis of Arrester Energy for 132kV Overhead Transmission Line due to Back Flashover and Shielding Failure nalysis of rrester Energy for 132kV Overhead ransmission Line due to Back Flashover and Shielding Failure Nor Hidayah Nor Hassan 1,a, b. Halim bu Bakar 2,b, Hazlie Mokhlis 1, Hazlee zil Illias 1 1 Department

More information

Lightning transient analysis in wind turbine blades

Lightning transient analysis in wind turbine blades Downloaded from orbit.dtu.dk on: Aug 15, 2018 Lightning transient analysis in wind turbine blades Candela Garolera, Anna; Holbøll, Joachim; Madsen, Søren Find Published in: Proceedings of International

More information

Modeling insulation in high-voltage substations

Modeling insulation in high-voltage substations 38 ABB REVIEW DESIGNED FOR SAFETY DESIGNED FOR SAFETY Modeling insulation in high-voltage substations The goal of insulation coordination is to determine the dielectric strength of transformers and other

More information

Simulation of characteristics of impulse voltage generator for testing of equipment using MATLAB Simulink

Simulation of characteristics of impulse voltage generator for testing of equipment using MATLAB Simulink International Journal of Advances in Engineering, 2015, 1(2), 45-50 ISSN: 2394-9260 (printed version); ISSN: 2394-9279 (online version) url:http://www.venuspublications.com/ijae.html RESEARCH ARTICLE Simulation

More information

Comparison between Different InstallationLocations of Surge Arresters at Transmission Line Using EMTP-RV

Comparison between Different InstallationLocations of Surge Arresters at Transmission Line Using EMTP-RV No. E-13-HVS-2308 Comparison between Different InstallationLocations of Surge Arresters at Transmission Line Using EMT-RV Soheil Derafshi Beigvand, Mohammad Morady Electrical Engineering Department, Engineering

More information

High voltage engineering

High voltage engineering High voltage engineering Overvoltages power frequency switching surges lightning surges Overvoltage protection earth wires spark gaps surge arresters Insulation coordination Overvoltages power frequency

More information

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION

LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION LIGHTNING OVERVOLTAGES AND THE QUALITY OF SUPPLY: A CASE STUDY OF A SUBSTATION Andreas SUMPER sumper@citcea.upc.es Antoni SUDRIÀ sudria@citcea.upc.es Samuel GALCERAN galceran@citcea.upc.es Joan RULL rull@citcea.upc.es

More information

The Lightning Event. White Paper

The Lightning Event. White Paper The Lightning Event White Paper The Lightning Event Surge Protection Solutions for PTC 1 The Lightning Event There are volumes of information available on what we believe lightning is and how we think

More information

WORLD MEETING ON LIGHTNING Lightning Performance Research on Mexican High Voltage Transmission Lines

WORLD MEETING ON LIGHTNING Lightning Performance Research on Mexican High Voltage Transmission Lines WORLD MEETING ON LIGHTNING 2016 Lightning Performance Research on Mexican High Voltage Transmission Lines Carlos ROMUALDO-TORRES, PhD (Eng) Instituto de Investigaciones Eléctricas MEXICO This paper describes:

More information

Including Surge Arresters in the Lightning Performance Analysis of 132kV Transmission Line

Including Surge Arresters in the Lightning Performance Analysis of 132kV Transmission Line ncluding Surge Arresters in the Lightning Performance Analysis of 32kV Transmission Line Saeed Mohajeryami, Milad Doostan University of North Carolina at Charlotte Department of Electrical and Computer

More information

OVERVOLTAGE PROTECTION OF POLE MOUNTED DISTRIBUTION TRANSFORMERS

OVERVOLTAGE PROTECTION OF POLE MOUNTED DISTRIBUTION TRANSFORMERS PERODCA POLYTECHNCA SER. EL. ENG. VOL. 41, NO. 1, PP. 27-40 (1997) OVERVOLTAGE PROTECTON OF POLE MOUNTED DSTRBUTON TRANSFORMERS Attila SOMOGY and Lasz16 VZ Department of Electric Power Systems Technical

More information

X International Symposium on Lightning Protection

X International Symposium on Lightning Protection X International Symposium on Lightning Protection 9 th -13 th November, 2009 Curitiba, Brazil LIGHTNING SURGES TRANSFERRED TO THE SECONDARY OF DISTRIBUTION TRANSFORMERS DUE TO DIRECT STRIKES ON MV LINES,

More information

APPLICATION OF LONG FLASHOVER ARRESTERS FOR IMPROVEMENT OF LIGHTNING PROTECTION AND OPERATING VOLTAGE RELIABILITY OF DISTRIBUTION LINES

APPLICATION OF LONG FLASHOVER ARRESTERS FOR IMPROVEMENT OF LIGHTNING PROTECTION AND OPERATING VOLTAGE RELIABILITY OF DISTRIBUTION LINES APPLICATION OF LONG FLASHOVER ARRESTERS FOR IMPROVEMENT OF LIGHTNING PROTECTION AND OPERATING VOLTAGE RELIABILITY OF DISTRIBUTION LINES G. V. Podporkin, V. E. Pilshikov, A. D. Sivaev Streamer Electric

More information

The relationship between operating maintenance and lightning overvoltage in distribution networks based on PSCAD/EMTDC

The relationship between operating maintenance and lightning overvoltage in distribution networks based on PSCAD/EMTDC The relationship between operating maintenance and lightning overvoltage in distribution networks based on PSCAD/EMTDC Xiaojun Chena *, Wenjie Zhengb, Shu Huangc, Hui Chend Electric Power Research Institute

More information

7P Series - Surge Protection Device (SPD) Features 7P P P

7P Series - Surge Protection Device (SPD) Features 7P P P Features 7P.09.1.255.0100 7P.01.8.260.1025 7P.02.8.260.1025 SPD Type 1+2 Surge arrester range - single phase system / three phase system Surge arresters suitable in low-voltage applications in order to

More information

CHOICE OF MV FEEDER BIL TO MAXIMIZE QOS AND MINIMIZE EQUIPMENT FAILURE

CHOICE OF MV FEEDER BIL TO MAXIMIZE QOS AND MINIMIZE EQUIPMENT FAILURE CHOICE OF MV FEEDER BIL TO MAXIMIZE QOS AND MINIMIZE EQUIPMENT FAILURE Willem DIRKSE VAN SCHALKWYK ESKOM - South Africa vschalwj@eskom.co.za ABSTRACT A high BIL (300 kv) on a MV feeder ensures that no

More information

Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line

Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line NATIONAL POWER SYSTEMS CONFERENCE NPSC22 563 Influence Of Lightning Strike Location On The Induced Voltage On a Nearby Overhead Line P. Durai Kannu and M. Joy Thomas Abstract This paper analyses the voltages

More information

MODIFICATION OF THE ARRESTER ARRANGEMENT WHEN CONVERTING THE METHOD OF NEUTRAL TREATMENT

MODIFICATION OF THE ARRESTER ARRANGEMENT WHEN CONVERTING THE METHOD OF NEUTRAL TREATMENT MODIFICATION OF THE ARRESTER ARRANGEMENT WHEN CONVERTING THE METHOD OF NEUTRAL TREATMENT Claus NEUMANN Darmstadt University of Technology Germany claus.neumann@amprion.net Klaus WINTER Swedish Neutral

More information

The impact of recent advances on lightning measurement and detection on the protection of transmission and distribution lines

The impact of recent advances on lightning measurement and detection on the protection of transmission and distribution lines Current [ka] Current [ka] 1 The impact of recent advances on lightning measurement and detection on the protection of transmission and distribution lines Silverio Visacro, IEEE Member Abstract Recent technological

More information

Computer Based Model for Design Selection of Lightning Arrester for 132/33kV Substation

Computer Based Model for Design Selection of Lightning Arrester for 132/33kV Substation IOSR Journal of Engineering (IOSRJEN) ISSN (e): 2250-3021, ISSN (p): 2278-8719 Vol. 04, Issue 05 (May. 2014), V2 PP 32-36 www.iosrjen.org Computer Based Model for Design Selection of Lightning Arrester

More information

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables J Electr Eng Technol Vol. 9, No. 2: 628-634, 2014 http://dx.doi.org/10.5370/jeet.2014.9.2.628 ISSN(Print) 1975-0102 ISSN(Online) 2093-7423 A Study on Lightning Overvoltage Characteristics of Grounding

More information

Analyzing and Modeling the Lightning Transient Effects of 400 KV Single Circuit Transmission Lines

Analyzing and Modeling the Lightning Transient Effects of 400 KV Single Circuit Transmission Lines International Journal of Science and Engineering Investigations vol. 2, issue 19, August 2013 ISSN: 2251-8843 Analyzing and Modeling the Lightning Transient Effects of 400 KV Single Circuit Transmission

More information

What is the Value of a Distribution Arrester

What is the Value of a Distribution Arrester ArresterWorks What is the Value of a Distribution Arrester 9/14/2012 Jonathan Woodworth ArresterFacts 038 Introduction A question I get quite frequently is: How much is a Distribution Arrester worth? I

More information

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation

The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation The Analysis Results of Lightning Overvoltages by EMTP for Lightning Protection Design of 500 kv Substation J. W. Woo, J. S. Kwak, H. J. Ju, H. H. Lee, J. D. Moon Abstract--To meet increasing power demand,

More information

Earthing of Electrical Devices and Safety

Earthing of Electrical Devices and Safety Earthing of Electrical Devices and Safety JOŽE PIHLER Faculty of Electrical Engineering and Computer Sciences University of Maribor Smetanova 17, 2000 Maribor SLOVENIA joze.pihler@um.si Abstract: - This

More information

Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines

Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines 7th Asia-Pacific International Conference on Lightning, November 1-4, 2011, Chengdu, China Simulation Study on Transient Performance of Lightning Over-voltage of Transmission Lines Zihui Zhao, Dong Dang,

More information

Transmission of Electrical Energy

Transmission of Electrical Energy Transmission of Electrical Energy Electrical energy is carries by conductors such as overhead transmission lines and underground cables. The conductors are usually aluminum cable steel reinforced (ACSR),

More information

Lightning current field measurement on a transmission line, comparison with electromagnetic transient calculations

Lightning current field measurement on a transmission line, comparison with electromagnetic transient calculations Lightning current field measurement on a transmission line, comparison with electromagnetic transient calculations A. Xemard, M. Mesic, T. Sadovic, D. Marin, S. Sadovic Abstract- A lightning experiment

More information

EXPERIMENTAL ISSUES OF OVERVOLTAGE COORDINATION

EXPERIMENTAL ISSUES OF OVERVOLTAGE COORDINATION EXPERIMENTAL ISSUES OF OVERVOLTAGE COORDINATION Gábor GÖCSEI Bálint NÉMETH Richárd CSELKÓ BUTE, Hungary BUTE, Hungary BUTE, Hungary gocsei.gabor@vet.bme.hu nemeth.balint@vet.bme.hu cselko.richard@vet.bme.hu

More information

Estimating BFOR on HV Transmission Lines Using EMTP and Curve of Limiting Parameters

Estimating BFOR on HV Transmission Lines Using EMTP and Curve of Limiting Parameters Estimating BFOR on HV Transmission Lines Using EMTP and Curve of Limiting Parameters Petar Sarajcev, Josip Vasilj, Patrik Sereci Abstract--This paper presents a method for estimating the backflashover

More information

Electric Power Systems Research

Electric Power Systems Research Electric Power Systems Research 94 (2013) 54 63 Contents lists available at SciVerse ScienceDirect Electric Power Systems Research j ourna l ho me p a ge: www.elsevier.com/locate/epsr Calculation of overvoltage

More information

Power Quality and Reliablity Centre

Power Quality and Reliablity Centre Technical Note No. 8 April 2005 Power Quality and Reliablity Centre TRANSIENT OVERVOLTAGES ON THE ELECTRICITY SUPPLY NETWORK CLASSIFICATION, CAUSES AND PROPAGATION This Technical Note presents an overview

More information

Accuracy of Lightning Surge Analysis of Tower Surge Response

Accuracy of Lightning Surge Analysis of Tower Surge Response Accuracy of ightning Surge Analysis of Tower Surge esponse Naoki Itamoto, Hironao Kawamura, Kazuo Shinjo, Hideki Motoyama, Masaru Ishii Abstract--This paper presents a comparison between the measured and

More information

EE 1402 HIGH VOLTAGE ENGINEERING

EE 1402 HIGH VOLTAGE ENGINEERING EE 1402 HIGH VOLTAGE ENGINEERING Unit 5 TESTS OF INSULATORS Type Test To Check The Design Features Routine Test To Check The Quality Of The Individual Test Piece. High Voltage Tests Include (i) Power frequency

More information

Experimental Study on Lightning Surge Response of 500kV Transmission Tower with Overhead Lines

Experimental Study on Lightning Surge Response of 500kV Transmission Tower with Overhead Lines Experimental Study on Lightning Surge Response of 500kV Transmission Tower with Overhead Lines H. Motoyama, CRIEPI, Japan motoyama@criepi.denken.or.jp Y. Kinoshita, Chube Electric Power Co., Inc., Japan

More information

SCIENCE & TECHNOLOGY

SCIENCE & TECHNOLOGY Pertanika J. Sci. & Technol. 25 (S): 181-188 (2017) SCIENCE & TECHNOLOGY Journal homepage: http://www.pertanika.upm.edu.my/ Analysis of Ground Potential Distribution under Lightning Current Condition Chandima

More information

A Study of Lightning Surge on Underground Cables in a Cable Connection Station

A Study of Lightning Surge on Underground Cables in a Cable Connection Station Proceedings of the 6th WSEAS International Conference on Instrumentation, Measurement, Circuits & Systems, Hangzhou, China, April 1517, 2007 198 A Study of Lightning Surge on Under Cables in a Cable Connection

More information

Statistical Lightning Simulations for a HV "Mixed" Overhead-Cable Line: Preliminary Studies

Statistical Lightning Simulations for a HV Mixed Overhead-Cable Line: Preliminary Studies 2014 International Conference on Lightning Protection (ICLP), Shanghai, China Statistical Lightning Simulations for a HV "Mixed" Overhead-Cable Line: Preliminary Studies F. M. Gatta, A. Geri, S. Lauria

More information

Lightning Protection of Distribution Substations by Using Metal Oxide Gapless Surge Arresters Connected in Parallel

Lightning Protection of Distribution Substations by Using Metal Oxide Gapless Surge Arresters Connected in Parallel International Journal of Power and Energy Research, Vol. 1, No. 1, April 2017 https://dx.doi.org/10.22606/ijper.2017.11001 1 Lightning Protection of Distribution Substations by Using Metal Oxide Gapless

More information

Lightning Current Observation on UHVAC Transmission Lines by Improved Magnetic Steel Rod Method

Lightning Current Observation on UHVAC Transmission Lines by Improved Magnetic Steel Rod Method Sensors & Transducers 2014 by IFSA Publishing, S. L. http://www.sensorsportal.com Lightning Current Observation on UHVAC Transmission Lines by Improved Magnetic Steel Rod Method Anfeng Jiang, Zhengcai

More information

GIS Disconnector Switching Operation VFTO Study

GIS Disconnector Switching Operation VFTO Study GIS Disconnector Switching Operation VFTO Study Mariusz Stosur, Marcin Szewczyk, Wojciech Piasecki, Marek Florkowski, Marek Fulczyk ABB Corporate Research Center in Krakow Starowislna 13A, 31-038 Krakow,

More information

Mitigation of Back-Flashovers for 110-kV Lines at Multi-Circuit Overhead Line Towers

Mitigation of Back-Flashovers for 110-kV Lines at Multi-Circuit Overhead Line Towers Mitigation of Back-Flashovers for -kv Lines at Multi-Circuit Overhead Line Towers Mustafa Kizilcay Abstract--An increase of back-flashovers in a -kv system has been observed along an overhead line route

More information

In order to minimise distribution (11 and 22 kv) feeder breaker

In order to minimise distribution (11 and 22 kv) feeder breaker Lightning protection for equipment on MV feeders By WJD van Schalkwyk and M du Preez, Eskom This article presents the influence of lightning on MV feeders supplying small power users (400/230 V) with focus

More information

CHAPTER 2. v-t CHARACTERISTICS FOR STANDARD IMPULSE VOLTAGES

CHAPTER 2. v-t CHARACTERISTICS FOR STANDARD IMPULSE VOLTAGES 23 CHAPTER 2 v-t CHARACTERISTICS FOR STANDARD IMPULSE VOLTAGES 2.1 INTRODUCTION For reliable design of power system, proper insulation coordination among the power system equipment is necessary. Insulation

More information

High Voltage Induced By Transmission Lines Due To Lightning Case Study

High Voltage Induced By Transmission Lines Due To Lightning Case Study High Voltage Induced By Transmission Lines Due To Lightning Case Study K. Jayavelu 1 & F. Max Savio 2 1&2 Department of Electrical and Electronics Engineering, Jeppiaar Institute of Technology, India Abstract

More information

Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models

Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models International Journal of Electrical & Computer Sciences IJECS-IJENS Vol:15 No:03 39 Simulation and Analysis of Lightning on 345-kV Arrester Platform Ground-Leading Line Models Shen-Wen Hsiao, Shen-Jen

More information

Lightning phenomena and its effect on transmission line

Lightning phenomena and its effect on transmission line Recent Research in Science and Technology 2014, 6(1): 183-187 ISSN: 2076-5061 Available Online: http://recent-science.com/ Lightning phenomena and its effect on transmission line Swati Agrawal and Manoj

More information

Electromagnetic Shielding Analysis of Buildings Under Power Lines Hit by Lightning

Electromagnetic Shielding Analysis of Buildings Under Power Lines Hit by Lightning Electromagnetic Shielding Analysis of Buildings Under Power Lines Hit by Lightning S. Ladan, A. Aghabarati, R. Moini, S. Fortin and F.P. Dawalibi Safe Engineering Services and Technologies ltd. Montreal,

More information

HIGH VOLTAGE Insulation Coordination

HIGH VOLTAGE Insulation Coordination HIGH VOLTAGE Insulation Coordination Assistant Professor Suna BOLAT KRÖGER Eastern Mediterranean University Department of Electric & Electronic Engineering Insulation coordination The term Insulation Co-ordination

More information

Fig.1. Railway signal system

Fig.1. Railway signal system 2 2016 International Conference on Lightning Protection (ICLP), Estoril, Portugal Induced Surges in Railway Signaling Systems during an Indirect Lightning Strike Ruihan Qi*, Binghao Li and Y. Du Dept.

More information

Investigation of Transmission Line Overvoltages and their Deduction Approach

Investigation of Transmission Line Overvoltages and their Deduction Approach Investigation of Transmission Line Overvoltages and their Deduction Approach A. Hayati Soloot, A. Gholami, E. Agheb, A. Ghorbandaeipour, and P. Mokhtari Abstract The two significant overvoltages in power

More information

A SIMPLIFIED LIGHTNING MODEL FOR METAL OXIDE SURGE ARRESTER. K. P. Mardira and T. K. Saha s: and

A SIMPLIFIED LIGHTNING MODEL FOR METAL OXIDE SURGE ARRESTER. K. P. Mardira and T. K. Saha  s: and 1 A SIMPLIFIED LIGHTNING MODEL FOR METAL OXIDE SURGE ARRESTER K. P. Mardira and T. K. Saha Emails: mardira@itee.uq.edu.au and saha@itee.uq.edu.au *School of Information Technology and Electrical Engineering

More information

Lightning Overvoltages on Low Voltage Circuit Caused by Ground Potential Rise

Lightning Overvoltages on Low Voltage Circuit Caused by Ground Potential Rise Lightning Overvoltages on Low Voltage Circuit Caused by Ground Potential Rise S. Sekioka, K. Aiba, S. Okabe Abstract-- The lightning overvoltages incoming from an overhead line such as a power distribution

More information

The Use of a Special Grounding Arrangement to Improve the Lightning Performance of Transmission Line

The Use of a Special Grounding Arrangement to Improve the Lightning Performance of Transmission Line 1 The Use of a Special Grounding Arrangement to Improve the Lightning Performance of Transmission Line Alexander B. Lima, José Osvaldo S. Paulino, Wallace C. Boaventura Abstract -- This paper presents

More information

New Modeling of Metal Oxide Surge Arresters

New Modeling of Metal Oxide Surge Arresters Signal Processing and Renewable Energy September 2017, (pp.27-37) ISSN: 2588-7327 New Modeling of Metal Oxide Surge Arresters Seyed Mohammad Hassan Hosseini 1 *, Younes Gharadaghi 1 1 Electrical Engineering

More information

The Role of the Grounding System in Electronics Lightning Protection

The Role of the Grounding System in Electronics Lightning Protection ILPS 2016 - International Lightning Protection Symposium April 21-22, 2016 Porto Portugal The Role of the Grounding System in Electronics Lightning Protection Roberto Menna Barreto SEFTIM Brazil Rio de

More information

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP IJSTE - International Journal of Science Technology & Engineering Volume 3 Issue 2 August 216 ISSN (online): 2349-784X Analysis of MOV Surge Arrester Models by using Alternative Transient Program ATP/EMTP

More information

A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid

A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid A Case Study on Selection and Application of Lightning Arrester and Designing its Suitable Grounding Grid 1 Arpan K. Rathod, 2 Chaitanya H. Madhekar Students Electrical Engineering, VJTI, Mumbai, India

More information

Protection against unacceptable voltages in railway systems

Protection against unacceptable voltages in railway systems Bernhard Richter*, Alexander Bernhard*, Nick Milutinovic** SUMMERY Based on the system voltages for AC and DC railway systems the required voltage ratings for modern gapless MO surge arresters are given.

More information

Overvoltage Protection

Overvoltage Protection Overvoltage Protection S T U D E N T M A N U A L March 31, 2005 2 STUDENT TRAINING MANUAL Prerequisites: Single-Phase Transformer Load Checks Objectives: From memory, you will be able to describe the electrical

More information

Back-flashover Investigation of HV Transmission Lines Using Transient Modeling of the Grounding Systems

Back-flashover Investigation of HV Transmission Lines Using Transient Modeling of the Grounding Systems Back-flashover Investigation of HV Transmission Lines Using Transient Modeling of the Grounding Systems F. Amanifard* and N. Ramezani** Abstract: The article presents the transients analysis of the substation

More information

Simulation of Short Circuit and Lightning Transients on 110 kv Overhead and Cable Transmission Lines Using ATP-EMTP

Simulation of Short Circuit and Lightning Transients on 110 kv Overhead and Cable Transmission Lines Using ATP-EMTP Simulation of Short Circuit and Lightning Transients on 110 kv Overhead and Cable Transmission Lines Using ATP-EMTP Predrag Maric 1, Srete Nikolovski 1, Laszlo Prikler 2 Kneza Trpimira 2B 1 Faculty of

More information

Mitigation Methods to Improve the Lightning Performance of Hybrid Transmission Line

Mitigation Methods to Improve the Lightning Performance of Hybrid Transmission Line Mitigation Methods to Improve the Lightning Performance of Hybrid Transmission Line Andrzej Mackow Mustafa Kizilcay Dept. of Electrical Eng. and Computer Science University Siegen Siegen, Germany andrzej.mackow@uni-siegen.de

More information

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS

Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS Calculation of Transient Overvoltages by using EMTP software in a 2-Phase 132KV GIS M. Kondalu, Dr. P.S. Subramanyam Electrical & Electronics Engineering, JNT University. Hyderabad. Joginpally B.R. Engineering

More information

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems)

Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) Transmission Line Transient Overvoltages (Travelling Waves on Power Systems) The establishment of a potential difference between the conductors of an overhead transmission line is accompanied by the production

More information

Estimating the Lightning Performance of a Multi- Circuit Transmission Tower

Estimating the Lightning Performance of a Multi- Circuit Transmission Tower Estimating the Lightning Performance of a Multi Circuit Transmission Tower Pawel Malicki, Andrzej Mackow and Mustafa Kizilcay University of Siegen Chair of Electrical Power Systems Siegen, Germany pawel.malicki@unisiegen.de

More information

EVALUATION OF LIGHTNING-INDUCED VOLTAGES ON LOW-VOLTAGE DISTRIBUTION NETWORKS

EVALUATION OF LIGHTNING-INDUCED VOLTAGES ON LOW-VOLTAGE DISTRIBUTION NETWORKS IX International Symposium on Lightning Protection 6 th - th November 7 Foz do Iguaçu, Brazil EVALUATION OF LIGHTNING-INDUCED VOLTAGES ON LOW-VOLTAGE DISTRIBUTION NETWORKS Fernando H. Silveira Silvério

More information