OSCILLATORS. Introduction

Size: px
Start display at page:

Download "OSCILLATORS. Introduction"

Transcription

1 OSILLATOS Introduction Oscillators are essential components in nearly all branches o electrical engineering. Usually, it is desirable that they be tunable over a speciied requency range, one example being the signal generator in the lab, which allows you to adjust the put requency over several decades, as well as select the wave shape (e.g., sinusoidal, square, sawtooth, etc.). Another application in which oscillators ind utility is in receivers; a voltage-controlled oscillator is programmed by a voltage source to a requency very near the incoming F signal, then multiplied by this F signal resulting in a signal much lower in requency (and hence, easier to process) than the original F signal. In this lab, the basics o global eedback and instability criteria or oscillators will be reviewed, ollowed by the design o some very common oscillators.

2 Theory Oscillators at the System Level To understand the undamentals o oscillators, it is necessary to review the system-level global eedback diagram o Fig.. + v sum v in A v Σ - v Fig. Global eedback diagram. ecall that the transer unction o this system is A + A. Now, imagine or a moment that the eedback network is disconnected rom the summer; under this condition, and assuming v in is a sinusoid, the put o the open-loop block is a sinusoid whose amplitude is A times that o v in, while the eedback network put is a sinusoid o amplitude A times that o v in. I the loop gain A is designed or a magnitude o and a phase o 80 degrees at the requency o v in, then the eedback network put is an inverted copy o v in. econnecting the eedback network to the inverting node o the summer results in a net 360 degree phase shit, and thus the put o the eedback network acts exactly like the external source v in, save or a delay in propagating the signal around the loop beore reconnecting the eedback network. It ollows that i v in is removed, the closed-loop put remains unchanged, as the loop gain is just able to sustain the oscillation instigated by v in. Key problem #: Time-invariance The main point is that eedback and a loop gain o are essential in designing an oscillator. The tricky part is in achieving and maintaining a loop gain o. Even i one is able to get a loop gain o precisely (equivalent to placing a pair o poles EXATLY on the jω-axis), one has to deal with the real-world act that systems are not time-invariant, the result being that system characteristics like pole locations drit ever so slightly with time. In systems where the poles are real, the eect is seldom important or noticeable, but with an oscillator, this time-invariance is crucial: i the poles drit to the right, the positive real part causes the put oscillation to grow unbounded, whereas i the poles shit let, the associated positive damping actor causes the put oscillation to decay with time. onclusion: oscillators need dynamic eedback to sense time-varying luctuations in the pole locations and pull the poles back toward the jω-axis as they drit.

3 Key problem #: Linearity Another problem deals with the external input, v in : an oscillator is supposed to work with an input (think how silly it would be i the signal generator in the lab required a sinusoidal input to get started what would generate that sine wave?). The good news is that reality provides the necessary input in the orm o noise - noise or our purposes contains all spectral components, so the oscillator resonant requency is present). The bad news is that the oscillator described so ar is linear, thus the put amplitude is proportional to the magnitude o the glitch that triggers the oscillation. A well-designed oscillator has a ixed put amplitude, independent o stimulus; such behavior is non-linear. onclusion: oscillators require non-linearity and dynamic eedback to work properly. Though this may sound like two extra design burdens, in reality, there is only one burden, as the appropriate non-linearity can implement the requisite dynamic eedback! The idea is that the non-linearity be transparent to the system while the amplitude is the desired value, but whenever the amplitude deviates rom this value (either because the stimulus is o such a large value that linearity is a problem, or because time-invariance has caused the poles to drit, changing the loop gain and hence the put amplitude) the non-linearity kicks in, limiting the amplitude. Non-linear Square-Wave Oscillator The irst oscillator considered in this lab exploits the positive eedback seen a ew labs back with the Schmitt trigger. The only dierences between the oscillator and the Schmitt trigger are that one o the resistors is replaced by a capacitor (intuition suggests the necessity o a dynamic element, since the put changes with time with no driving input!), and the reerence voltage o the Schmitt trigger is now derived via negative eedback. The oscillator is shown below: v Fig. Square-wave oscillator variant o Schmitt trigger. The nice thing ab this oscillator is that it is easy to understand both qualitatively and quantitatively. Qualitatively, the positive eedback causes the put to limit at one o the power supply rails depending on the sign o the dierential input to the op-amp. onsider the case in which the put resides at cc ; in this case, the non-inverting input to the op-amp is at at cc * /( + ), and the capacitor voltage starts charging up toward cc (think o a series circuit in which the input is v, and the put is the capacitor voltage). Once the capacitor voltage passes cc * /( + ), the sign o the dierential input to the op-

4 amp changes, thus the positive eedback causes the put to limit at cc * /( + ), and the capacitor starts charging toward - cc. When the capacitor voltage reaches cc * /( + ), the process repeats. The qualitative analysis explains the oscillation mechanism, but does not reveal the oscillation requency. Focusing on the negative eedback loop, one may recall that the solution o any irst-order ordinary dierential equation is given by: v = ( I F ) e + F t τ () where I denotes initial value, F inal value, and τ the time constant o the system. For the series- eedback loop, the initial value is determined by the trip voltages, namely +/- cc * /( + ). With the inal value, one must exercise some care. While the capacitor will only charge as ar as the negative o its initial value, it would charge up to the put voltage (i.e., -/+ cc ) i the Schmitt trigger behavior didn t kick in. Thus, or the purposes o this problem, F = -/+ cc. To determine the oscillation requency, we need to consider the time it takes or the capacitor voltage to change rom its initial value to -/+ cc * /( + ). Thus, we wind up solving the ollowing equation or t : t mcc = ± cc ± cc e m + + cc () The result is requency o t ln + = + ln., which corresponds to hal the entire cycle, hence a undamental Wein-Bridge Oscillator The Wein-Bridge oscillator produces a sinusoidal put. In its simplest orm it is a purely linear oscillator, and hence it is diicult to sustain oscillation as described earlier. However, a simple non-linear modiication leads to more sustainable oscillations. The basic Wein-Bridge oscillator ollows: a b sum v

5 Fig. 3 lassical Wein-Bridge oscillator. In Fig. 3, an op-amp has been used as the ampliier around which negative and positive eedback have been connected. While it is not essential (nor necessarily optimal!) that one use an op-amp as the ampliier, it is very nice or instructional purposes, as one can make a one-to-one correspondence between each node in the op-amp oscillator and each node in the classical global eedback diagram o Fig.. Straightorward hand analysis reveals that sum = ( ω ) + jω + ( + ) = + a b jω [ ] (3) For oscillation, the loop gain requirement mandates = =. Since / sum is purely real, it ollows that at the oscillation requency, / sum is real, requiring the denominator be purely imaginary. This happens at ω osc. =, resulting in sum sum + + = (4) It is apparent then that the inal design criterion is: a b = + (5) This allows or some latitude in determing component values, which is very handy given the uncertainty in capacitor values in the lab. For simplicity, it is common to choose =, = and a = b. In the lab, the two capacitors are not likely going to be equal given component tolerances, so the design equation tells us that one may use a potentiometer or one o the resistors, say a or b, to make the open-loop and eedback gains match. Let s say that you have determined the right component values or the desired oscillation requency, and you have also adjusted b to match the open-loop and eedback gains precisely. You view the oscillator put on the oscilloscope and/or spectrum analyzer, and lo and behold, time-invariance kicks in, and the oscillator amplitude starts luctuating, tending to die or limit at the supply voltage (i.e., look like a square wave). What to do? Furthermore, how to make the put amplitude not only stable, but a particular value? The manner in which one may trim a and/or b to match open-loop and eedback gains, in addition to the necessity o non-linear dynamic eedback, provides the necessary insight: have the circuit automatically update the eective value o a or b. I the put amplitude starts to exceed (all below) the desired amplitude, the loop gain must be reduced (increased), necessitating b increase (decrease), or a decrease (increase). One means o eecting this dynamic resistance is shown in Fig. 4:

6 a a b sum v Fig. 4 Wein-Bridge oscillator with non-linear, dynamic eedback. In the prelab, you will analyze the operation o this circuit to determine how it maintains a desired amplitude, as well as develop a ormula or computing the necessary ratio o a / a to achieve a particular put amplitude.

7 Prelab Exercises ) Design a square-oscillator with oscillation requency o 0 khz and an amplitude o cc /3 (that s right, you need to igure a way to limit the amplitude with altering the oscillation requency!). Additionally, constrain your design by choosing a standard value or the capacitor. It is much easier in the lab to synthesize non-standard resistor values via series or parallel combinations than it is with capacitors! ) Assuming that the square-wave oscillator puts a perect square wave, what is the Fourier series o the put waveorm? What is the total harmonic distortion (THD) o a square wave (symbolic expression and numerical result)? What is the ratio (in db) o the undamental amplitude to the next harmonic? One motivated student decides to extract a sinusoidal oscillation rom the squarewave put by iltering the put. Our hero successully designs an op-amp integrator with a D gain o 0-dB and a 3-dB bandwidth equal to the undamental requency o the oscillator put. With neglecting the ilter s eect on the undamental amplitude, what is the new THD (numerical result)? onsider placing the ilter cuto requency between the undamental and the next harmonic - is there an optimum location to minimize distortion? (You don t need to do any calculus here, just write a simple computer program that sweeps the ilter cuto and computes the resulting THD.) What is the lowest-order Butterworth ilter that results in a THD o < %? Hint: assume that the correct Butterworth has such high attenuation that only one harmonic contributes signiicant distortion. 3) onsider the Wein-Bridge oscillator o Fig. 4. Assuming the diodes turn on at ab 700m, at which they become perect shorts, what is the range o voltage over which a conducts current? I the voltage is such that one o the diodes is on, what happens to / sum (again, assume the diode is a perect short)? ome up with an equation or / sum, and in one sentence explain how it compares to the case when the diodes are both o. 4) I you answered the previous question correctly, you should understand how the circuit maintains the put at a particular amplitude. Now we shall consider how to select a / a to achieve such an amplitude. In terms o and sum, derive expressions or the diode voltage or the case o > 0, sum > 0 and the case o < 0, sum < 0. Solve each equation or the ratio, a / a. Assuming that the diodes begin to conduct at approximately 700 m, and that the desired rms value o is., what does your ormula predict or a / a? 5) Design a Wein-Bridge oscillator to oscillate at 0 khz with a peak-to-peak voltage o 6. (You may assume that the power supplies or the op-amp are >> 3).

8 Lab Exercises ) Build the square-wave oscillator you designed in the prelab. eriy that the amplitude is what you predict (i it diers, check your values or and ). Measure the oscillation requency as well as the precise values or each resistor. By what actor is the oscillation requency o? Based on these measurements, iner the actual capacitor value. With altering the put amplitude, what change must you make to get the correct put requency? ompute the necessary component value, and veriy with measurement. ) Build the Wein-Beidge oscillator you designed in the prelab. Try to match and as closely as possible. Test your circuit with the diodes to veriy the oscillation requency, and i need be, adjust the value o b (this is easier than adjusting a, since the ratio o a and a needs to be preserved) with a pot to compensate or mismatches in the capacitor ratio. Append the diodes and veriy the put amplitude.

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009

Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Experiment 7: Frequency Modulation and Phase Locked Loops Fall 2009 Frequency Modulation Normally, we consider a voltage wave orm with a ixed requency o the orm v(t) = V sin(ω c t + θ), (1) where ω c is

More information

Positive Feedback and Oscillators

Positive Feedback and Oscillators Physics 3330 Experiment #5 Fall 2011 Positive Feedback and Oscillators Purpose In this experiment we will study how spontaneous oscillations may be caused by positive feedback. You will construct an active

More information

Measuring the Speed of Light

Measuring the Speed of Light Physics Teaching Laboratory Measuring the peed o Light Introduction: The goal o this experiment is to measure the speed o light, c. The experiment relies on the technique o heterodyning, a very useul tool

More information

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-IV

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-IV Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier Circuits-IV Oscillators and Linear Digital IC's: Oscillators:

More information

ISSUE: April Fig. 1. Simplified block diagram of power supply voltage loop.

ISSUE: April Fig. 1. Simplified block diagram of power supply voltage loop. ISSUE: April 200 Why Struggle with Loop ompensation? by Michael O Loughlin, Texas Instruments, Dallas, TX In the power supply design industry, engineers sometimes have trouble compensating the control

More information

Test Your Understanding

Test Your Understanding 074 Part 2 Analog Electronics EXEISE POBLEM Ex 5.3: For the switched-capacitor circuit in Figure 5.3b), the parameters are: = 30 pf, 2 = 5pF, and F = 2 pf. The clock frequency is 00 khz. Determine the

More information

Amplifiers. Department of Computer Science and Engineering

Amplifiers. Department of Computer Science and Engineering Department o Computer Science and Engineering 2--8 Power ampliiers and the use o pulse modulation Switching ampliiers, somewhat incorrectly named digital ampliiers, have been growing in popularity when

More information

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III

Philadelphia University Faculty of Engineering Communication and Electronics Engineering. Amplifier Circuits-III Module: Electronics II Module Number: 6503 Philadelphia University Faculty o Engineering Communication and Electronics Engineering Ampliier Circuits-III Operational Ampliiers (Op-Amps): An operational

More information

Potentiostat stability mystery explained

Potentiostat stability mystery explained Application Note #4 Potentiostat stability mystery explained I- Introduction As the vast majority o research instruments, potentiostats are seldom used in trivial experimental conditions. But potentiostats

More information

state the transfer function of the op-amp show that, in the ideal op-amp, the two inputs will be equal if the output is to be finite

state the transfer function of the op-amp show that, in the ideal op-amp, the two inputs will be equal if the output is to be finite NTODUCTON The operational ampliier (op-amp) orms the basic building block o many analogue systems. t comes in a neat integrated circuit package and is cheap and easy to use. The op-amp gets its name rom

More information

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder

ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University of Colorado, Boulder ECEN 5014, Spring 2013 Special Topics: Active Microwave Circuits and MMICs Zoya Popovic, University o Colorado, Boulder LECTURE 13 PHASE NOISE L13.1. INTRODUCTION The requency stability o an oscillator

More information

A Detailed Lesson on Operational Amplifiers - Negative Feedback

A Detailed Lesson on Operational Amplifiers - Negative Feedback 07 SEE Mid tlantic Section Spring Conerence: Morgan State University, Baltimore, Maryland pr 7 Paper ID #0849 Detailed Lesson on Operational mpliiers - Negative Feedback Dr. Nashwa Nabil Elaraby, Pennsylvania

More information

A Physical Sine-to-Square Converter Noise Model

A Physical Sine-to-Square Converter Noise Model A Physical Sine-to-Square Converter Noise Model Attila Kinali Max Planck Institute or Inormatics, Saarland Inormatics Campus, Germany adogan@mpi-in.mpg.de Abstract While sinusoid signal sources are used

More information

EXPERIMENT 7 NEGATIVE FEEDBACK and APPLICATIONS

EXPERIMENT 7 NEGATIVE FEEDBACK and APPLICATIONS PH315 A. La osa EXPEIMENT 7 NEGATIE FEEDBACK and APPLICATIONS I. PUPOSE: To use various types o eedback with an operational ampliier. To build a gaincontrolled ampliier, an integrator, and a dierentiator.

More information

A MATLAB Model of Hybrid Active Filter Based on SVPWM Technique

A MATLAB Model of Hybrid Active Filter Based on SVPWM Technique International Journal o Electrical Engineering. ISSN 0974-2158 olume 5, Number 5 (2012), pp. 557-569 International Research Publication House http://www.irphouse.com A MATLAB Model o Hybrid Active Filter

More information

Analysis and Mitigation of Harmonic Currents and Instability due to Clustered Distributed Generation on the Low Voltage Network

Analysis and Mitigation of Harmonic Currents and Instability due to Clustered Distributed Generation on the Low Voltage Network 2, rue d Artois, F-758 PARIS CIGRE US National Committee http : //www.cigre.org 25 Grid o the Future Symposium Analysis and Mitigation o Harmonic Currents and Instability due to Clustered Distributed Generation

More information

High Speed Communication Circuits and Systems Lecture 10 Mixers

High Speed Communication Circuits and Systems Lecture 10 Mixers High Speed Communication Circuits and Systems Lecture Mixers Michael H. Perrott March 5, 24 Copyright 24 by Michael H. Perrott All rights reserved. Mixer Design or Wireless Systems From Antenna and Bandpass

More information

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans. Electronic Measurements & Instrumentation

UNIT 2. Q.1) Describe the functioning of standard signal generator. Ans.   Electronic Measurements & Instrumentation UNIT 2 Q.1) Describe the functioning of standard signal generator Ans. STANDARD SIGNAL GENERATOR A standard signal generator produces known and controllable voltages. It is used as power source for the

More information

Design Project: Audio tone control

Design Project: Audio tone control Design Project: Audio tone control This worksheet and all related iles are licensed under the Creative Commons Attribution License, version 1.0. To view a copy o this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

A technique for noise measurement optimization with spectrum analyzers

A technique for noise measurement optimization with spectrum analyzers Preprint typeset in JINST style - HYPER VERSION A technique or noise measurement optimization with spectrum analyzers P. Carniti a,b, L. Cassina a,b, C. Gotti a,b, M. Maino a,b and G. Pessina a,b a INFN

More information

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal

Sinusoidal signal. Arbitrary signal. Periodic rectangular pulse. Sampling function. Sampled sinusoidal signal. Sampled arbitrary signal Techniques o Physics Worksheet 4 Digital Signal Processing 1 Introduction to Digital Signal Processing The ield o digital signal processing (DSP) is concerned with the processing o signals that have been

More information

ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE

ELECTRICAL CIRCUITS 6. OPERATIONAL AMPLIFIERS PART III DYNAMIC RESPONSE 77 ELECTRICAL CIRCUITS 6. PERATAL AMPLIIERS PART III DYNAMIC RESPNSE Introduction In the first 2 handouts on op-amps the focus was on DC for the ideal and non-ideal opamp. The perfect op-amp assumptions

More information

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1

Module 5. DC to AC Converters. Version 2 EE IIT, Kharagpur 1 Module 5 DC to AC Converters Version 2 EE IIT, Kharagpur 1 Lesson 37 Sine PWM and its Realization Version 2 EE IIT, Kharagpur 2 After completion of this lesson, the reader shall be able to: 1. Explain

More information

Bode Plot based Auto-Tuning Enhanced Solution for High Performance Servo Drives

Bode Plot based Auto-Tuning Enhanced Solution for High Performance Servo Drives Bode lot based Auto-Tuning Enhanced Solution or High erormance Servo Drives. O. Krah Danaher otion GmbH Wachholder Str. 4-4 4489 Düsseldor Germany Email: j.krah@danaher-motion.de Tel. +49 3 9979 133 Fax.

More information

BENE 2163 ELECTRONIC SYSTEMS

BENE 2163 ELECTRONIC SYSTEMS UNIVERSITI TEKNIKAL MALAYSIA MELAKA FAKULTI KEJURUTERAAN ELEKTRONIK DAN KEJURUTERAAN KOMPUTER BENE 263 ELECTRONIC SYSTEMS LAB SESSION 3 WEIN BRIDGE OSCILLATOR Revised: February 20 Lab 3 Wien Bridge Oscillator

More information

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers

Lock-In Amplifiers SR510 and SR530 Analog lock-in amplifiers Lock-In Ampliiers SR510 and SR530 Analog lock-in ampliiers SR510/SR530 Lock-In Ampliiers 0.5 Hz to 100 khz requency range Current and voltage inputs Up to 80 db dynamic reserve Tracking band-pass and line

More information

1. Motivation. 2. Periodic non-gaussian noise

1. Motivation. 2. Periodic non-gaussian noise . Motivation One o the many challenges that we ace in wireline telemetry is how to operate highspeed data transmissions over non-ideal, poorly controlled media. The key to any telemetry system design depends

More information

Electronic PRINCIPLES

Electronic PRINCIPLES MALVINO & BATES Electronic PRINCIPLES SEVENTH EDITION Chapter 21 Active Filters Topics Covered in Chapter 21 Ideal responses Approximate responses Passive ilters First-order stages VCVS unity-gain second-order

More information

SAW STABILIZED MICROWAVE GENERATOR ELABORATION

SAW STABILIZED MICROWAVE GENERATOR ELABORATION SAW STABILIZED MICROWAVE GENERATOR ELABORATION Dobromir Arabadzhiev, Ivan Avramov*, Anna Andonova, Philip Philipov * Institute o Solid State Physics - BAS, 672, Tzarigradsko Choussee, blvd, 1784,Soia,

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

11. Chapter: Amplitude stabilization of the harmonic oscillator

11. Chapter: Amplitude stabilization of the harmonic oscillator Punčochář, Mohylová: TELO, Chapter 10 1 11. Chapter: Amplitude stabilization of the harmonic oscillator Time of study: 3 hours Goals: the student should be able to define basic principles of oscillator

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Oscillators Sections of Chapter 15 + Additional Material A. Kruger Oscillators 1 Stability Recall definition of loop gain: T(jω) = βa A f ( j) A( j) 1 T( j) If T(jω) = -1, then

More information

In-Class Exercises for Lab 2: Input and Output Impedance

In-Class Exercises for Lab 2: Input and Output Impedance In-Class Exercises for Lab 2: Input and Output Impedance. What is the output resistance of the output device below? Suppose that you want to select an input device with which to measure the voltage produced

More information

9 Feedback and Control

9 Feedback and Control 9 Feedback and Control Due date: Tuesday, October 20 (midnight) Reading: none An important application of analog electronics, particularly in physics research, is the servomechanical control system. Here

More information

Figure 1: Closed Loop System

Figure 1: Closed Loop System SIGNAL GENERATORS 3. Introduction Signal sources have a variety of applications including checking stage gain, frequency response, and alignment in receivers and in a wide range of other electronics equipment.

More information

Consumers are looking to wireless

Consumers are looking to wireless Phase Noise Eects on OFDM Wireless LAN Perormance This article quantiies the eects o phase noise on bit-error rate and oers guidelines or noise reduction By John R. Pelliccio, Heinz Bachmann and Bruce

More information

With the proposed technique, those two problems will be overcome. reduction is to eliminate the specific harmonics, which are the lowest orders.

With the proposed technique, those two problems will be overcome. reduction is to eliminate the specific harmonics, which are the lowest orders. CHAPTER 3 OPTIMIZED HARMONIC TEPPED-WAVEFORM TECHNIQUE (OHW The obective o the proposed optimized harmonic stepped-waveorm technique is to reduce, as much as possible, the harmonic distortion in the load

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier.

Oscillators. An oscillator may be described as a source of alternating voltage. It is different than amplifier. Oscillators An oscillator may be described as a source of alternating voltage. It is different than amplifier. An amplifier delivers an output signal whose waveform corresponds to the input signal but

More information

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I

ECE ECE285. Electric Circuit Analysis I. Spring Nathalia Peixoto. Rev.2.0: Rev Electric Circuits I ECE285 Electric Circuit Analysis I Spring 2014 Nathalia Peixoto Rev.2.0: 140124. Rev 2.1. 140813 1 Lab reports Background: these 9 experiments are designed as simple building blocks (like Legos) and students

More information

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures

ELEC3106 Electronics. Lecture notes: non-linearity and noise. Objective. Non-linearity. Non-linearity measures ELEC316 Electronics Lecture notes: non-linearity and noise Objective The objective o these brie notes is to supplement the textbooks used in the course on the topic o non-linearity and electrical noise.

More information

The fourier spectrum analysis of optical feedback self-mixing signal under weak and moderate feedback

The fourier spectrum analysis of optical feedback self-mixing signal under weak and moderate feedback University o Wollongong Research Online Faculty o Inormatics - Papers (Archive) Faculty o Engineering and Inormation Sciences 8 The ourier spectrum analysis o optical eedback sel-mixing signal under weak

More information

Overexcitation protection function block description

Overexcitation protection function block description unction block description Document ID: PRELIMIARY VERSIO ser s manual version inormation Version Date Modiication Compiled by Preliminary 24.11.2009. Preliminary version, without technical inormation Petri

More information

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer.

Validation of a crystal detector model for the calibration of the Large Signal Network Analyzer. Instrumentation and Measurement Technology Conerence IMTC 2007 Warsaw, Poland, May 1-3, 2007 Validation o a crystal detector model or the calibration o the Large Signal Network Analyzer. Liesbeth Gommé,

More information

ATLCE - B5 07/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson B5: multipliers and mixers

ATLCE - B5 07/03/2016. Analog and Telecommunication Electronics 2016 DDC 1. Politecnico di Torino - ICT School. Lesson B5: multipliers and mixers Politecnico di Torino - ICT School Lesson B5: multipliers and mixers Analog and Telecommunication Electronics B5 - Multipliers/mixer circuits» Error taxonomy» Basic multiplier circuits» Gilbert cell» Bridge

More information

Solid State Relays & Its

Solid State Relays & Its Solid State Relays & Its Applications Presented By Dr. Mostaa Abdel-Geliel Course Objectives Know new techniques in relay industries. Understand the types o static relays and its components. Understand

More information

PLL AND NUMBER OF SAMPLE SYNCHRONISATION TECHNIQUES FOR ELECTRICAL POWER QUALITY MEASURMENTS

PLL AND NUMBER OF SAMPLE SYNCHRONISATION TECHNIQUES FOR ELECTRICAL POWER QUALITY MEASURMENTS XX IMEKO World Congress Metrology or Green Growth September 9 14, 2012, Busan, Republic o Korea PLL AND NUMBER OF SAMPLE SYNCHRONISATION TECHNIQUES FOR ELECTRICAL POWER QUALITY MEASURMENTS Richárd Bátori

More information

(Refer Slide Time: 00:03:22)

(Refer Slide Time: 00:03:22) Analog ICs Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology, Madras Lecture - 27 Phase Locked Loop (Continued) Digital to Analog Converters So we were discussing

More information

AUDIO OSCILLATOR DISTORTION

AUDIO OSCILLATOR DISTORTION AUDIO OSCILLATOR DISTORTION Being an ardent supporter of the shunt negative feedback in audio and electronics, I would like again to demonstrate its advantages, this time on the example of the offered

More information

ECEN 325 Lab 5: Operational Amplifiers Part III

ECEN 325 Lab 5: Operational Amplifiers Part III ECEN Lab : Operational Amplifiers Part III Objectives The purpose of the lab is to study some of the opamp configurations commonly found in practical applications and also investigate the non-idealities

More information

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras

Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Basic Electronics Learning by doing Prof. T.S. Natarajan Department of Physics Indian Institute of Technology, Madras Lecture 26 Mathematical operations Hello everybody! In our series of lectures on basic

More information

High Speed Voltage Feedback Op Amps

High Speed Voltage Feedback Op Amps MT056 TUTORIAL High Speed Voltage Feedback Op Amps In order to intelligently select the correct high speed op amp or a given application, an understanding o the various op amp topologies as well as the

More information

EMT212 Analog Electronic II. Chapter 4. Oscillator

EMT212 Analog Electronic II. Chapter 4. Oscillator EMT Analog Electronic II Chapter 4 Oscillator Objectives Describe the basic concept of an oscillator Discuss the basic principles of operation of an oscillator Analyze the operation of RC, LC and crystal

More information

Source Transformation

Source Transformation HW Chapter 0: 4, 20, 26, 44, 52, 64, 74, 92. Source Transformation Source transformation in frequency domain involves transforming a voltage source in series with an impedance to a current source in parallel

More information

Frequency-Foldback Technique Optimizes PFC Efficiency Over The Full Load Range

Frequency-Foldback Technique Optimizes PFC Efficiency Over The Full Load Range ISSUE: October 2012 Frequency-Foldback Technique Optimizes PFC Eiciency Over The Full Load Range by Joel Turchi, ON Semiconductor, Toulouse, France Environmental concerns lead to new eiciency requirements

More information

Instantaneous frequency Up to now, we have defined the frequency as the speed of rotation of a phasor (constant frequency phasor) φ( t) = A exp

Instantaneous frequency Up to now, we have defined the frequency as the speed of rotation of a phasor (constant frequency phasor) φ( t) = A exp Exponential modulation Instantaneous requency Up to now, we have deined the requency as the speed o rotation o a phasor (constant requency phasor) φ( t) = A exp j( ω t + θ ). We are going to generalize

More information

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers

LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers LM13600 Dual Operational Transconductance Amplifiers with Linearizing Diodes and Buffers General Description The LM13600 series consists of two current controlled transconductance amplifiers each with

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 005 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 4884 The leel o knowledge and detail expected or the exam is that o the

More information

Chapter 9: Operational Amplifiers

Chapter 9: Operational Amplifiers Chapter 9: Operational Amplifiers The Operational Amplifier (or op-amp) is the ideal, simple amplifier. It is an integrated circuit (IC). An IC contains many discrete components (resistors, capacitors,

More information

An active filter offers the following advantages over a passive filter:

An active filter offers the following advantages over a passive filter: ACTIVE FILTERS An electric filter is often a frequency-selective circuit that passes a specified band of frequencies and blocks or attenuates signals of frequencies outside this band. Filters may be classified

More information

EE 221 L CIRCUIT II. by Ming Zhu

EE 221 L CIRCUIT II. by Ming Zhu EE 22 L CIRCUIT II LABORATORY 9: RC CIRCUITS, FREQUENCY RESPONSE & FILTER DESIGNS by Ming Zhu DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING UNIVERSITY OF NEVADA, LAS VEGAS OBJECTIVE Enhance the knowledge

More information

Experiment 8 Frequency Response

Experiment 8 Frequency Response Experiment 8 Frequency Response W.T. Yeung, R.A. Cortina, and R.T. Howe UC Berkeley EE 105 Spring 2005 1.0 Objective This lab will introduce the student to frequency response of circuits. The student will

More information

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION

APPLICATION NOTE #1. Phase NoiseTheory and Measurement 1 INTRODUCTION Tommorrow s Phase Noise Testing Today 35 South Service Road Plainview, NY 803 TEL: 56-694-6700 FAX: 56-694-677 APPLICATION NOTE # Phase NoiseTheory and Measurement INTRODUCTION Today, noise measurements

More information

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers

Complex RF Mixers, Zero-IF Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers Complex RF Mixers, Zero-F Architecture, and Advanced Algorithms: The Black Magic in Next-Generation SDR Transceivers By Frank Kearney and Dave Frizelle Share on ntroduction There is an interesting interaction

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #1 Lab Report Frequency Response of Operational Amplifiers Submission Date: 05/29/2018 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams

More information

Summer 2015 Examination

Summer 2015 Examination Summer 2015 Examination Subject Code: 17445 Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme.

More information

Experiment 2: Transients and Oscillations in RLC Circuits

Experiment 2: Transients and Oscillations in RLC Circuits Experiment 2: Transients and Oscillations in RLC Circuits Will Chemelewski Partner: Brian Enders TA: Nielsen See laboratory book #1 pages 5-7, data taken September 1, 2009 September 7, 2009 Abstract Transient

More information

University of Pittsburgh

University of Pittsburgh University of Pittsburgh Experiment #6 Lab Report Active Filters and Oscillators Submission Date: 7/9/28 Instructors: Dr. Ahmed Dallal Shangqian Gao Submitted By: Nick Haver & Alex Williams Station #2

More information

RC AUTONOMOUS CIRCUITS WITH CHAOTIC BEHAVIOUR

RC AUTONOMOUS CIRCUITS WITH CHAOTIC BEHAVIOUR Radioengineering R Autonomous ircuits With haotic Behaiour Vol., No., June 00. BERNÁT, I. BALÁŽ eter BERNÁT, Igor BALÁŽ Department o Radio and Electronics Faculty o Electrical Engineering and Inormation

More information

Physics 310 Lab 6 Op Amps

Physics 310 Lab 6 Op Amps Physics 310 Lab 6 Op Amps Equipment: Op-Amp, IC test clip, IC extractor, breadboard, silver mini-power supply, two function generators, oscilloscope, two 5.1 k s, 2.7 k, three 10 k s, 1 k, 100 k, LED,

More information

Prof. Paolo Colantonio a.a

Prof. Paolo Colantonio a.a Pro. Paolo Colantonio a.a. 03 4 Operational ampliiers (op amps) are among the most widely used building blocks in electronics they are integrated circuits (ICs) oten DIL (or DIP) or SMT (or SMD) DIL (or

More information

Study Guide for the First Exam

Study Guide for the First Exam Study Guide or the First Exam Chemistry 838 Fall 27 T V Atkinson Department o Chemistry Michigan State Uniersity East Lansing, MI 48824 Table o Contents Table o Contents...1 Table o Tables...1 Table o

More information

Lab 6: Building a Function Generator

Lab 6: Building a Function Generator ECE 212 Spring 2010 Circuit Analysis II Names: Lab 6: Building a Function Generator Objectives In this lab exercise you will build a function generator capable of generating square, triangle, and sine

More information

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation

The steeper the phase shift as a function of frequency φ(ω) the more stable the frequency of oscillation It should be noted that the frequency of oscillation ω o is determined by the phase characteristics of the feedback loop. the loop oscillates at the frequency for which the phase is zero The steeper the

More information

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp

When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp Op Amp Fundamentals When you have completed this exercise, you will be able to relate the gain and bandwidth of an op amp In general, the parameters are interactive. However, in this unit, circuit input

More information

Lab-Report Analogue Communications. Frequency Modulation

Lab-Report Analogue Communications. Frequency Modulation Lab-Report Analogue Communications Frequency Modulation Name: Dirk Becker Course: BEng Group: A Student No.: 98035 Date: 0/Mar/999 . Contents. CONENS. INRODUCION 3 3. FREQUENCY MODULAION SYSEMS 3 4. LAB

More information

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS

STATION NUMBER: LAB SECTION: Filters. LAB 6: Filters ELECTRICAL ENGINEERING 43/100 INTRODUCTION TO MICROELECTRONIC CIRCUITS Lab 6: Filters YOUR EE43/100 NAME: Spring 2013 YOUR PARTNER S NAME: YOUR SID: YOUR PARTNER S SID: STATION NUMBER: LAB SECTION: Filters LAB 6: Filters Pre- Lab GSI Sign- Off: Pre- Lab: /40 Lab: /60 Total:

More information

UNIT-3. Electronic Measurements & Instrumentation

UNIT-3.   Electronic Measurements & Instrumentation UNIT-3 1. Draw the Block Schematic of AF Wave analyzer and explain its principle and Working? ANS: The wave analyzer consists of a very narrow pass-band filter section which can Be tuned to a particular

More information

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14

VCC. Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) Last Update: 03/19/14 Digital 16 Frequency Divider Digital-to-Analog Converter Butterworth Active Filter Sample-and-Hold Amplifier (part 2) ECE3204 Lab 5 Objective The purpose of this lab is to design and test an active Butterworth

More information

Predicting the performance of a photodetector

Predicting the performance of a photodetector Page 1 Predicting the perormance o a photodetector by Fred Perry, Boston Electronics Corporation, 91 Boylston Street, Brookline, MA 02445 USA. Comments and corrections and questions are welcome. The perormance

More information

DISCRETE DIFFERENTIAL AMPLIFIER

DISCRETE DIFFERENTIAL AMPLIFIER DISCRETE DIFFERENTIAL AMPLIFIER This differential amplifier was specially designed for use in my VK-1 audio oscillator and VK-2 distortion meter where the requirements of ultra-low distortion and ultra-low

More information

ENGR-4300 Spring 2008 Test 4. Name SOLUTION. Section 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (24 points) Question II (16 points)

ENGR-4300 Spring 2008 Test 4. Name SOLUTION. Section 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (24 points) Question II (16 points) ENGR-4300 Spring 2008 Test 4 Name SOLUTION Section 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (24 points) Question II (16 points) Question III (15 points) Question IV (20 points) Question

More information

Spectrum analyzer for frequency bands of 8-12, and MHz

Spectrum analyzer for frequency bands of 8-12, and MHz EE389 Electronic Design Lab Project Report, EE Dept, IIT Bombay, November 2006 Spectrum analyzer for frequency bands of 8-12, 12-16 and 16-20 MHz Group No. D-13 Paras Choudhary (03d07012)

More information

Experiment #2 OP-AMP THEORY & APPLICATIONS

Experiment #2 OP-AMP THEORY & APPLICATIONS Experiment #2 OP-MP THEOY & PPLICTIONS Jonathan oderick Scott Kilpatrick Burgess Introduction: Operational amplifiers (op-amps for short) are incredibly useful devices that can be used to construct a multitude

More information

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139

DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 02139 DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE MASSACHUSETTS INSTITUTE OF TECHNOLOGY CAMBRIDGE, MASSACHUSETTS 019.101 Introductory Analog Electronics Laboratory Laboratory No. READING ASSIGNMENT

More information

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy

EE320L Electronics I. Laboratory. Laboratory Exercise #3. Operational Amplifier Application Circuits. Angsuman Roy EE320L Electronics I Laboratory Laboratory Exercise #3 Operational Amplifier Application Circuits By Angsuman Roy Department of Electrical and Computer Engineering University of Nevada, Las Vegas Objective:

More information

OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS

OSCILLATORS AND WAVEFORM-SHAPING CIRCUITS OSILLATORS AND WAVEFORM-SHAPING IRUITS Signals having prescribed standard waveforms (e.g., sinusoidal, square, triangle, pulse, etc). To generate sinusoidal waveforms: o Positive feedback loop with non-linear

More information

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function.

1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. 1.Explain the principle and characteristics of a matched filter. Hence derive the expression for its frequency response function. Matched-Filter Receiver: A network whose frequency-response function maximizes

More information

Operational Amplifier BME 360 Lecture Notes Ying Sun

Operational Amplifier BME 360 Lecture Notes Ying Sun Operational Amplifier BME 360 Lecture Notes Ying Sun Characteristics of Op-Amp An operational amplifier (op-amp) is an analog integrated circuit that consists of several stages of transistor amplification

More information

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase.

Let us consider the following block diagram of a feedback amplifier with input voltage feedback fraction,, be positive i.e. in phase. P a g e 2 Contents 1) Oscillators 3 Sinusoidal Oscillators Phase Shift Oscillators 4 Wien Bridge Oscillators 4 Square Wave Generator 5 Triangular Wave Generator Using Square Wave Generator 6 Using Comparator

More information

Devices selection for the construction of a microwave transmission link at 2.45 GHz

Devices selection for the construction of a microwave transmission link at 2.45 GHz Devices selection or the construction o a microwave transmission link at 2.45 GHz E. ZIRINTSIS, C. PAVLATOS, C.A. CHRISTODOULOU 2, V. M. MLADENOV 3 IT Faculty, Hellenic American University, 2 Kaplanon

More information

) 3.75 sin 2 10 t 25 sin(6 10 t )

) 3.75 sin 2 10 t 25 sin(6 10 t ) Hoework NAME Solutions EE 442 Hoework #6 Solutions (Spring 2018 Due April 2, 2018 ) Print out hoework and do work on the printed pages. Proble 1 Tone-Modulated FM Signal (12 points) A 100 MHz carrier wave

More information

The Application of Active Filters Supported by Pulse Width Modulated Inverters in the Harmonic Simulation of the High Power Electric Traction

The Application of Active Filters Supported by Pulse Width Modulated Inverters in the Harmonic Simulation of the High Power Electric Traction The Application o Active Filters Supported by Pulse Width Modulated Inverters in the Harmonic Simulation o the High Power Electric Traction P. Kiss, A. Balogh 2, A. Dán, I. Varjasi 2 Department o Electric

More information

3.6 Intersymbol interference. 1 Your site here

3.6 Intersymbol interference. 1 Your site here 3.6 Intersymbol intererence 1 3.6 Intersymbol intererence what is intersymbol intererence and what cause ISI 1. The absolute bandwidth o rectangular multilevel pulses is ininite. The channels bandwidth

More information

Traditional Analog Modulation Techniques

Traditional Analog Modulation Techniques Chapter 5 Traditional Analog Modulation Techniques Mikael Olosson 2002 2007 Modulation techniques are mainly used to transmit inormation in a given requency band. The reason or that may be that the channel

More information

ECE 2100 Experiment VI AC Circuits and Filters

ECE 2100 Experiment VI AC Circuits and Filters ECE 200 Experiment VI AC Circuits and Filters November 207 Introduction What happens when we put a sinusoidal signal through a typical linear circuit? We will get a sinusoidal output of the same frequency,

More information

ECE 440L. Experiment 1: Signals and Noise (1 week)

ECE 440L. Experiment 1: Signals and Noise (1 week) ECE 440L Experiment 1: Signals and Noise (1 week) I. OBJECTIVES Upon completion of this experiment, you should be able to: 1. Use the signal generators and filters in the lab to generate and filter noise

More information

EE 233 Circuit Theory Lab 3: First-Order Filters

EE 233 Circuit Theory Lab 3: First-Order Filters EE 233 Circuit Theory Lab 3: First-Order Filters Table of Contents 1 Introduction... 1 2 Precautions... 1 3 Prelab Exercises... 2 3.1 Inverting Amplifier... 3 3.2 Non-Inverting Amplifier... 4 3.3 Integrating

More information

Control of Light and Fan with Whistle and Clap Sounds

Control of Light and Fan with Whistle and Clap Sounds EE389 EDL Report, Department o Electrical Engineering, IIT Bombay, November 2004 Control o Light and Fan with Whistle and Clap Sounds Kashinath Murmu(01D07038) Group: D13 Ravi Sonkar(01D07040) Supervisor

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) ALIFONIA INSTITUTE OF TEHNOLOGY PHYSIS MATHEMATIS AND ASTONOMY DIVISION Sophomore Physics Laboratory (PH005/05) Analog Electronics Basics on Oscillators opyright c Virgínio de Oliveira Sannibale, 2003

More information