Designing With Motion Handbook

Size: px
Start display at page:

Download "Designing With Motion Handbook"

Transcription

1 Designing With Motion Handbook Chapter IV Brush There are many different types of systems that can use manyy different types of motor such as BLDC, Brush, Stepper, Hollow Core, etc. But for this write-up, I will be concentrating on Brush and BLDC only. The difference between a Brush and Brushless motors is exactly as is stated... one style of motor uses Brushes and the other does not. Exactly what a Brush is and is used for will be discussed along with each motors theory of operation. The important part of this paper will be to show how the magnetic fields inside a motor actually make it move. This paper will discuss: 1. Motor Control Loops 2. The Principle of Commutation 3. Brush Motor Commutation 4. BLDC Commutation 5. BLDC and Brush comparison Dynamics of Motor Operation * ********** ***** The Motor Control Loops Starting from the most inner loop is the commutation loop. Althoughh not actually part of a control loop, it is required to make the motor move. How that happens will be discussed in the section discussing the principle of commutation. But how commutation takes place is dependent on the type of motor which can make it a hardware or software operation. Next there is the Current Loop which can also be considered a Flux control loop. It is the Ki (Torque constant) of a motor thatt produces the applied Torque in a rotary motor or the Force in a Linear motor. By applying a current to a motor, theree is a Flux generated. This flux produces an electromagnetic force that works against fixed North and South Pole magnets built into the motor. The applied force can be varied by changing the current level in the motor windings. More discussion on this will be presented on upcoming sections of this paper. Moving outward, we then have the Voltage Loop, whichh in many cases is referred to as the Speed or Velocity loop. The voltage loop is considered a Speed Loop only. Although the voltage across the motor terminals does produce a current in a motor, you must remember that it does not take a lot of voltage to produce a lot of current in a motor that has a winding resistance of less than 1 Ohm. So the current in the voltage loop is not used as a control device, but only as a result of the torque needed to reach the Speed that the application is demanding. If we look at a Brush motor only at this moment, as its Terminal voltage is varied,, the speed of the motor will adjust based on the motors Ke (voltage constant). More discussion on this will be presented on upcoming sections of this paper. 1 of 9

2 Moving outward we come to other types of control loops. There can be a Position Loop, pressure loop, temperature loop, light sensitive loop, andd a host of other loops that may be required. To be able to accommodate all of these loops, a timing chart must be employed to insure alll control loops do not interfere with the operation of the motor being controlled. The Principle of Commutation The principle of commutation is fairly simple to explain. By looking as the following figure, you can see that in the case of two fixed magnets overlayingg each other, they will come to rest in a balanced position. The only way to generatee a horizontal force between them is to move or offset one of the magnets (the top one in this case) to the left or right of the bottom magnet. That is exactly what commutatio on does. As is shown in the figure, iff we take a small piece of the left side of the upper magnet and move it to the right side, an unbalanced situation arises. The magnets will then create a horizontal force betweenn them trying to get them to rebalance. As the top magnet moves to the left, commutation will sense the motion, and at the properr time, willl again take a piece of the left side of the top magnet and move it to its right side. By continually doing this, a linear motion is accomplished. And if the magnets are oriented in a circular fashion, the movement will be circular. 2 of 9

3 The following figure shows the forces imparted on tow magnets when moving horizontally or vertically with respect to each other. These forces are by design when a motor is developed. * ********** ***** Brush Motor Commutation In order to commutate a Brush motor, the motor windingg is split up into many sections, with each section attached to a copper bar. There is an electrical, i.e. magnetic offset produced by the shorting action of the commutation brushes. This is the action that maintains the shift of the magnet field within the motor. The following figure shows the Brush motor commutation system. Fixed Magnets Windings Commutation Bars Brushes 3 of 9

4 The next two figures show the CW and CCW rotation interaction of the Brush motor operation when being commutated. Note the RED and BLUE magnetic offset that will produce the forces to move the armature, also known as the rotor. * ********** ***** BLDC Motor Commutation Knowing that a BLDC motor must be externally commutated, the question which always pops up is; HOW is that done? Based on the earlier discussions about commutation, it is known that the BLDC motor requires a software commutation methodology. To do this, the position of the BLDC rotor must be known. The next section will discuss several ways of sensing and, therefore, being able to commutate BLDC motor windings. Sensing the BLDC Rotor Position There are many available methods to sense a BLDC rotor position Mechanically Commutation style bars 2. Magnetics Hall Effects via Halls or ic-haus IC s 3. Voltage Sensing winding BackEMF 4. Current Along with Voltage for FOC operation 5. Frequency Injecting frequencies to sense Response 6. Optics Visual Sensors 7. Others Only left to the imagination... For this write-up, however, only Voltage will be discussed Sensorless BLDC Commutation by Voltage Sensorless commutation is a method of changingg the appliedd power in a motor winding without the use of any external feedback device such as an encoder, resolver or Halls. To do this, the motor controller must monitor the motor winding BEMF to determine when itt is at the proper angular position to commutate. Once the motor windings are commutated, the winding BEMF will be monitored for the 4 of 9

5 new Zero-Crossoveplace. If it is seen thatt the motor is lagging behind the desired speed, in a speed controlled application, more motor current (power/torque) can be applied by increasing the PWM Duty-Cycle forcing the motor point will again indicate the correct rotor angular position for commutation to take to catch up and maintain the desired speed. By continuouslyy monitoring the time difference between successivee BEMF Zero-Crossover points, corrections for velocity lead or lag can be handled. 1. BackEMF Zero-Crossover Detection As mentioned, in order to close a commutation loop,, some form of true rotational (angular) reference point needs to be determined. As a motors armature iss rotated without applying external power, it will act as a generatorr developing a sinusoidal voltage acrosss its windings. The following figure shows the BEMF of a typical Sin BLDC motor. The Zero crossover points are pointed to by the red arrows... Zero-Crossover Level However, when operating as a SPEED controller using PWM control, the actual waveform is a combination of the motors BackEMF and the controllers PWM signal. The following figure shows an actual BLDC PWM winding waveform. Zero-Crossover Level The Orange line indicates the Zero-Crossover point of the BEMF with inductive PWM noise from the other two driven windings. In order to filter out the PWM noise in the BEMF area, shown in the RED squares, a combinationn of hardware and software filtering can be used. The method derived to 5 of 9

6 determinee the BEMF Zero-Crossove er point for the sample motor was done predominantly by the hardware circuit shown in the following diagram. By properly tuning the time constants of the circuit, a balanced and repeatable relationship between the actual Zero-Crossover point and the Exclusive OR Logic output (XOR)(i.e. indicated Crossover point) can be realized as shown in the following screenshot. Zero-Crossover Level In this case the pulses are leading the zero-crossover point by several degrees. Depending on the speed of the motor, this angle can increase or decrease shifting the commutation point. An analogy to this is the shifting of the firing point of a spark plug in a car engine. The idea of this is to get power into the commutated winding at the proper time to produce the most power possible. 6 of 9

7 2. Trapezoidal BLDC Operation The design for simple one speed pump or fan does not have to be very involved, since a one speed BLDC motor can act like a DC Brush motor. The idea in this design is to have the motor engineer develop a motor that will run at the proper speed, with the proper load, at the proper voltage. When running in this fashion, the control waveform can be set to 100% PWM, which will have several benefits. First, there will be no PWM pulsations as shown in the figure to the right... The Trapezoidal waveform in both pictures was generated by the same motor. However, the one on the left was developed using speed control, while the one on the right was running 100% PWM allowing the motor to act as a Brush motor. Both figures weree being operated using a base frequency of 20KHz. The figure on the right was generated using a 100% PWM rate using a 20KHz base frequency. If the motor is being commandedd to run at its design ratee of 12,000 RPM and the Trapezoidal switch is occurring at each Zero-Crossover point, then each commutation switch is being generated at a rate of < 10KHz RPM / 60sec = 200 RPS 1sec / 200RPS = 5msec/Rev For an 8 Pole Motor (4 Pole Pair)... One magnetic 360 waveform is generated every... 5msec / 4 = 1.25msec Using a Trapezoidal generator, there are 6-phase Steps per 360 magnetic degrees, so msec / 6 = 208 usec / Trapezoidal Step Since there is a discharge pulse generated between each Trapezoidall Step usec / 2 = 104usec / Trapezoidal Pulse Set 1 / 104usec = 9,615 Hz. It is true that there might be more incidental pulses beingg generated during the operation, but the base frequency and harmonic content will not be generated into the MHz range allowing for a lighter EMI filter saving weight and size. The figure on the left, however, was generated using a less than 100% PWM, but still using a 20KHz base frequency. If the motor is being commanded to run at less than its design rate, say 9,000 RPM then the Trapezoidal frequency being generated is... 7 of 9

8 1sec / 20,000 Hz = 50usec 50usec / 4096 PPS = 12nsec But the average speed control runs at a 15nsec to 16nsecc rate. Therefore: 1 / 16nsec ~= 66MHz. It quickly becomes apparent that at that rate, there wouldd be more filtering required to insure conducted and radiated emissions are suppressed. This then added parts, size, weight and cost to the project design. 3. Sinusoidal BLDC Operation The main difference between the Trapezoidal waveform and the Sinusoidal waveform is what is known as the INTERLACING of PWM Signals. Trapezoidal and Sinusoidal waveform outlines are shown in the following images... High-A High-B High-C Low-C Low-A Sinusoidal is a 3-Phase Operation Looking closely at the waveforms, note that the Sinusoidal patterns are ON and interlacing at all times, whereas the Trapezoidal waveforms are only ON sequentially..... Even though the High and Low Legs cannot be ON at the same time in either PWM situation, there is always one winding OFF when using Trapezoidal while the three Sinusoidal legs are pulsed ON at all times throughout the 360 degree motor rotation. A closer lookk at the following operation shows how Sinusoidal interlacing takes place... Low-B Trapezoidal is a 2-Phase Operation High-A Low-A High-B Low-B High C Low-C 8 of 9

9 * * * * * * * * * * * * * * * * Can a BLDC motor Operate as a Brush Motor As previously mentioned, a BLDC motor can only operate as a Brush motor IF the motor is designed for a one speed, one load situation running at 100% PWM. I have BLDC motor designs that will start a running operation at 3vdc and run all the way up to 48vdc with DO160 Voltage Spike capability up to 100vdc. This allows a pump or fan motor to run at it rated 28vdc, while allowing the load to increase forcing the motor to run at lower speeds without an increase in PWM content. For other requirements, speed control would be necessary, but the hardware design would have to change to accommodate the increase in EMI content. * * * * * * * * * * * * * * * * BLDC BRUSH A Short BLDC & BRUSH Motor Comparison Reduced Sensitivity to Motor Construction Direct Flus and Torque Control High Starting Torque Capability Good to Excellent Speed Regulation at High Speeds and Loads Fast Dynamic Response High Efficiency Low internal heating for the same output power due to windings on the Stator Can be driven by a Linear Sinusoidal controller Lighter than the equivalent Brush motor (does not require a hardware commutator) Must have a Drive Control, Sensored or Sensorless Can be run on DC or PWM voltages Can be run Trapezoidal or Sinusoidal voltages Limited service life of Bearings Low Cost Very Low Speed capability Does not require a Drive Control Commutation by Hardware Heavier than the equivalent BLDC motor Lower Efficiency that the equivalent BLDC Higher internal heating due to windings on the Armature Can be run on DC or PWM voltages Medium Starting Torque requirements Limited service life of Commutation Brushes & Bearings 9 of 9

Chuck Raskin P.E. Principle R&D Engineer. Blaine, MN USA

Chuck Raskin P.E. Principle R&D Engineer. Blaine, MN USA Chuck Raskin P.E. Principle R&D Engineer Chuck.Raskin@q.com CMPL-ENGINEERING.com FOR AEROSPACE & AUTOMATION SOLUTIONS Blaine, MN 55434 USA Dynamics of BLDC Motor & Drive Design 1. Control Loops & Commutation

More information

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G

L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G P R O F. S L A C K L E C T U R E R, E L E C T R I C A L A N D M I C R O E L E C T R O N I C E N G I N E E R I N G G B S E E E @ R I T. E D U B L D I N G 9, O F F I C E 0 9-3 1 8 9 ( 5 8 5 ) 4 7 5-5 1 0

More information

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR

A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR A COMPARISON STUDY OF THE COMMUTATION METHODS FOR THE THREE-PHASE PERMANENT MAGNET BRUSHLESS DC MOTOR Shiyoung Lee, Ph.D. Pennsylvania State University Berks Campus Room 120 Luerssen Building, Tulpehocken

More information

Detect stepper motor stall with back EMF technique (Part 1)

Detect stepper motor stall with back EMF technique (Part 1) Detect stepper motor stall with back EMF technique (Part 1) Learn about this method that takes advantage of constant motor parameters and overcomes limitations of traditional stall detection of current

More information

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control.

Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Analog Devices: High Efficiency, Low Cost, Sensorless Motor Control. Dr. Tom Flint, Analog Devices, Inc. Abstract In this paper we consider the sensorless control of two types of high efficiency electric

More information

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER

CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 65 CHAPTER 4 CONTROL ALGORITHM FOR PROPOSED H-BRIDGE MULTILEVEL INVERTER 4.1 INTRODUCTION Many control strategies are available for the control of IMs. The Direct Torque Control (DTC) is one of the most

More information

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL

CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 47 CHAPTER 4 FUZZY BASED DYNAMIC PWM CONTROL 4.1 INTRODUCTION Passive filters are used to minimize the harmonic components present in the stator voltage and current of the BLDC motor. Based on the design,

More information

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review

Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review Digital PWM Techniques and Commutation for Brushless DC Motor Control Applications: Review Prof. S.L. Tade 1, Ravindra Sor 2 & S.V. Kinkar 3 Professor, Dept. of E&TC, PCCOE, Pune, India 1 Scientist, ARDE-DRDO,

More information

Sensorless control of BLDC motor based on Hysteresis comparator with PI control for speed regulation

Sensorless control of BLDC motor based on Hysteresis comparator with PI control for speed regulation Sensorless control of BLDC motor based on Hysteresis comparator with PI control for speed regulation Thirumoni.T 1,Femi.R 2 PG Student 1, Assistant Professor 2, Department of Electrical and Electronics

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms

A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms ISSUE: February 2017 A Practical Primer On Motor Drives (Part 13): Motor Drive Control Architectures And Algorithms by Ken Johnson, Teledyne LeCroy, Chestnut Ridge, N.Y. Part 12 began the explanation of

More information

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER

TRACK VOLTAGE APPROACH USING CONVENTIONAL PI AND FUZZY LOGIC CONTROLLER FOR PERFORMANCE COMPARISON OF BLDC MOTOR DRIVE SYSTEM FED BY CUK CONVERTER International Journal of Mechanical Engineering and Technology (IJMET) Volume 9, Issue 12, December 2018, pp. 778 786, Article ID: IJMET_09_12_078 Available online at http://www.ia aeme.com/ijmet/issues.asp?jtype=ijmet&vtype=

More information

Speed control of sensorless BLDC motor with two side chopping PWM

Speed control of sensorless BLDC motor with two side chopping PWM IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 6, Issue 3 (May. - Jun. 2013), PP 16-20 Speed control of sensorless BLDC motor with two side

More information

Renewable Energy Based Interleaved Boost Converter

Renewable Energy Based Interleaved Boost Converter Renewable Energy Based Interleaved Boost Converter Pradeepakumara V 1, Nagabhushan patil 2 PG Scholar 1, Professor 2 Department of EEE Poojya Doddappa Appa College of Engineering, Kalaburagi, Karnataka,

More information

BLuAC5 Brushless Universal Servo Amplifier

BLuAC5 Brushless Universal Servo Amplifier BLuAC5 Brushless Universal Servo Amplifier Description The BLu Series servo drives provide compact, reliable solutions for a wide range of motion applications in a variety of industries. BLu Series drives

More information

SPEED CONTROL OF BRUSHLES DC MOTOR

SPEED CONTROL OF BRUSHLES DC MOTOR SPEED CONTROL OF BRUSHLES DC MOTOR Kajal D. Parsana 1, Prof. H.M. Karkar 2, Prof. I.N. Trivedi 3 1 Department of Electrical Engineering, Atmiya Institute of Technology & Science, Rajkot, India. kajal.parsana@gmail.com

More information

EE152 Final Project Report

EE152 Final Project Report LPMC (Low Power Motor Controller) EE152 Final Project Report Summary: For my final project, I designed a brushless motor controller that operates with 6-step commutation with a PI speed loop. There are

More information

Inductance, capacitance and resistance

Inductance, capacitance and resistance Inductance, capacitance and resistance As previously discussed inductors and capacitors create loads on a circuit. This is called reactance. It varies depending on current and frequency. At no frequency,

More information

Job Sheet 2 Servo Control

Job Sheet 2 Servo Control Job Sheet 2 Servo Control Electrical actuators are replacing hydraulic actuators in many industrial applications. Electric servomotors and linear actuators can perform many of the same physical displacement

More information

BLuAC5 Brushless Universal Servo Amplifier

BLuAC5 Brushless Universal Servo Amplifier BLuAC5 Brushless Universal Servo Amplifier Description The BLu Series servo drives provide compact, reliable solutions for a wide range of motion applications in a variety of industries. BLu Series drives

More information

Electronic Speed Controls and RC Motors

Electronic Speed Controls and RC Motors Electronic Speed Controls and RC Motors ESC Power Control Modern electronic speed controls regulate the electric power applied to an electric motor by rapidly switching the power on and off using power

More information

Smooth rotation. An adaptive algorithm kills jerky motions in motors.

Smooth rotation. An adaptive algorithm kills jerky motions in motors. Page 1 of 4 Copyright 2004 Penton Media, Inc., All rights reserved. Printing of this document is for personal use only. For reprints of this or other articles, click here Smooth rotation An adaptive algorithm

More information

AC Drive Technology. An Overview for the Converting Industry. Siemens Industry, Inc All rights reserved.

AC Drive Technology. An Overview for the Converting Industry.  Siemens Industry, Inc All rights reserved. AC Drive Technology An Overview for the Converting Industry www.usa.siemens.com/converting Siemens Industry, Inc. 2016 All rights reserved. Answers for industry. AC Drive Technology Drive Systems AC Motors

More information

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science

Page ENSC387 - Introduction to Electro-Mechanical Sensors and Actuators: Simon Fraser University Engineering Science Motor Driver and Feedback Control: The feedback control system of a dc motor typically consists of a microcontroller, which provides drive commands (rotation and direction) to the driver. The driver is

More information

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination

Efficiency Optimized Brushless DC Motor Drive. based on Input Current Harmonic Elimination Efficiency Optimized Brushless DC Motor Drive based on Input Current Harmonic Elimination International Journal of Power Electronics and Drive System (IJPEDS) Vol. 6, No. 4, December 2015, pp. 869~875

More information

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR

CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 29 CHAPTER 2 STATE SPACE MODEL OF BLDC MOTOR 2.1 INTRODUCTION Modelling and simulation have been an essential part of control system. The importance of modelling and simulation is increasing with the combination

More information

Performance Optimization Using Slotless Motors and PWM Drives

Performance Optimization Using Slotless Motors and PWM Drives Motion Control Performance Optimization Using Slotless Motors and PWM Drives TN-93 REV 1781 Section 1: Abstract Smooth motion, meaning very low position and current loop error while at speed, is critical

More information

Placement Paper For Electrical

Placement Paper For Electrical Placement Paper For Electrical Q.1 The two windings of a transformer is (A) conductively linked. (B) inductively linked. (C) not linked at all. (D) electrically linked. Ans : B Q.2 A salient pole synchronous

More information

Understanding RC Servos and DC Motors

Understanding RC Servos and DC Motors Understanding RC Servos and DC Motors What You ll Learn How an RC servo and DC motor operate Understand the electrical and mechanical details How to interpret datasheet specifications and properly apply

More information

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques

Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques Reduction of Harmonics and Torque Ripples of BLDC Motor by Cascaded H-Bridge Multi Level Inverter Using Current and Speed Control Techniques A. Sneha M.Tech. Student Scholar Department of Electrical &

More information

Options & Accessories

Options & Accessories 75 mm (2.95-inch) BLDC Motor with Integrated Sensorless Digital Drive Allied Motion s Gen III EnduraMax 75s series motors are 75 mm (2.95 in) diameter brushless DC motors that incorporate integrated drive

More information

Active Vibration Isolation of an Unbalanced Machine Tool Spindle

Active Vibration Isolation of an Unbalanced Machine Tool Spindle Active Vibration Isolation of an Unbalanced Machine Tool Spindle David. J. Hopkins, Paul Geraghty Lawrence Livermore National Laboratory 7000 East Ave, MS/L-792, Livermore, CA. 94550 Abstract Proper configurations

More information

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR

CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 105 CHAPTER 6 BRIDGELESS PFC CUK CONVERTER FED PMBLDC MOTOR 6.1 GENERAL The line current drawn by the conventional diode rectifier filter capacitor is peaked pulse current. This results in utility line

More information

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE

CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE CHAPTER-III MODELING AND IMPLEMENTATION OF PMBLDC MOTOR DRIVE 3.1 GENERAL The PMBLDC motors used in low power applications (up to 5kW) are fed from a single-phase AC source through a diode bridge rectifier

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 13.11.2014

More information

SPEED CONTROL OF SENSORLESS BLDC MOTOR WITH FIELD ORIENTED CONTROL

SPEED CONTROL OF SENSORLESS BLDC MOTOR WITH FIELD ORIENTED CONTROL ISSN: 2349-2503 SPEED CONTROL OF SENSORLESS BLDC MOTOR WITH FIELD ORIENTED CONTROL JMuthupandi 1 DCitharthan 2 MVaratharaj 3 1 (UG Scholar/EEE department/ Christ the king engg college/ Coimbatore/India/

More information

Options & Accessories

Options & Accessories 75 mm (2.95-inch) BLDC Motor with Integrated Sensorless Digital Drive Allied Motion s Gen III EnduraMax 75s series motors are 75 mm (2.95 in) diameter brushless DC motors that incorporate integrated drive

More information

CHAPTER 1 INTRODUCTION

CHAPTER 1 INTRODUCTION 1 CHAPTER 1 INTRODUCTION 1.1 GENERAL Induction motor drives with squirrel cage type machines have been the workhorse in industry for variable-speed applications in wide power range that covers from fractional

More information

Robot Actuators. Motors and Control. Stepper Motor Basics. Increased Resolution. Stepper motors. DC motors AC motors. Physics review: Nature is lazy.

Robot Actuators. Motors and Control. Stepper Motor Basics. Increased Resolution. Stepper motors. DC motors AC motors. Physics review: Nature is lazy. obot Actuators tepper motors Motors and Control DC motors AC motors Physics review: ature is lazy. Things seek lowest energy states. iron core vs. magnet magnetic fields tend to line up Electric fields

More information

Administrative Notes. DC Motors; Torque and Gearing; Encoders; Motor Control. Today. Early DC Motors. Friday 1pm: Communications lecture

Administrative Notes. DC Motors; Torque and Gearing; Encoders; Motor Control. Today. Early DC Motors. Friday 1pm: Communications lecture At Actuation: ti DC Motors; Torque and Gearing; Encoders; Motor Control RSS Lecture 3 Wednesday, 11 Feb 2009 Prof. Seth Teller Administrative Notes Friday 1pm: Communications lecture Discuss: writing up

More information

Variateur analogique courant continu série AZ et AZB

Variateur analogique courant continu série AZ et AZB Variateur analogique courant continu série AZ et AZB AZ Analog Drives for servo systems - AMC Advanced Motion Control www.rosier.fr 07/11/2011 page(s) 1-7 Products and System Requirements / Analog PWM

More information

Application Information

Application Information Application Information Allegro Motor Driving with Angular Sensor IC By Christophe Lutz, Andrea Foletto, Kamyar Khosravi, Masahira Kurihara, Charles Keefer, and Ryan Bradley, Allegro Microsystems France,

More information

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER

CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER CURRENT FOLLOWER APPROACH BASED PI AND FUZZY LOGIC CONTROLLERS FOR BLDC MOTOR DRIVE SYSTEM FED FROM CUK CONVERTER N. Mohanraj and R. Sankaran Shanmugha Arts, Science, Technology and Research Academy University,

More information

XC4e PWM Digital Drive

XC4e PWM Digital Drive PWM Digital Drive HyperWire fiber-optic interface Up to 30 A peak output current Integral power supply Amplifiers/Drives Drive brush, brushless, voice coil, or stepper motors Safe torque off (STO) safety

More information

Step vs. Servo Selecting the Best

Step vs. Servo Selecting the Best Step vs. Servo Selecting the Best Dan Jones Over the many years, there have been many technical papers and articles about which motor is the best. The short and sweet answer is let s talk about the application.

More information

ADVANCED ROTOR POSITION DETECTION TECHNIQUE FOR SENSORLESS BLDC MOTOR CONTROL

ADVANCED ROTOR POSITION DETECTION TECHNIQUE FOR SENSORLESS BLDC MOTOR CONTROL International Journal of Soft Computing and Engineering (IJSCE) ISSN: 3137, Volume, Issue-1, March 1 ADVANCED ROTOR POSITION DETECTION TECHNIQUE FOR SENSORLESS BLDC MOTOR CONTROL S.JOSHUWA, E.SATHISHKUMAR,

More information

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia

Introduction to BLDC Motor Control Using Freescale MCU. Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Introduction to BLDC Motor Control Using Freescale MCU Tom Wang Segment Biz. Dev. Manager Avnet Electronics Marketing Asia Agenda Introduction to Brushless DC Motors Motor Electrical and Mechanical Model

More information

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits

MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits PH-315 MICROCONTROLLERS Stepper motor control with Sequential Logic Circuits Portland State University Summary Four sequential digital waveforms are used to control a stepper motor. The main objective

More information

Type of loads Active load torque: - Passive load torque :-

Type of loads Active load torque: - Passive load torque :- Type of loads Active load torque: - Active torques continues to act in the same direction irrespective of the direction of the drive. e.g. gravitational force or deformation in elastic bodies. Passive

More information

SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL

SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL SIMULATION AND IMPLEMENTATION OF CURRENT CONTROL OF BLDC MOTOR BASED ON A COMMON DC SIGNAL J.Karthikeyan* Dr.R.Dhanasekaran** * Research Scholar, Anna University, Coimbatore ** Research Supervisor, Anna

More information

ADR-A Series Direct Drive Rotary Motor

ADR-A Series Direct Drive Rotary Motor ADR-A Series Direct Drive Rotary Motor Direct drive, brushless motor fully integrated with encoder and bearing Low cogging torque Low speed and high speed windings Precise homing through index pulse ADR110

More information

Hall Commutation of Brushless Permanent Magnet DC or AC Servo Motors

Hall Commutation of Brushless Permanent Magnet DC or AC Servo Motors Commutation of Brushless Permanent Magnet DC or AC Servo s Hurley Gill, Senior Application / Systems Engineer Commutation of Brushless Permanent Magnet DC or AC Servo s The expansion of closed-loop feedback

More information

Design of A Closed Loop Speed Control For BLDC Motor

Design of A Closed Loop Speed Control For BLDC Motor International Refereed Journal of Engineering and Science (IRJES) ISSN (Online) 2319-183X, (Print) 2319-1821 Volume 3, Issue 11 (November 214), PP.17-111 Design of A Closed Loop Speed Control For BLDC

More information

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL

CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 9 CHAPTER 2 CURRENT SOURCE INVERTER FOR IM CONTROL 2.1 INTRODUCTION AC drives are mainly classified into direct and indirect converter drives. In direct converters (cycloconverters), the AC power is fed

More information

Design of Joint Controller Circuit for PA10 Robot Arm

Design of Joint Controller Circuit for PA10 Robot Arm Design of Joint Controller Circuit for PA10 Robot Arm Sereiratha Phal and Manop Wongsaisuwan Department of Electrical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.

More information

Fuzzy Logic Controller Based Direct Torque Control of PMBLDC Motor

Fuzzy Logic Controller Based Direct Torque Control of PMBLDC Motor Fuzzy Logic Controller Based Direct Torque Control of PMBLDC Motor Madasamy P 1, Ramadas K 2, Nagapriya S 3 1, 2, 3 Department of Electrical and Electronics Engineering, Alagappa Chettiar College of Engineering

More information

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge

Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge Brushed DC Motor Microcontroller PWM Speed Control with Optical Encoder and H-Bridge L298 Full H-Bridge HEF4071B OR Gate Brushed DC Motor with Optical Encoder & Load Inertia Flyback Diodes Arduino Microcontroller

More information

XC4e PWM Digital Drive

XC4e PWM Digital Drive XC4e PWM Digital Drive HyperWire fiber-optic interface Up to 30 A peak output current Integral power supply Drive brush, brushless, voice coil, or stepper motors Safe torque off (STO) safety circuit Drive

More information

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online):

Volume 1, Number 1, 2015 Pages Jordan Journal of Electrical Engineering ISSN (Print): , ISSN (Online): JJEE Volume, Number, 2 Pages 3-24 Jordan Journal of Electrical Engineering ISSN (Print): 249-96, ISSN (Online): 249-969 Analysis of Brushless DC Motor with Trapezoidal Back EMF using MATLAB Taha A. Hussein

More information

ServoStep technology

ServoStep technology What means "ServoStep" "ServoStep" in Ever Elettronica's strategy resumes seven keypoints for quality and performances in motion control applications: Stepping motors Fast Forward Feed Full Digital Drive

More information

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics

THE UNIVERSITY OF BRITISH COLUMBIA. Department of Electrical and Computer Engineering. EECE 365: Applied Electronics and Electromechanics THE UNIVERSITY OF BRITISH COLUMBIA Department of Electrical and Computer Engineering EECE 365: Applied Electronics and Electromechanics Final Exam / Sample-Practice Exam Spring 2008 April 23 Topics Covered:

More information

InstaSPIN-BLDC Lab. DRV8312 Setup Jumpers and switches must be setup properly or the kit will not function correctly!

InstaSPIN-BLDC Lab. DRV8312 Setup Jumpers and switches must be setup properly or the kit will not function correctly! InstaSPIN-BLDC Lab Introduction For this lab we are using the DRV8312 Low Voltage, Low Current Power Stage (the DRV8301/2 Kit can also be used) with Piccolo F28035 controlcard to run the sensorless InstaSPIN-BLDC

More information

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier

BLDC Motor Drive with Power Factor Correction Using PWM Rectifier BLDC Motor Drive with Power Factor Correction Using PWM Rectifier P. Sarala, S.F. Kodad and B. Sarvesh Abstract Major constraints while using motor drive system are efficiency and cost. Commutation in

More information

Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter

Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter Reduction of Torque Ripple in Trapezoidal PMSM using Multilevel Inverter R.Ravichandran 1, S.Sivaranjani 2 P.G Student [PSE], Dept. of EEE, V.S.B. Engineering College, Karur, Tamilnadu, India 1 Assistant

More information

Actuators. EECS461, Lecture 5, updated September 16,

Actuators. EECS461, Lecture 5, updated September 16, Actuators The other side of the coin from sensors... Enable a microprocessor to modify the analog world. Examples: - speakers that transform an electrical signal into acoustic energy (sound) - remote control

More information

Innocent Irakoze Dalton Ortega. Date: Nov 19 th, 2018

Innocent Irakoze Dalton Ortega. Date: Nov 19 th, 2018 Part 3: What is smart gate drive and what does it mean for me? Smart Gate Drive and its benefits Stepper smart tune and its benefits Sine (180 ) commutation Current sensing and current regulation Innocent

More information

Speed Control of BLDC Motor Using FPGA

Speed Control of BLDC Motor Using FPGA Speed Control of BLDC Motor Using FPGA Jisha Kuruvilla 1, Basil George 2, Deepu K 3, Gokul P.T 4, Mathew Jose 5 Assistant Professor, Dept. of EEE, Mar Athanasius College of Engineering, Kothamangalam,

More information

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS

TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS vii TABLE OF CONTENTS CHAPTER NO. TITLE PAGE NO. ABSTRACT LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS AND ABBREVIATIONS iii xii xiii xxi 1 INTRODUCTION 1 1.1 GENERAL 1 1.2 LITERATURE SURVEY 1 1.3 OBJECTIVES

More information

Sistemi per il controllo motori

Sistemi per il controllo motori Sistemi per il controllo motori TALENTIS 4ª SESSIONE - 28 MAGGIO 2018 Speaker: Ing. Giuseppe Scuderi Automation and Motion control team Central Lab Prodotti ST per il controllo motori 2 Applicazioni e

More information

PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter

PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter Exercise 1 PMSM Control Using a Three-Phase, Six-Step 120 Modulation Inverter EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with six-step 120 modulation. You will know

More information

Sensors and Sensing Motors, Encoders and Motor Control

Sensors and Sensing Motors, Encoders and Motor Control Sensors and Sensing Motors, Encoders and Motor Control Todor Stoyanov Mobile Robotics and Olfaction Lab Center for Applied Autonomous Sensor Systems Örebro University, Sweden todor.stoyanov@oru.se 05.11.2015

More information

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER

CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 97 CHAPTER 6 THREE-LEVEL INVERTER WITH LC FILTER 6.1 INTRODUCTION Multi level inverters are proven to be an ideal technique for improving the voltage and current profile to closely match with the sinusoidal

More information

Speed Control Of Transformer Cooler Control By Using PWM

Speed Control Of Transformer Cooler Control By Using PWM Speed Control Of Transformer Cooler Control By Using PWM Bhushan Rakhonde 1, Santosh V. Shinde 2, Swapnil R. Unhone 3 1 (assistant professor,department Electrical Egg.(E&P), Des s Coet / S.G.B.A.University,

More information

Computer Numeric Control

Computer Numeric Control Computer Numeric Control TA202A 2017-18(2 nd ) Semester Prof. J. Ramkumar Department of Mechanical Engineering IIT Kanpur Computer Numeric Control A system in which actions are controlled by the direct

More information

Open Loop Speed Control of Brushless DC Motor

Open Loop Speed Control of Brushless DC Motor Open Loop Speed Control of Brushless DC Motor K Uday Bhargav 1, Nayana T N 2 PG Student, Department of Electrical & Electronics Engineering, BNMIT, Bangalore, Karnataka, India 1 Assistant Professor, Department

More information

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor

A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor A Comparative Study of Sinusoidal PWM and Space Vector PWM of a Vector Controlled BLDC Motor Lydia Anu Jose 1, K. B.Karthikeyan 2 PG Student, Dept. of EEE, Rajagiri School of Engineering and Technology,

More information

Brushless 5 click. PID: MIKROE 3032 Weight: 25 g

Brushless 5 click. PID: MIKROE 3032 Weight: 25 g Brushless 5 click PID: MIKROE 3032 Weight: 25 g Brushless 5 click is a 3 phase sensorless BLDC motor controller, with a soft-switching feature for reduced motor noise and EMI, and precise BEMF motor sensing,

More information

ELG2336 Introduction to Electric Machines

ELG2336 Introduction to Electric Machines ELG2336 Introduction to Electric Machines Magnetic Circuits DC Machine Shunt: Speed control Series: High torque Permanent magnet: Efficient AC Machine Synchronous: Constant speed Induction machine: Cheap

More information

Rotary Servo Actuator

Rotary Servo Actuator Rotary Servo Actuator TYPICAL APPLICATIONS Unmanned air vehicles - tactical, medium long endurance and MALE / HALE vehicles - Control surfaces requiring servo actuation Target drones - surface control,

More information

Basic NC and CNC. Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur

Basic NC and CNC. Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur Basic NC and CNC Dr. J. Ramkumar Professor, Department of Mechanical Engineering Micro machining Lab, I.I.T. Kanpur Micro machining Lab, I.I.T. Kanpur Outline 1. Introduction to CNC machine 2. Component

More information

3U High, 19" Drive Rack

3U High, 19 Drive Rack 3U High, 19" Drive Rack 3U plug-in amplifiers Dedicated control card for each amplifier 19 inch rack-mount design Flexible design provides the ability to drive brush, brushless, or stepper motors with

More information

Sensorless Drive for High-Speed Brushless DC Motor Based on the Virtual Neutral Voltage

Sensorless Drive for High-Speed Brushless DC Motor Based on the Virtual Neutral Voltage Page number 1 Sensorless Drive for High-Speed Brushless DC Motor Based on the Virtual Neutral Voltage Abstract Introduction: In recent years, high-speed brushless dc (BLDC) motor, which due to its high

More information

ElectroCraft CompletePower Plus Universal Servo Drives

ElectroCraft CompletePower Plus Universal Servo Drives www.electrocraft.com ElectroCraft CompletePower Plus Universal Servo Drives Product Datasheets for ELECTROCRAFT CompletePower Plus UNIVERSAL DRIVE About ElectroCraft ElectroCraft, Inc. is a global provider

More information

XC4 PWM Digital Drive

XC4 PWM Digital Drive XC4 PWM Digital Drive HyperWire fiber-optic interface Up to 30 A peak output current Integral power supply Drive brush, brushless, voice coil, or stepper motors Safe torque off (STO) safety circuit Drive

More information

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion

Optimizing Performance Using Slotless Motors. Mark Holcomb, Celera Motion Optimizing Performance Using Slotless Motors Mark Holcomb, Celera Motion Agenda 1. How PWM drives interact with motor resistance and inductance 2. Ways to reduce motor heating 3. Locked rotor test vs.

More information

Controlling of Permanent Magnet Brushless DC Motor using Instrumentation Technique

Controlling of Permanent Magnet Brushless DC Motor using Instrumentation Technique Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 1, January -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Controlling

More information

The Fan Company Microcontroller Fan. Prepared by. JMC Engineering

The Fan Company   Microcontroller Fan. Prepared by. JMC Engineering The Fan Company www.jmcproducts.com Microcontroller Fan Prepared by JMC Engineering July 2013 Introduction: Technical Report New thermal cooling challenges need new and innovative cooling solutions. Controlling

More information

Logosol Intelligent Hall-Servo Drive LS-173U Doc # / Rev. C, 02/12/2008

Logosol Intelligent Hall-Servo Drive LS-173U Doc # / Rev. C, 02/12/2008 Features Specially designed for control of brushless motors without encoder Hall-Servo and Encoder-Servo control modes Motors supported: - Brushless 60/120 commutated (AC) - Brush-commutated (DC) Up to

More information

FOC of IM at Very Low Speed Using Low Count Encoders

FOC of IM at Very Low Speed Using Low Count Encoders FOC of IM at Very Low Speed Using Low Count Encoders 01001000100000110000001000001100 010010001000 Name: Bilal AKIN Title: PhD Candidate Company Name: TX A&M Email: akbilal@ee.tamu.edu Outline Introduction

More information

PROPORTIONAL INTEGRAL &DERIVATIVE CONTROLLER FOR BLDC MOTOR

PROPORTIONAL INTEGRAL &DERIVATIVE CONTROLLER FOR BLDC MOTOR PROPORTIONAL INTEGRAL &DERIVATIVE CONTROLLER FOR BLDC MOTOR T.Saarulatha 1 M.E., V.Yaknapriya 2 M.E.,T.Muthukumar 3 M.E., S.Saravanan 4 M.E, Ph.D., 1,2,3 Assistant Professor / EEE, 4 Professor and Head/EEE

More information

Application Note. 3-Phase Brushless DC Motor Control with Hall Sensors AN-CM-244

Application Note. 3-Phase Brushless DC Motor Control with Hall Sensors AN-CM-244 Application Note 3-Phase Brushless DC Motor Control with Hall AN-CM-244 Abstract This application note describes how to control a 3-phase brushless DC motor using a GreenPAK. This application note comes

More information

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation

PART 2 - ACTUATORS. 6.0 Stepper Motors. 6.1 Principle of Operation 6.1 Principle of Operation PART 2 - ACTUATORS 6.0 The actuator is the device that mechanically drives a dynamic system - Stepper motors are a popular type of actuators - Unlike continuous-drive actuators,

More information

Product Application Note. Comparison of Higher Performance AC Drives and AC Servo Controllers. Applicable Product: General AC Drives

Product Application Note. Comparison of Higher Performance AC Drives and AC Servo Controllers. Applicable Product: General AC Drives Product Application Note Comparison of Higher Performance AC Drives and AC Servo Controllers Applicable Product: General AC Drives Yaskawa Electric America 2121 Norman Drive South Waukegan, IL 60085 18009275292

More information

MEGA Servo setup procedure for driving PMS motor

MEGA Servo setup procedure for driving PMS motor Application Note AN-MEGA-0016-v105EN MEGA Servo setup procedure for driving PMS motor Inverter type FRENIC MEGA (-EAQ Type) Software version 1700 Required options OPC-G1-PG, OPC-G1-PG2, OPC-G1-PG22, OPC-G1-PMPG

More information

Swinburne Research Bank

Swinburne Research Bank Swinburne Research Bank http://researchbank.swinburne.edu.au Tashakori, A., & Ektesabi, M. (2013). A simple fault tolerant control system for Hall Effect sensors failure of BLDC motor. Originally published

More information

A CSC Converter fed Sensorless BLDC Motor Drive

A CSC Converter fed Sensorless BLDC Motor Drive A CSC Converter fed Sensorless BLDC Motor Drive Anit K. Jose P G Student St Joseph's College of Engg Pala Bissy Babu Assistant Professor St Joseph's College of Engg Pala Abstract: The Brushless Direct

More information

Glossary. Glossary Engineering Reference. 35

Glossary. Glossary Engineering Reference. 35 Glossary Engineering Reference Glossary Abbe error The positioning error resulting from angular motion and an offset between the measuring device and the point of interest. Abbe offset The value of the

More information

Simulation of Solar Powered PMBLDC Motor Drive

Simulation of Solar Powered PMBLDC Motor Drive Simulation of Solar Powered PMBLDC Motor Drive 1 Deepa A B, 2 Prof. Maheshkant pawar 1 Students, 2 Assistant Professor P.D.A College of Engineering Abstract - Recent global developments lead to the use

More information

PWM SWITCHING STRATEGY FOR TORQUE RIPPLE MINIMIZATION IN BLDC MOTOR

PWM SWITCHING STRATEGY FOR TORQUE RIPPLE MINIMIZATION IN BLDC MOTOR Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 3, 2011, 141 146 PWM SWITCHING STRATEGY FOR TORQUE RIPPLE MINIMIZATION IN BLDC MOTOR Wael A. Salah Dahaman Ishak Khaleel J. Hammadi This paper describes

More information

Ametek, Inc. Rotron Technical Products Division. 100 East Erie St., Suite 200 Kent, Ohio User's Guide. Number Revision F

Ametek, Inc. Rotron Technical Products Division. 100 East Erie St., Suite 200 Kent, Ohio User's Guide. Number Revision F Ametek, Inc. Rotron Technical Products Division 100 East Erie St., Suite 200 Kent, Ohio 44240 User's 120 Volt, 800 Watt and 240 Volt, 1200 Watt Brushless Motor Drive Electronics 5.7" (145 mm) and 7.2"

More information