DEVELOPMENT OF A SILENT BRUSHLESS DC MOTOR DRIVE. S. Camilleri, D. Patterson & H. Pullen

Size: px
Start display at page:

Download "DEVELOPMENT OF A SILENT BRUSHLESS DC MOTOR DRIVE. S. Camilleri, D. Patterson & H. Pullen"

Transcription

1 DEVELOPMENT OF A SILENT BRUSHLESS DC MOTOR DRIVE S. Camilleri, D. Patterson & H. Pullen NT Centre for Energy Research, Australian CRC for Renewable Energy Northern Territory University Darwin, N.T Steven.Camilleri@darwin.ntu.edu.au Abstract Brushless DC motors are known for their versatility and efficiency. Unfortunately the cheap and common method of using trapezoidal current control is not suitable for all applications because of the distracting acoustic noise made during commutation, known as 'ticking'. This paper outlines some methods of controlling the brushless motor to produce much less acoustic noise, including using a DSP for producing commutation period current wave-shaping and a sinusoidal Voltage/Frequency amplitude control. 1. INTRODUCTION & BACKGROUND The target application for this system is a high efficiency ceiling fan. This fan uses an unconventional blade design with extremely high pitch that produces standard levels of airflow at only half the rotational speed, compared to a conventional flat blade design. The result of this is an extremely low 'wind' noise, due to the improved aerodynamics. A picture of the fan blades is shown in Figure 1. the low noise blade design. In addition, the motor controller design would have to be as cheap as possible to make the final product cost comparable with existing technology. In addition to this application, another motor was developed to drive a standard steel bladed ceiling fan. The control methodology would be the same for this application, but the speed would be twice as much as the low speed research fan. Again, low acoustic noise operation is required. When the fan was first tested with a standard trapezoidal current brushless motor controller, it produced noise in a wide spectrum. The loudest part of the noise was naturally at the frequency of commutation at around 100 Hz in a 16 pole machine, running at 125 RPM. Figure 1 : Reseach Fan blades To further improve the fan system, it was decided to use a high efficiency brushless DC motor with a power electronic drive instead of the standard split phase induction motor. This would improve the system efficiency significantly, provided the brushless motor could be driven to produce a low noise output to match To reduce the noise, a simple circuit was devised that would anticipate an impending commutation period (via mechanically shifted hall effect sensors) and control the motor current to zero, reverting it to the original value once that period was over. In effect, this circuit would act as a 'soft commutation' or 'deticking' circuit. Some waveshaping was required to reduce and increase the current in a manner that would not produce extra acoustic noise, for which the accurate control of a TMS320C30 DSP was required. A block diagram of the system is shown in Figure 2.

2 Figure 2 : Block Diagram of Deticking Circuit In practice, the soft commutation circuit did reduce the noise but not to the level required. Spectral analysis was performed using a quality microphone and Hewlett-Packard 3561A signal analyser, in a standard audible range (20 Hz to 20 khz). As can be seen from Figure 3, the deticking circuit was only effective on two areas, 250 Hz and the range 900 Hz to 1300 Hz. The largest part of the noise, below 150Hz, was nearly unaffected. Overall, the deticking circuit did not reduce the noise produced by the fan to an acceptable level in fact at the high frequency range above 1300 Hz, the noise was increased Frequency(Hz) Figure 3 : Fan Motor Noise Spectrum Deticking Circuit Ticking Deticked Various wave shapes were used for increasing and decreasing the current at the commutation period, all accurately controlled using the DSP. Figure 3 shows the noise reduction results for the best shape (among many tested) which was in essence an extract of a sinusoidal curve between 90 o and 270 o. Of all the wave shapes tried, this shape produced the best results. 2. THEORY OF VOLTAGE/FREQUENCY CONTROL After abandoning the previous control method, a totally new approach was desired. The trapezoidal method of current control requires rapid changes in current in the machine, which in turn produces the acoustic noise. Control of the current in a sinusoidal manner appears to be a straightforward way to reduce the rapid di/dt's in the motor and correspondingly the acoustic noise produced. Sinusoidal control is difficult and complex to do using a closed loop current control system (usually involving the use of expensive position encoders) and since the system was designed to be cheap, an open loop strategy was decided upon, namely Voltage/Frequency (V/F) control. This method is most common in induction machines due to the simplicity of the control system and since it allows variable speed control of the machine. In basic terms, V/F control uses a microcontroller or similar digital control device to generate a sinusoidal Pulse Width Modulated (PWM) drive for which the fundamental amplitude varies proportionally to the fundamental frequency. For an induction machine, this means that the microcontroller starts with marginally above zero frequency and low sinewave amplitude, increasing both at a rate that the mechanical system can handle to accelerate them. The amplitude of the sinewave is directly proportional to the current through the windings of the machine at any one frequency, otherwise the current is inversely proportional to the frequency for a fixed amplitude. The main difference between this drive developed for a brushless machine and the one used for an induction machine is the use of 'slip'. An induction machine provides torque in proportion to the slip factor, which is related to the ratio between the rotating magnetic field on the stator and the mechanical speed of the rotor. As the rotor slows, slip increases and more torque is provided. With a brushless machine, the rotor has permanent magnets attached and hence if a pole slip occurs, negative torque will be generated. This causes the machine to stall, and after a stall has occured the machine will not restart using open loop control but simply stop and 'vibrate' as the rotating magnetic field repeatedly passes over the permanent magnets, generating no useful torque. It is therefore essential to ensure that the permanent magnet rotor stays completely synchronous with the rotating magnetic field on the stator. Fortunately for a ceiling fan system the load & speed profile is known and can be stored in a digital control device, so stalls under normal operation can be easily prevented.

3 It is still neccesary to include a very basic form of closed loop control for situations that are unexpected (i.e. something comes into physical contact with the rotating fan, causing it to stall) due to the fact that in a stall condition, if a high ampltiude sinewave is applied to the fan motor then the currents through the motor may be extremely high and may damage the motor or controller. an isolated power stage for driving the motor from a 50V DC bus. The power section constructed for development of the prototype uses a standard six switch bridge comprised of SGS-Thomson STN3E06L MOSFETs, which are small (supplied in an SOT-223 surface mountable packages), efficient and cheap. A simple diagram of the bridge is shown in Figure 4. To this end, a single hall effect sensor can be used for a speed reference signal. Once the speed has been measured by the digital controlling device, it can be used to look up the appropriate section in the V/F table, guaranteeing that the currents will never be high for very long. In addition, using this methodology allows stall recovery. 3. VOLTAGE/FREQUENCY CONTROLLER DESIGN Listed below are the specifications of the motors used in the development of this control system. RESEARCH FAN Figure 4 : Basic diagram of Power Stage Design of the power stage requires a working knowledge of the power range of the system, in this case the prototype system characteristics are : RESEARCH FAN Motor (1) : Three Phase Permanent Magnet Brushless 16 Pole - Prototype Application speed 140 RPM ( 18 Hz electrical frequency) 16.5 Ω phase resistance average 53 mh phase inductance average Full speed : Current at full speed : Voltage at full speed : Power at full speed : 135 RPM 520 ma from DC supply 490 ma RMS /φ 52 V from DC supply (equates to 18.4 V RMS / φ) 27 W STANDARD BLADE FAN STANDARD BLADE FAN Motor (2) : Three Phase Permanent Magnet Brushless 16 Pole - Prototype Application speed 280 RPM ( 36 Hz electrical frequency) 3.7 Ω phase resistance average 12.8 mh phase inductance average Full speed : Current at full speed : Voltage at full speed : Power at full speed : 260 RPM 550 ma from DC supply 520 ma RMS /φ 42 V from DC supply (equates to 14.85V RMS / φ) 23 W Note that both of these motors are still in the development stage, hence their parameters are still subject to future improvement. Both motors will use the same control system, running with a different V/F characteristic and maximum speed. Electronic requirements for a V/F converter of this nature can be divided into two modules - A digital control device to generate the PWM waveforms and The MOSFET was selected on the basis of cost and size, rather than efficiency. Since either motor will not draw much more than 0.5 A, the resistive loss in the MOSFET will be negligible. Using an equation for MOSFET conduction loss P C : P C = I DS 2 R DS ON (1)

4 Where I DS is the Drain-Source current, and R DS is the Drain-Source resistance. Therefore, for this calculation we need to determine MOSFET current I DS(RMS), which will work out to half the RMS motor phase current (by basic KCL). This works out to 0.26 A RMS through each MOSFET on average. For the 100 mω STN3E06L, using equation (1), this comes out at 6.8 mw of conduction loss in each MOSFET, a total of 40.8 mw through each leg in the bridge. Switching and gate losses are found to be about equal for this device, switching at a rate of 23.4 khz. The total loss in the power section is therefore negligible and can be assumed to be a maximum of about 100 mw, giving a system efficiency above 99.6% at full output. During testing, the external case temperature of the MOSFETs could not be measured above ambient, thus they did not require heatsinking. The digital control section is more complex. There are many devices on the market that are ideally suited to the task of motor control, but in this case there are the heavy restrictions of cost and physical size that reduce the options significantly. The choice is between a cheap DSP and a cheap microcontroller - and the microcontroller wins due to it's simplicity and reduced size. In any case, there are currently no DSP systems available on the market that are as cheap and easy to use as a well chosen microcontroller. The prototype system was initially based on a microcontroller that was readily available, the Siemens 80C537. This microcontroller itself is not ideally suited to the task, but shares a common language with many other more suitable Siemens microcontrollers such as the SAB-C504 Motor Controller. Programs have been developed with the 80C537 that perform all of the requirements mentioned previously and there have been no major problems with the system. A block diagram of the prototype drive is shown in Figure 5. Figure 5 : Block Diagram of Prototype V/F Controller 4. CONCLUSION While some of the initial methods tried such as deticking circuits with DSP control did not work to the standard required, the prototype V/F controller developed for the Brushless DC machine used in both the research and conventional ceiling fans has been tested to the levels required by the respective systems and found to work very well. Construction of a standard six switch block was simplified by the known parameters of the system and the low motor currents, also allowing a very efficient power stage. Selection of a digital control device for attaching to this power stage is not a simple procedure as the market for small and cheap motor control chips is extremely limited, however there are several that suit the task adequately. The Siemens range of microcontrollers has been tested using this control scheme and performs well. 5. REFERENCES [1] John G. Kassakian, Martin F. Schlecht & George C. Verghese, Principles of Power Electronics, Addison-Wesley Reading, Massachusetts [2]Werner Leonhard, Control of Electrical Drives, 2 nd Ed. Springer-Verlag Berlin Heidelberg [3]T. Kenjo & S. Nagamori, Permanent Magnet and Brushless DC Motors, Clarendon Press, Oxford [4]M.F. Rahman, L. Zhong and K.W. Lim, A Comparison of Two High Performance, Wide Speed Range Drive Techniques for Interior Magnet Motors, 1998 International Conference on Power Electronics Drives and Energy Systems for Industrial Growth, Volume I, pp , December 1998.

5 [5]K. Schmidt & D. J. Patterson, Performance Results for a High Efficiency Ceiling Fan and Comparisons with Conventional internet at Fans, 1999 World Renewable Energy Congress. Available at :

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1

Module 7. Electrical Machine Drives. Version 2 EE IIT, Kharagpur 1 Module 7 Electrical Machine Drives Version 2 EE IIT, Kharagpur 1 Lesson 34 Electrical Actuators: Induction Motor Drives Version 2 EE IIT, Kharagpur 2 Instructional Objectives After learning the lesson

More information

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers.

Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented controllers. University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIVE SYSTEMS Experiment 3. Performance of an induction motor drive under V/f and rotor flux oriented

More information

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE

UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE UNIT-III STATOR SIDE CONTROLLED INDUCTION MOTOR DRIVE 3.1 STATOR VOLTAGE CONTROL The induction motor 'speed can be controlled by varying the stator voltage. This method of speed control is known as stator

More information

AC Drive Technology. An Overview for the Converting Industry. Siemens Industry, Inc All rights reserved.

AC Drive Technology. An Overview for the Converting Industry.  Siemens Industry, Inc All rights reserved. AC Drive Technology An Overview for the Converting Industry www.usa.siemens.com/converting Siemens Industry, Inc. 2016 All rights reserved. Answers for industry. AC Drive Technology Drive Systems AC Motors

More information

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 97 CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 6.1 INTRODUCTION Multi level inverters are proven to be an ideal technique for improving the voltage and current profile to closely match with the sinusoidal

More information

Influence of Voltage Source Pulse Width Modulated Switching and Induction Motor Circuit on Harmonic Current Content

Influence of Voltage Source Pulse Width Modulated Switching and Induction Motor Circuit on Harmonic Current Content Wright State University CORE Scholar Browse all Theses and Dissertations Theses and Dissertations 2008 Influence of Voltage Source Pulse Width Modulated Switching and Induction Motor Circuit on Harmonic

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

Nicolò Antonante Kristian Bergaplass Mumba Collins

Nicolò Antonante Kristian Bergaplass Mumba Collins Norwegian University of Science and Technology TET4190 Power Electronics for Renewable Energy Mini-project 19 Power Electronics in Motor Drive Application Nicolò Antonante Kristian Bergaplass Mumba Collins

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

VIENNA RECTIFIER FED BLDC MOTOR

VIENNA RECTIFIER FED BLDC MOTOR VIENNA RECTIFIER FED BLDC MOTOR Dr. P. Sweety Jose #1, R.Gowthamraj *2, #Assistant Professor, * PG Scholar, Dept. of EEE, PSG College of Technology, Coimbatore, India 1psj.eee@psgtech.ac.in, 2 gowtham0932@gmail.com

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 29 CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 2.1 INTRODUCTION Modelling and simulation have been an essential part of control system. The importance of modelling and simulation is increasing with the combination

More information

UG Student, Department of Electrical Engineering, Gurunanak Institute of Engineering & Technology, Nagpur

UG Student, Department of Electrical Engineering, Gurunanak Institute of Engineering & Technology, Nagpur A Review: Modelling of Permanent Magnet Brushless DC Motor Drive Ravikiran H. Rushiya 1, Renish M. George 2, Prateek R. Dongre 3, Swapnil B. Borkar 4, Shankar S. Soneker 5 And S. W. Khubalkar 6 1,2,3,4,5

More information

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms ISSUE: February 2017 A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms by Ken Johnson, Teledyne LeCroy, Chestnut Ridge, N.Y. Part 12 began the explanation of

More information

Experiment 2 IM drive with slip power recovery

Experiment 2 IM drive with slip power recovery University of New South Wales School of Electrical Engineering & Telecommunications ELEC4613 - ELECTRIC DRIE SYSTEMS Experiment 2 IM drive with slip power recovery 1. Introduction This experiment introduces

More information

Latest Control Technology in Inverters and Servo Systems

Latest Control Technology in Inverters and Servo Systems Latest Control Technology in Inverters and Servo Systems Takao Yanase Hidetoshi Umida Takashi Aihara. Introduction Inverters and servo systems have achieved small size and high performance through the

More information

A Switched Boost Inverter Fed Three Phase Induction Motor Drive

A Switched Boost Inverter Fed Three Phase Induction Motor Drive A Switched Boost Inverter Fed Three Phase Induction Motor Drive 1 Riya Elizabeth Jose, 2 Maheswaran K. 1 P.G. student, 2 Assistant Professor 1 Department of Electrical and Electronics engineering, 1 Nehru

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

CHAPTER 6 CURRENT REGULATED PWM SCHEME BASED FOUR- SWITCH THREE-PHASE BRUSHLESS DC MOTOR DRIVE

CHAPTER 6 CURRENT REGULATED PWM SCHEME BASED FOUR- SWITCH THREE-PHASE BRUSHLESS DC MOTOR DRIVE 125 CHAPTER 6 CURRENT REGULATED PWM SCHEME BASED FOUR- SWITCH THREE-PHASE BRUSHLESS DC MOTOR DRIVE 6.1 INTRODUCTION Permanent magnet motors with trapezoidal back EMF and sinusoidal back EMF have several

More information

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE

CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 58 CHAPTER 4 MODIFIED H- BRIDGE MULTILEVEL INVERTER USING MPD-SPWM TECHNIQUE 4.1 INTRODUCTION Conventional voltage source inverter requires high switching frequency PWM technique to obtain a quality output

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

ELECTRONIC CONTROL OF A.C. MOTORS

ELECTRONIC CONTROL OF A.C. MOTORS CONTENTS C H A P T E R46 Learning Objectives es Classes of Electronic AC Drives Variable Frequency Speed Control of a SCIM Variable Voltage Speed Control of a SCIM Chopper Speed Control of a WRIM Electronic

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

Design of a ZCT Inverter for a Brushless DC Motor - Simulation Results

Design of a ZCT Inverter for a Brushless DC Motor - Simulation Results Design of a ZCT Inverter for a Brushless DC Motor - Simulation Results B. Taleb School of Engineering & Logistics Charles Darwin University Darwin Australia 0909 s994786@students.cdu.edu.au K. Debnath

More information

Vienna Rectifier Fed BLDC Motor

Vienna Rectifier Fed BLDC Motor Vienna Rectifier Fed BLDC Motor Dr. P. Sweety Jose 1, R.Gowthamraj 2 1 Assistant Professor, 2 PG Scholar, Dept. of Electrical & Electronics Engg., PSG College of Technology, Coimbatore 1 psj.eee@psgtech.ac.in

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

CONTROL OF AIR FLOW RATE OF SINGLE PHASE INDUCTION MOTOR FOR BLOWER APPLICATION USING V/F METHOD

CONTROL OF AIR FLOW RATE OF SINGLE PHASE INDUCTION MOTOR FOR BLOWER APPLICATION USING V/F METHOD CONTROL OF AIR FLOW RATE OF SINGLE PHASE INDUCTION MOTOR FOR BLOWER APPLICATION USING V/F METHOD Atul M. Gajare 1, Nitin R. Bhasme 2 1 PG Student, 2 Associate Professor, Department of Electrical Engineering,

More information

maxon Motors as Generators (mmag, Urs Kafader, Revision May 2018)

maxon Motors as Generators (mmag, Urs Kafader, Revision May 2018) maxon Motors as Generators (mmag, Urs Kafader, Revision May 2018) Introduction maxon motors are very efficient. This is also true when operated as generators. The basic calculations are very simple, not

More information

PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter

PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter Exercise 1 PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with six-step 120 modulation. You will know

More information

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state.

( ) ON s inductance of 10 mh. The motor draws an average current of 20A at a constant back emf of 80 V, under steady state. 1991 1.12 The operating state that distinguishes a silicon controlled rectifier (SCR) from a diode is (a) forward conduction state (b) forward blocking state (c) reverse conduction state (d) reverse blocking

More information

Performance Evaluation of a Newly Constructed Three Phase Flexible Inverter for Speed Control of a Brushless Dc Motor

Performance Evaluation of a Newly Constructed Three Phase Flexible Inverter for Speed Control of a Brushless Dc Motor American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-5, Issue-4, pp-135-145 www.ajer.org Research Paper Open Access Performance Evaluation of a Newly Constructed

More information

Fuzzy logic control implementation in sensorless PM drive systems

Fuzzy logic control implementation in sensorless PM drive systems Philadelphia University, Jordan From the SelectedWorks of Philadelphia University, Jordan Summer April 2, 2010 Fuzzy logic control implementation in sensorless PM drive systems Philadelphia University,

More information

Smooth rotation. An adaptive algorithm kills jerky motions in motors.

Smooth rotation. An adaptive algorithm kills jerky motions in motors. Page 1 of 4 Copyright 2004 Penton Media, Inc., All rights reserved. Printing of this document is for personal use only. For reprints of this or other articles, click here Smooth rotation An adaptive algorithm

More information

RC-D Fast : RC-Drives IGBT optimized for high switching frequency

RC-D Fast : RC-Drives IGBT optimized for high switching frequency RC-D Fast : RC-Drives IGBT optimized for high switching frequency Application Note Application Engineering IGBT July 2012, Mitja Rebec Power Management 1 Discretes Published by Infineon Technologies AG

More information

Estimation of Vibrations in Switched Reluctance Motor Drives

Estimation of Vibrations in Switched Reluctance Motor Drives American Journal of Applied Sciences 2 (4): 79-795, 2005 ISS 546-9239 Science Publications, 2005 Estimation of Vibrations in Switched Reluctance Motor Drives S. Balamurugan and R. Arumugam Power System

More information

The Fundamental Characteristics of Novel Switched Reluctance Motor with Segment Core Embedded in Aluminum Rotor Block

The Fundamental Characteristics of Novel Switched Reluctance Motor with Segment Core Embedded in Aluminum Rotor Block 58 Journal of Electrical Engineering & Technology, Vol. 1, No. 1, pp. 58~62, 2006 The Fundamental Characteristics of Novel Switched Reluctance Motor with Segment Core Embedded in Aluminum Rotor Block Jun

More information

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science Motor Driver and Feedback Control: The feedback control system of a dc motor typically consists of a microcontroller, which provides drive commands (rotation and direction) to the driver. The driver is

More information

Renewable Energy Based Interleaved Boost Converter

Renewable Energy Based Interleaved Boost Converter Renewable Energy Based Interleaved Boost Converter Pradeepakumara V 1, Nagabhushan patil 2 PG Scholar 1, Professor 2 Department of EEE Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka,

More information

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm

Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Brushless DC Motor Drive using Modified Converter with Minimum Current Algorithm Ajin Sebastian PG Student Electrical and Electronics Engineering Mar Athanasius College of Engineering Kerala, India Benny

More information

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE

A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE A VARIABLE SPEED PFC CONVERTER FOR BRUSHLESS SRM DRIVE Mrs. M. Rama Subbamma 1, Dr. V. Madhusudhan 2, Dr. K. S. R. Anjaneyulu 3 and Dr. P. Sujatha 4 1 Professor, Department of E.E.E, G.C.E.T, Y.S.R Kadapa,

More information

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor

An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor An Adjustable-Speed PFC Bridgeless Single Switch SEPIC Converter-Fed BLDC Motor Tintu Rani Joy M. Tech Scholar St. Joseph college of Engineering and technology Palai Shiny K George, Assistant Professor

More information

SPEED CONTROL OF BRUSHLES DC MOTOR

SPEED CONTROL OF BRUSHLES DC MOTOR SPEED CONTROL OF BRUSHLES DC MOTOR Kajal D. Parsana 1, Prof. H.M. Karkar 2, Prof. I.N. Trivedi 3 1 Department of Electrical Engineering, Atmiya Institute of Technology & Science, Rajkot, India. kajal.parsana@gmail.com

More information

Generator Advanced Concepts

Generator Advanced Concepts Generator Advanced Concepts Common Topics, The Practical Side Machine Output Voltage Equation Pitch Harmonics Circulating Currents when Paralleling Reactances and Time Constants Three Generator Curves

More information

Simulation of Solar Powered PMBLDC Motor Drive

Simulation of Solar Powered PMBLDC Motor Drive Simulation of Solar Powered PMBLDC Motor Drive 1 Deepa A B, 2 Prof. Maheshkant pawar 1 Students, 2 Assistant Professor P.D.A College of Engineering Abstract - Recent global developments lead to the use

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Tashakori, A., & Ektesabi, M. (2013). A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. Originally published

More information

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY

INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY INTERNATIONAL JOURNAL OF PURE AND APPLIED RESEARCH IN ENGINEERING AND TECHNOLOGY A PATH FOR HORIZING YOUR INNOVATIVE WORK SENSORLESS BLDC MOTOR CONTROL IN MATLAB SIMULINK ANKITA A KANEKAR, V. K. JOSEPH

More information

Step vs. Servo Selecting the Best

Step vs. Servo Selecting the Best Step vs. Servo Selecting the Best Dan Jones Over the many years, there have been many technical papers and articles about which motor is the best. The short and sweet answer is let s talk about the application.

More information

Ametek, Inc. Rotron Technical Products Division. 100 East Erie St., Suite 200 Kent, Ohio User's Guide. Number Revision F

Ametek, Inc. Rotron Technical Products Division. 100 East Erie St., Suite 200 Kent, Ohio User's Guide. Number Revision F Ametek, Inc. Rotron Technical Products Division 100 East Erie St., Suite 200 Kent, Ohio 44240 User's 120 Volt, 800 Watt and 240 Volt, 1200 Watt Brushless Motor Drive Electronics 5.7" (145 mm) and 7.2"

More information

OBICON. Perfect Harmony. Short overview. ROBICON Perfect Harmony. System Overview. The Topology. The System. ProToPS. Motors.

OBICON. Perfect Harmony. Short overview. ROBICON Perfect Harmony. System Overview. The Topology. The System. ProToPS. Motors. and Drives Control R Interface OBICON Perfect Harmony Short overview 14.03.2007 1 System overview Product features Truly Scaleable Technology 300 kw to 30 MW (Single Channel) Large Number of Framesizes

More information

Fuzzy Logic Based Speed Control of BLDC Motor

Fuzzy Logic Based Speed Control of BLDC Motor Fuzzy Logic Based Speed Control of BLDC Motor Mahesh Sutar #1, Ashish Zanjade *2, Pankaj Salunkhe #3 # EXTC Department, Mumbai University. 1 Sutarmahesh4@gmail.com 2 Zanjade_aa@rediffmail.com 3 pasalunkhe@gmail.com

More information

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3

Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai 1 Prof. C. A. Patel 2 Mr. B. R. Nanecha 3 IJSRD - International Journal for Scientific Research & Development Vol. 3, Issue 09, 2015 ISSN (online): 2321-0613 Simulation of Speed Control of Induction Motor with DTC Scheme Patel Divyaben Lalitbhai

More information

CHAPTER 6 FABRICATION OF PROTOTYPE: PERFORMANCE RESULTS AND DISCUSSIONS

CHAPTER 6 FABRICATION OF PROTOTYPE: PERFORMANCE RESULTS AND DISCUSSIONS 80 CHAPTER 6 FABRICATION OF PROTOTYPE: PERFORMANCE RESULTS AND DISCUSSIONS 6.1 INTRODUCTION The proposed permanent magnet brushless dc motor has quadruplex winding redundancy armature stator assembly,

More information

An Induction Motor Control by Space Vector PWM Technique

An Induction Motor Control by Space Vector PWM Technique An Induction Motor Control by Space Vector PWM Technique Sanket Virani PG student Department of Electrical Engineering, Sarvajanik College of Engineering & Technology, Surat, India Abstract - This paper

More information

Development of Variable Speed Drive for Single Phase Induction Motor Based on Frequency Control

Development of Variable Speed Drive for Single Phase Induction Motor Based on Frequency Control Development of Variable Speed Drive for Single Phase Induction Motor Based on Frequency Control W.I.Ibrahim, R.M.T.Raja Ismail,M.R.Ghazali Faculty of Electrical & Electronics Engineering Universiti Malaysia

More information

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method

Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method Three Phase Induction Motor Drive Using Single Phase Inverter and Constant V/F method Nitin Goel 1, Shashi yadav 2, Shilpa 3 Assistant Professor, Dept. of EE, YMCA University of Science & Technology, Faridabad,

More information

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 778 786, Article ID: IJMET_09_12_078 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion Optimizing Performance Using Slotless Motors Mark Holcomb, Celera Motion Agenda 1. How PWM drives interact with motor resistance and inductance 2. Ways to reduce motor heating 3. Locked rotor test vs.

More information

IN MANY industrial applications, ac machines are preferable

IN MANY industrial applications, ac machines are preferable IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 46, NO. 1, FEBRUARY 1999 111 Automatic IM Parameter Measurement Under Sensorless Field-Oriented Control Yih-Neng Lin and Chern-Lin Chen, Member, IEEE Abstract

More information

A Novel Concept in Integrating PFC and DC/DC Converters *

A Novel Concept in Integrating PFC and DC/DC Converters * A Novel Concept in Integrating PFC and DC/DC Converters * Pit-Leong Wong and Fred C. Lee Center for Power Electronics Systems The Bradley Department of Electrical and Computer Engineering Virginia Polytechnic

More information

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review Prof. S.L. Tade 1, Ravindra Sor 2 & S.V. Kinkar 3 Professor, Dept. of E&TC, PCCOE, Pune, India 1 Scientist, ARDE-DRDO,

More information

Analysis of an Economical BLDC Drive System

Analysis of an Economical BLDC Drive System Analysis of an Economical BLDC Drive System Maria Shaju 1, Ginnes.K.John. 2 M.Tech Student, Dept. of Electrical and Electronics Engineering, Rajagiri School of Engineering and Technology, Kochi, India

More information

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier BLDC Motor Drive with Power Factor Correction Using PWM Rectifier P. Sarala, S.F. Kodad and B. Sarvesh Abstract Major constraints while using motor drive system are efficiency and cost. Commutation in

More information

Voltage mode stepper motor control. Smooth stepper motor driving

Voltage mode stepper motor control. Smooth stepper motor driving Voltage mode stepper motor control Smooth stepper motor driving Microstepping in stepper motors 2 The microstepping driving of the stepper motors is based on the following principle: Appling two sinusoidal

More information

Open Loop Speed Control of Brushless DC Motor

Open Loop Speed Control of Brushless DC Motor Open Loop Speed Control of Brushless DC Motor K Uday Bhargav 1, Nayana T N 2 PG Student, Department of Electrical & Electronics Engineering, BNMIT, Bangalore, Karnataka, India 1 Assistant Professor, Department

More information

Design of double loop-locked system for brush-less DC motor based on DSP

Design of double loop-locked system for brush-less DC motor based on DSP International Conference on Advanced Electronic Science and Technology (AEST 2016) Design of double loop-locked system for brush-less DC motor based on DSP Yunhong Zheng 1, a 2, Ziqiang Hua and Li Ma 3

More information

Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous Motor

Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous Motor http://dx.doi.org/10.5755/j01.eie.22.6.17216 ELEKTRONIKA IR ELEKTROTECHNIKA, ISSN 1392-1215, VOL. 22, NO. 6, 2016 Impact of PWM Control Frequency onto Efficiency of a 1 kw Permanent Magnet Synchronous

More information

Lecture 19 - Single-phase square-wave inverter

Lecture 19 - Single-phase square-wave inverter Lecture 19 - Single-phase square-wave inverter 1. Introduction Inverter circuits supply AC voltage or current to a load from a DC supply. A DC source, often obtained from an AC-DC rectifier, is converted

More information

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS

CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 73 CHAPTER 6 ANALYSIS OF THREE PHASE HYBRID SCHEME WITH VIENNA RECTIFIER USING PV ARRAY AND WIND DRIVEN INDUCTION GENERATORS 6.1 INTRODUCTION Hybrid distributed generators are gaining prominence over the

More information

Sistemi per il controllo motori

Sistemi per il controllo motori Sistemi per il controllo motori TALENTIS 4ª SESSIONE - 28 MAGGIO 2018 Speaker: Ing. Giuseppe Scuderi Automation and Motion control team Central Lab Prodotti ST per il controllo motori 2 Applicazioni e

More information

Stepper Motors WE CREATE MOTION

Stepper Motors WE CREATE MOTION WE CREATE MOTIO PRECIstep Technology EW Page FDM 6 Two Phase with Disc Magnet, AM 8 Two Phase,6 AM Two Phase,6 ADM S Two Phase with Disc Magnet, 6 7 AM Two Phase 6 8 AM Two Phase AM -R Two Phase WE CREATE

More information

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination Efficiency Optimized Brushless DC Motor Drive based on Input Current Harmonic Elimination International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 869~875

More information

MINIMISATION OF TORQUE RIPPLE-INDUCED ACOUSTIC EMISSIONS IN PERMANENT MAGNET SYNCHRONOUS MOTORS

MINIMISATION OF TORQUE RIPPLE-INDUCED ACOUSTIC EMISSIONS IN PERMANENT MAGNET SYNCHRONOUS MOTORS MINIMISATION OF TORQUE RIPPLE-INDUCED ACOUSTIC EMISSIONS IN PERMANENT MAGNET SYNCHRONOUS MOTORS Damien Hill A thesis submitted in part fulfilment of the requirements for the degree of Master of Engineering

More information

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular

combine regular DC-motors with a gear-box and an encoder/potentiometer to form a position control loop can only assume a limited range of angular Embedded Control Applications II MP10-1 Embedded Control Applications II MP10-2 week lecture topics 10 Embedded Control Applications II - Servo-motor control - Stepper motor control - The control of a

More information

Brushless DC-Servomotors with integrated Encoder 4 Pole Technology

Brushless DC-Servomotors with integrated Encoder 4 Pole Technology rushless DC-Servomotors with integrated Encoder ole Technology mm For combination with Gearheads: F, /, 6 3... X + Encoders 3 ominal voltage Terminal resistance, phase-phase Output power ) Efficiency 3

More information

Speed control of sensorless BLDC motor with two side chopping PWM

Speed control of sensorless BLDC motor with two side chopping PWM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 3 (May. - Jun. 2013), PP 16-20 Speed control of sensorless BLDC motor with two side

More information

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor

International Journal of Advance Engineering and Research Development. PI Controller for Switched Reluctance Motor Scientific Journal of Impact Factor (SJIF): 4.14 International Journal of Advance Engineering and Research Development Volume 3, Issue 5, May -216 PI Controller for Switched Reluctance Motor Dr Mrunal

More information

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER N. Mohanraj and R. Sankaran Shanmugha Arts, Science, Technology and Research Academy University,

More information

Sensorless control of BLDC motor based on Hysteresis comparator with PI control for speed regulation

Sensorless control of BLDC motor based on Hysteresis comparator with PI control for speed regulation Sensorless control of BLDC motor based on Hysteresis comparator with PI control for speed regulation Thirumoni.T 1,Femi.R 2 PG Student 1, Assistant Professor 2, Department of Electrical and Electronics

More information

NVH analysis of a 3 phase 12/8 SR motor drive for HEV applications

NVH analysis of a 3 phase 12/8 SR motor drive for HEV applications NVH analysis of a 3 phase 12/8 SR motor drive for HEV applications Mathieu Sarrazin 1, Steven Gillijns 1, Jan Anthonis 1, Karl Janssens 1, Herman van der Auweraer 1, Kevin Verhaeghe 2 1 LMS, a Siemens

More information

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions

National Infotech. Electrical Drive Trainers. Developed By: : Authorized Dealer : Embedded System Solutions National Infotech A way to Power Electronics and Embedded System Solutions Electrical Drive Trainers In every industry there are industrial processes where electrical motors are used as a part of process

More information

Upgrading from Stepper to Servo

Upgrading from Stepper to Servo Upgrading from Stepper to Servo Switching to Servos Provides Benefits, Here s How to Reduce the Cost and Challenges Byline: Scott Carlberg, Motion Product Marketing Manager, Yaskawa America, Inc. The customers

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number, 2 Pages 3-24 Jordan Journal of Electrical Engineering ISSN (Print): 249-96, ISSN (Online): 249-969 Analysis of Brushless DC Motor with Trapezoidal Back EMF using MATLAB Taha A. Hussein

More information

Placement Paper For Electrical

Placement Paper For Electrical Placement Paper For Electrical Q.1 The two windings of a transformer is (A) conductively linked. (B) inductively linked. (C) not linked at all. (D) electrically linked. Ans : B Q.2 A salient pole synchronous

More information

HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS

HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS HARDWARE IMPLEMENTATION OF PFC BUCK-BOOST CONVERTER DRIVEN PMBLDC MOTOR DRIVE FOR MINING APPLICATIONS Parandhaman Balamurugan and Chandrahasan Umayal School of Electrical Engineering, VIT University, Chennai,

More information

Design, Implementation, and Dynamic Behavior of a Power Plant Model

Design, Implementation, and Dynamic Behavior of a Power Plant Model Design, Implementation, and Dynamic Behavior of a Power Plant Model M.M. A. Rahman, Member ASEE Grand Valley State University Grand Rapids, MI rahmana@gvsu.edu Daniel Mutuku Consumers Energy West Olive,

More information

Brushless DC-Servomotors with integrated Encoder 4 Pole Technology

Brushless DC-Servomotors with integrated Encoder 4 Pole Technology rushless DC-Servomotors with integrated Encoder ole Technology 9 mm For combination with Gearheads: /(S),, L, /(S), /(S), /(S)... X + Encoders ominal voltage Terminal resistance, phase-phase Output power

More information

Designing With Motion Handbook

Designing With Motion Handbook Designing With Motion Handbook Chapter IV Brush There are many different types of systems that can use manyy different types of motor such as BLDC, Brush, Stepper, Hollow Core, etc. But for this write-up,

More information

Announcements. Outline. Power Electronics Circuits. malfunctioning, for report. Experiment 1 Report Due Tuesday

Announcements. Outline. Power Electronics Circuits. malfunctioning, for report. Experiment 1 Report Due Tuesday Power Electronics Circuits Prof. Daniel Costinett ECE 482 Lecture 3 January 26, 2017 Outline 1. Motor Back EMF Shape 2. Power Converter Layout 3. Loss Analysis and Design Low Frequency Conduction Losses

More information

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion

Single switch three-phase ac to dc converter with reduced voltage stress and current total harmonic distortion Published in IET Power Electronics Received on 18th May 2013 Revised on 11th September 2013 Accepted on 17th October 2013 ISSN 1755-4535 Single switch three-phase ac to dc converter with reduced voltage

More information

Implementation of Brushless DC motor speed control on STM32F407 Cortex M4

Implementation of Brushless DC motor speed control on STM32F407 Cortex M4 Implementation of Brushless DC motor speed control on STM32F407 Cortex M4 Mr. Kanaiya G Bhatt 1, Mr. Yogesh Parmar 2 Assistant Professor, Assistant Professor, Dept. of Electrical & Electronics, ITM Vocational

More information

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters

Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits. dc to ac converters Straightforward questions are marked! Tripos standard questions are marked * Examples Paper 3B3/4 DC-AC Inverters, Resonant Converter Circuits dc to ac converters! 1. A three-phase bridge converter using

More information

PWM Control of Asymmetrical Converter Fed Switched Reluctance Motor Drive

PWM Control of Asymmetrical Converter Fed Switched Reluctance Motor Drive , 23-25 October, 2013, San Francisco, USA PWM Control of Asymmetrical Converter Fed Switched Reluctance Motor Drive P.Srinivas and P.V.N.Prasad Abstract The Switched Reluctance Motor (SRM) drive has evolved

More information

FUJI Inverter. Standard Specifications

FUJI Inverter. Standard Specifications FUJI Inverter o Standard Specifications Norminal applied motor The rated output of a general-purpose motor, stated in kw. That is used as a standard motor. Rated capacity The rating of an output capacity,

More information

CHAPTER 3 MODIFIED SINE PWM VSI FED INDUCTION MOTOR DRIVE

CHAPTER 3 MODIFIED SINE PWM VSI FED INDUCTION MOTOR DRIVE CHAPTER 3 MOIFIE INE PWM VI FE INUCTION MOTOR RIVE 3. 1 INTROUCTION Three phase induction motors are the most widely used motors for industrial control and automation. Hence they are often called the workhorse

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Induction motor drives with squirrel cage type machines have been the workhorse in industry for variable-speed applications in wide power range that covers from fractional

More information

A CSC Converter fed Sensorless BLDC Motor Drive

A CSC Converter fed Sensorless BLDC Motor Drive A CSC Converter fed Sensorless BLDC Motor Drive Anit K. Jose P G Student St Joseph's College of Engg Pala Bissy Babu Assistant Professor St Joseph's College of Engg Pala Abstract: The Brushless Direct

More information

unit: mm 4130 Parameter Symbol Conditions Ratings Unit Maximum supply voltage 1 V CC 1 max No input signal 50 V Maximum supply voltage 2 V CC

unit: mm 4130 Parameter Symbol Conditions Ratings Unit Maximum supply voltage 1 V CC 1 max No input signal 50 V Maximum supply voltage 2 V CC Ordering number : EN4290A Thick-film Hybrid IC DC 3-phase Brushless Motor Driver (Output Current 3A) Overview The is a hybrid IC incorporating a 3-phase brushless motor controller and driver into a single

More information

4 / 24,5 2,6 / steel, black coated. clockwise, viewed from the front face. ø15,9 ø17-0,052 ø6-0,05 8,1 ±0,3 2, T

4 / 24,5 2,6 / steel, black coated. clockwise, viewed from the front face. ø15,9 ø17-0,052 ø6-0,05 8,1 ±0,3 2, T DC-Micromotors Precious Metal Commutation 4, mnm For combination with (overview on page 4-5) Gearheads: 5, 6, 6/7 Encoders: IE 6... 5 Series 4 74... SR Nominal voltage Terminal resistance Output power

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information