PROTECTIVE RELAY MISOPERATIONS AND ANALYSIS

Size: px
Start display at page:

Download "PROTECTIVE RELAY MISOPERATIONS AND ANALYSIS"

Transcription

1 PROTECTIVE RELAY MISOPERATIONS AND ANALYSIS BY STEVE TURNER, Beckwith Electric Company, Inc. This paper provides detailed technical analysis of two relay misoperations and demonstrates how to prevent them from occurring. Case 1: An unwanted breaker failure operation tripped for a large offline generator during high load, resulting in an outage in the adjoining downtown area of a large city. Case 2: A transformer differential trip protecting the generator step-up transformer at a process plant occurred due to sympathetic inrush when a large nearby GSU was energized via the interconnecting high-voltage transmission line, resulting in an extended outage. Each individual analysis ends with a conclusion stating why the relay misoperated and providing a recommendation on the best practice for the particular application. CASE 1: UNWANTED BREAKER FAILURE OPERATION LARGE GENERATOR TRIPPED DURING HIGH-LOAD PERIOD During a period of high load, a breaker failure trip for a large offline generator located in the downtown area of a large city resulted in an outage. Figure 1 shows the system topology at the time of the trip. Note that the generator is connected to Figure 1: System Operating Conditions the transmission grid via a high-voltage breaker. The links connecting the generator to the GSU were open as well as the high-side breaker. The lowside winding of the GSU drew excitation current since it was energized via the auxiliary station service. Original Breaker Failure Scheme Logic Figure 2 shows the original logic used for this breaker failure protection scheme. Figure 2: Breaker Failure Logic NETAWORLD 43

2 Original Protection Settings Figure 3 shows the original relay settings for this breaker failure scheme. Fault Current Signals Figure 4 shows the oscillography captured by the relay at the time of the trip. Figure 5 shows the current phasors measured by the protective relay when the breaker failure occurred. Figure 3: Breaker Failure Settings Figure 4: Fault Event Oscillography Figure 5: Fault Current Phasors 44 WINTER 2016

3 Case 1 Conclusion The breaker failure trip occurred because I C was above the current detector pickup setting and input 4 (BFI) was asserted. Original Protection Settings Figure 8 shows the original settings for the transformer differential protection. The breaker failure function may be used for a unit breaker rather than a generator breaker. It is limited in that no fault detector is associated with the unit breaker. Output contact operation would occur if any of the initiate contacts close, and the 52b contact indicated a closed breaker after the set time delay. The corresponding logic is shown in Figure 6. Figure 8: 87T Settings Figure 6: Fault Current Phasors CASE 2: TRANSFORMER DIFFERENTIAL TRIP DUE TO SYMPATHETIC INRUSH The transformer differential relay protecting the step-up transformer at a processing plant tripped when a nearby large GSU at a power plant was energized from the high side. The trip was due to sympathetic inrush current flowing through the step-up transformer (Figure 7). Fault Current Signals Figure 9 shows the oscillography captured by the relay at the time of the trip. Note that current input IAW1 is almost completely offset, and there is some distortion in other current inputs as well. Figure 7: System Operating Conditions (Arrows Indicate Direction of Inrush Current) Figure 9: Fault Event Oscillography (Raw Waveforms) NETAWORLD 45

4 Harmonic Restraint Calculations Figure 10 shows the second harmonic content of the current inputs at the time of the trip. The second harmonic differential current present when the trip occurred was as follows: A-Phase = 17 percent B-Phase = 13 percent C-Phase = 13 percent If the ratio is greater than the restraint setting, then the transformer differential protection is blocked (Figure 12). Figure 12: Even Harmonic Restraint Logic The original second harmonic restraint setting was 20 percent for the electro-mechanical transformer differential relay. The customer used the same setting for the multi-function numerical relay that replaced the original electro-mechanical relay. Figure 10 showed that a setting of 20 percent was not sensitive enough to detect the sympathetic inrush current flowing through the step-up transformer. Figure 10: Fault Event Oscillography (Second Harmonic Content) The ratio of harmonic to fundamental differential current used to restrain the transformer differential protection is calculated as follows (Figure 11): Case 2 Conclusion For several decades, electro-mechanical relays had a fixed harmonic inhibit level of 20 percent. This worked well for a period of time until transformer manufacturers began making better transformers that used less material and were designed with smaller tolerances. Therefore, modern laminated-steel-core transformers will not reliably produce 20 percent second harmonic current during inrush. Based upon this particular event, an 11 percent setting for the second harmonic restraint would be the most reliable. Note that the multi-function numerical relay in this application actually uses the root mean square (RMS) of the second and fourth harmonic differential current, but that still was not enough to restrain the protection. Figure 11: Even Harmonic Restraint Equation 46 WINTER 2016

5 FINAL CONCLUSION The technical analysis of these two relay misoperations, along with examples of how to use the data recorded by a relay during these types of conditions, should help you understand why each misoperation occurred and how to implement best practices for each particular application. Knowing that the first misoperation was due to an incorrect relay setting, while the second was due to an incorrect application, should clarify the need for careful attention during the design and initial work stages. Steve Turner, an IEEE Senior Member, is a Senior Applications Engineer at Beckwith Electric Company. His previous experience includes work as an application engineer with GEC Alstom and as an application engineer in the international market for SEL, focusing on transmission line protection applications. Steve worked for Duke Energy (formerly Progress Energy), where he developed a patent for double-ended fault location on overhead transmission lines. He has a BSEE and MSEE from Virginia Tech. Steve has presented at numerous conferences, including Georgia Tech Protective Relay Conference, Western Protective Relay Conference, Energy Council of the Northeast, and Doble User Groups, as well as various international conferences.

Catastrophic Relay Misoperations and Successful Relay Operation

Catastrophic Relay Misoperations and Successful Relay Operation Catastrophic Relay Misoperations and Successful Relay Operation Steve Turner (Beckwith Electric Co., Inc.) Introduction This paper provides detailed technical analysis of several catastrophic relay misoperations

More information

Testing Numerical Transformer Differential Relays

Testing Numerical Transformer Differential Relays Feature Testing Numerical Transformer Differential Relays Steve Turner Beckwith Electric Co., nc. ntroduction Numerical transformer differential relays require careful consideration as to how to test properly.

More information

The InterNational Electrical Testing Association Journal. BY STEVE TURNER, Beckwith Electric Company, Inc.

The InterNational Electrical Testing Association Journal. BY STEVE TURNER, Beckwith Electric Company, Inc. The InterNational Electrical Testing Association Journal FEATURE PROTECTION GUIDE 64S Theory, Application, and Commissioning of Generator 100 Percent Stator Ground Fault Protection Using Low Frequency

More information

DOUBLE-ENDED FAULT LOCATORS

DOUBLE-ENDED FAULT LOCATORS The InterNational Electrical Testing Association Journal FEATURE END-TO-END TESTING OF DOUBLE-ENDED FAULT LOCATORS BY STEVE TURNER, Beckwith Electric Company, Inc.. www.netaworld.org FOR HIGH VOLTAGE,

More information

Minnesota Power Systems Conference 2015 Improving System Protection Reliability and Security

Minnesota Power Systems Conference 2015 Improving System Protection Reliability and Security Minnesota Power Systems Conference 2015 Improving System Protection Reliability and Security Steve Turner Senior Application Engineer Beckwith Electric Company Introduction Summarize conclusions from NERC

More information

Visualization and Animation of Protective Relay Operation

Visualization and Animation of Protective Relay Operation Visualization and Animation of Protective Relay Operation A. P. Sakis Meliopoulos School of Electrical and Computer Engineering Georgia Institute of Technology Atlanta, Georgia 30332 George J. Cokkinides

More information

Pinhook 500kV Transformer Neutral CT Saturation

Pinhook 500kV Transformer Neutral CT Saturation Russell W. Patterson Tennessee Valley Authority Presented to the 9th Annual Fault and Disturbance Analysis Conference May 1-2, 26 Abstract This paper discusses the saturation of a 5kV neutral CT upon energization

More information

Hands On Relay School Open Lecture Transformer Differential Protection Scott Cooper

Hands On Relay School Open Lecture Transformer Differential Protection Scott Cooper Hands On Relay School Open Lecture Transformer Differential Protection Scott Cooper Transformer Differential Protection ntroduction: Transformer differential protection schemes are ubiquitous to almost

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 4: (June 10, 2013) Page 1 of 75 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

BUS2000 Busbar Differential Protection System

BUS2000 Busbar Differential Protection System BUS2000 Busbar Differential Protection System Differential overcurrent system with percentage restraint protection 1 Typical Busbar Arrangements Single Busbar Double Busbar with Coupler Breaker and a Half

More information

Forward to the Basics: Selected Topics in Distribution Protection

Forward to the Basics: Selected Topics in Distribution Protection Forward to the Basics: Selected Topics in Distribution Protection Lee Underwood and David Costello Schweitzer Engineering Laboratories, Inc. Presented at the IEEE Rural Electric Power Conference Orlando,

More information

Verifying Transformer Differential Compensation Settings

Verifying Transformer Differential Compensation Settings Verifying Transformer Differential Compensation Settings Edsel Atienza and Marion Cooper Schweitzer Engineering Laboratories, Inc. Presented at the 6th International Conference on Large Power Transformers

More information

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76

PRC Generator Relay Loadability. Guidelines and Technical Basis Draft 5: (August 2, 2013) Page 1 of 76 PRC-025-1 Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive general discussion

More information

A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants

A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants A Tutorial on the Application and Setting of Collector Feeder Overcurrent Relays at Wind Electric Plants Martin Best and Stephanie Mercer, UC Synergetic, LLC Abstract Wind generating plants employ several

More information

Transformer Protection

Transformer Protection Transformer Protection Transformer Protection Outline Fuses Protection Example Overcurrent Protection Differential Relaying Current Matching Phase Shift Compensation Tap Changing Under Load Magnetizing

More information

Hands On Relay School Open Lecture Transformer Differential Protection Scott Cooper

Hands On Relay School Open Lecture Transformer Differential Protection Scott Cooper Hands On Relay School Open Lecture Transformer Differential Protection Scott Cooper Transformer Differential Protection ntroduction: Transformer differential protection schemes are ubiquitous to almost

More information

889 Advanced Generator Protection Technical Note

889 Advanced Generator Protection Technical Note GE Grid Solutions 8 Series 889 Advanced Generator Protection Technical Note GE Publication Number: GET-20056 Copyright 2017 GE Multilin Inc. Overview The Multilin 889 is part of the 8 Series platform that

More information

www. ElectricalPartManuals. com Transformer Differential Relay MD32T Transformer Differential Relay

www. ElectricalPartManuals. com Transformer Differential Relay MD32T Transformer Differential Relay Transformer Differential Relay The MD3T Transformer Differential Relay is a member of Cooper Power Systems Edison line of microprocessor based protective relays. The MD3T relay offers the following functions:

More information

Keywords: Transformer, differential protection, fuzzy rules, inrush current. 1. Conventional Protection Scheme For Power Transformer

Keywords: Transformer, differential protection, fuzzy rules, inrush current. 1. Conventional Protection Scheme For Power Transformer Vol. 3 Issue 2, February-2014, pp: (69-75), Impact Factor: 1.252, Available online at: www.erpublications.com Modeling and Simulation of Modern Digital Differential Protection Scheme of Power Transformer

More information

Improving Transformer Protection

Improving Transformer Protection Omaha, NB October 12, 2017 Improving Transformer Protection Wayne Hartmann VP, Customer Excellence Senior Member, IEEE Wayne Hartmann Senior VP, Customer Excellence Speaker Bio whartmann@beckwithelectric.com

More information

Generator Protection Overcomes Current Transformer Limitations

Generator Protection Overcomes Current Transformer Limitations Generator Protection Overcomes Current Transformer Limitations Marcos Donolo, Armando Guzmán, Mangapathirao V. Mynam, Rishabh Jain, and Dale Finney, Schweitzer Engineering Laboratories, Inc. Abstract Following

More information

Module 10. Initiation Code RELIABILITY ACCOUNTABILITY

Module 10. Initiation Code RELIABILITY ACCOUNTABILITY Module 10 Initiation Code 1 M10 Initiation Code This is not the Initiating cause code The Outage Initiation Codes describe where an Automatic Outage was initiated on the power system. Element-Initiated

More information

Performance Analysis of Traditional and Improved Transformer Differential Protective Relays

Performance Analysis of Traditional and Improved Transformer Differential Protective Relays Performance Analysis of Traditional and Improved Transformer Differential Protective Relays Armando Guzmán, Stan Zocholl, and Gabriel Benmouyal Schweitzer Engineering Laboratories, Inc. Hector J. Altuve

More information

Event Analysis Tutorial

Event Analysis Tutorial 1 Event Analysis Tutorial Part 1: Problem Statements David Costello, Schweitzer Engineering Laboratories, Inc. Abstract Event reports have been an invaluable feature in microprocessor-based relays since

More information

Modern transformer relays include a comprehensive set of protective elements to protect transformers from faults and abnormal operating conditions

Modern transformer relays include a comprehensive set of protective elements to protect transformers from faults and abnormal operating conditions 1 Transmission transformers are important links in the bulk power system. They allow transfer of power from generation centers, up to the high-voltage grid, and to bulk electric substations for distribution

More information

ANALYSIS OF A DIFFERENTIAL AND OVERCURRENT OPERATION ON A 345KV HIGH VOLTAGE LINE REACTOR

ANALYSIS OF A DIFFERENTIAL AND OVERCURRENT OPERATION ON A 345KV HIGH VOLTAGE LINE REACTOR ANALYSIS OF A DIFFERENTIAL AND OVERCURRENT OPERATION ON A 345KV HIGH VOLTAGE LINE REACTOR Authors: Eric Schroeder P.E., Cross Texas Transmission, Amarillo, Texas Jerry Burton, Cross Texas Transmission,

More information

Texas Reliability Entity Event Analysis. Event: May 8, 2011 Loss of Multiple Elements Category 1a Event

Texas Reliability Entity Event Analysis. Event: May 8, 2011 Loss of Multiple Elements Category 1a Event Texas Reliability Entity Event Analysis Event: May 8, 2011 Loss of Multiple Elements Category 1a Event Texas Reliability Entity July 2011 Page 1 of 10 Table of Contents Executive Summary... 3 I. Event

More information

Analyzing the Impact of Shunt Reactor Switching Operations Based on DFR Monitoring System

Analyzing the Impact of Shunt Reactor Switching Operations Based on DFR Monitoring System Analyzing the Impact of Shunt Reactor Switching Operations Based on DFR Monitoring System Lalit Ghatpande, SynchroGrid, College Station, Texas, 77840 Naveen Ganta, SynchroGrid, College Station, Texas,

More information

1

1 Guidelines and Technical Basis Introduction The document, Power Plant and Transmission System Protection Coordination, published by the NERC System Protection and Control Subcommittee (SPCS) provides extensive

More information

Evaluating the Impact of Increasing System Fault Currents on Protection

Evaluating the Impact of Increasing System Fault Currents on Protection Evaluating the Impact of Increasing System Fault Currents on Protection Zhihan Xu, Ilia Voloh GE Grid Solutions, LLC Mohsen Khanbeigi Hydro One Abstract Every year the capacity of power systems is increasing,

More information

How Transformer DC Winding Resistance Testing Can Cause Generator Relays to Operate

How Transformer DC Winding Resistance Testing Can Cause Generator Relays to Operate How Transformer DC Winding Resistance Testing Can Cause Generator Relays to Operate Ritwik Chowdhury, Mircea Rusicior, Jakov Vico, and Jason Young Schweitzer Engineering Laboratories, Inc. 216 IEEE. Personal

More information

Distance Relay Response to Transformer Energization: Problems and Solutions

Distance Relay Response to Transformer Energization: Problems and Solutions 1 Distance Relay Response to Transformer Energization: Problems and Solutions Joe Mooney, P.E. and Satish Samineni, Schweitzer Engineering Laboratories Abstract Modern distance relays use various filtering

More information

Transformer Differential Protection Lab

Transformer Differential Protection Lab Montana Tech Library Digital Commons @ Montana Tech Proceedings of the Annual Montana Tech Electrical and General Engineering Symposium Student Scholarship 2016 Transformer Differential Protection Lab

More information

Generator Protection GENERATOR CONTROL AND PROTECTION

Generator Protection GENERATOR CONTROL AND PROTECTION Generator Protection Generator Protection Introduction Device Numbers Symmetrical Components Fault Current Behavior Generator Grounding Stator Phase Fault (87G) Field Ground Fault (64F) Stator Ground Fault

More information

PRC Generator Relay Loadability. A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1

PRC Generator Relay Loadability. A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1 PRC-025-1 Generator Relay Loadability A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1 Purpose: To set load-responsive protective relays associated with generation Facilities

More information

Negative-Sequence Based Scheme For Fault Protection in Twin Power Transformer

Negative-Sequence Based Scheme For Fault Protection in Twin Power Transformer Negative-Sequence Based Scheme For Fault Protection in Twin Power Transformer Ms. Kanchan S.Patil PG, Student kanchanpatil2893@gmail.com Prof.Ajit P. Chaudhari Associate Professor ajitpc73@rediffmail.com

More information

Turn-to-Turn Fault Detection in Transformers Using Negative Sequence Currents

Turn-to-Turn Fault Detection in Transformers Using Negative Sequence Currents Turn-to-Turn Fault Detection in Transformers Using Negative Sequence Currents Mariya Babiy 1, Rama Gokaraju 1, Juan Carlos Garcia 2 1 University of Saskatchewan, Saskatoon, Canada 2 Manitoba HVDC Research

More information

Malfunction of Differential Relays in Wind Farms

Malfunction of Differential Relays in Wind Farms Malfunction of Differential Relays in Wind Farms Abstract The distributed generation (DG) including wind power, solar power etc is one of the solutions for the sustaining energy shortage in the existing

More information

PROTECTION OF TRANSFORMERS M-3311A TEST PLAN

PROTECTION OF TRANSFORMERS M-3311A TEST PLAN PROTECTION OF TRANSFORMERS M-3311A TEST PLAN Chuck Mozina -- is a Consultant, Protection and Protection Systems for Beckwith Electric and resides in Palm Harbor (near Tampa), Florida.. He is a Life Fellow

More information

Transformer Protection Principles

Transformer Protection Principles Transformer Protection Principles 1. Introduction Transformers are a critical and expensive component of the power system. Due to the long lead time for repair of and replacement of transformers, a major

More information

Overcurrent Elements

Overcurrent Elements Exercise Objectives Hands-On Relay Testing Session Overcurrent Elements After completing this exercise, you should be able to do the following: Identify overcurrent element settings. Determine effective

More information

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM

POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM POWER TRANSFORMER PROTECTION USING ANN, FUZZY SYSTEM AND CLARKE S TRANSFORM 1 VIJAY KUMAR SAHU, 2 ANIL P. VAIDYA 1,2 Pg Student, Professor E-mail: 1 vijay25051991@gmail.com, 2 anil.vaidya@walchandsangli.ac.in

More information

A NEW DIFFERENTIAL PROTECTION ALGORITHM BASED ON RISING RATE VARIATION OF SECOND HARMONIC CURRENT *

A NEW DIFFERENTIAL PROTECTION ALGORITHM BASED ON RISING RATE VARIATION OF SECOND HARMONIC CURRENT * Iranian Journal of Science & Technology, Transaction B, Engineering, Vol. 30, No. B6, pp 643-654 Printed in The Islamic Republic of Iran, 2006 Shiraz University A NEW DIFFERENTIAL PROTECTION ALGORITHM

More information

Unit Auxiliary Transformer (UAT) Relay Loadability Report

Unit Auxiliary Transformer (UAT) Relay Loadability Report Background and Objective Reliability Standard, PRC 025 1 Generator Relay Loadability (standard), developed under NERC Project 2010 13.2 Phase 2 of Relay Loadability: Generation, was adopted by the NERC

More information

II. DIFFERENTIAL PROTECTION

II. DIFFERENTIAL PROTECTION Differential Protection of Power Transformer Using Simulink Mandeep Singh 1, Harjit Singh Kainth 2 1 M. Tech Student, Arni University Kangra, India 2 Assistant Professor, Arni University Kangra, India

More information

ENOSERV 2014 Relay & Protection Training Conference Course Descriptions

ENOSERV 2014 Relay & Protection Training Conference Course Descriptions ENOSERV 2014 Relay & Protection Training Conference Course Descriptions Day 1 Generation Protection/Motor Bus Transfer Generator Protection: 4 hours This session highlights MV generator protection and

More information

Transformer Protection

Transformer Protection 1 Presenter Contact Info Wayne Hartmann Senior VP, Customer Excellence Beckwith Electric Company whartmann@beckwithelectric.com 904 238 3844 Wayne is the top strategist for delivering innovative technology

More information

ATP modeling of internal transformer faults for relay performance testing

ATP modeling of internal transformer faults for relay performance testing Michigan Technological University Digital Commons @ Michigan Tech Dissertations, Master's Theses and Master's Reports - Open Dissertations, Master's Theses and Master's Reports 2011 ATP modeling of internal

More information

Protective Relaying of Power Systems Using Mathematical Morphology

Protective Relaying of Power Systems Using Mathematical Morphology Q.H. Wu Z. Lu T.Y. Ji Protective Relaying of Power Systems Using Mathematical Morphology Springer List of Figures List of Tables xiii xxi 1 Introduction 1 1.1 Introduction and Definitions 1 1.2 Historical

More information

Anti-IslandingStrategyforaPVPowerPlant

Anti-IslandingStrategyforaPVPowerPlant Global Journal of Researches in Engineering: F Electrical and Electronics Engineering Volume 15 Issue 7 Version 1.0 Type: Double Blind Peer Reviewed International Research Journal Publisher: Global Journals

More information

70 TH ANNUAL CONFERENCE FOR PROTECTIVE RELAY ENGINEERS TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS APRIL 3 APRIL 6, 2017

70 TH ANNUAL CONFERENCE FOR PROTECTIVE RELAY ENGINEERS TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS APRIL 3 APRIL 6, 2017 70 TH ANNUAL CONFERENCE FOR PROTECTIVE RELAY ENGINEERS TEXAS A&M UNIVERSITY COLLEGE STATION, TEXAS APRIL 3 APRIL 6, 2017 MICROPROCESSOR RELAY DIRECTIONAL CHANGE DURING CURRENT REVERSAL MICHEAL DAVIS, JR,

More information

Commissioning Process and Acceptance Test of a Sub-harmonic Protection Relay

Commissioning Process and Acceptance Test of a Sub-harmonic Protection Relay Commissioning Process and Acceptance Test of a Sub-harmonic Protection Relay K. Narendra, R. Midence, A. Oliveira, N. Perera, N. Zhang - ERLPhase Power Technologies Ltd Abstract Numerous technical papers

More information

Power Plant and Transmission System Protection Coordination Fundamentals

Power Plant and Transmission System Protection Coordination Fundamentals Power Plant and Transmission System Protection Coordination Fundamentals NERC Protection Coordination Webinar Series June 2, 2010 Jon Gardell Agenda 2 Objective Introduction to Protection Generator and

More information

Impact of Incipient Faults on Sensitive Protection

Impact of Incipient Faults on Sensitive Protection Impact of Incipient Faults on Sensitive Protection Paper Authors: Ilia Voloh GE Grid Solutions Zhihan Xu, Ilia Voloh GE Grid Solutions Leonardo Torelli CSE-Uniserve Presented by: Tom Ernst GE Grid Solutions

More information

Improved power transformer protection using numerical relays

Improved power transformer protection using numerical relays Improved power transformer protection using numerical relays Bogdan Kasztenny* and Mladen Kezunovic Texas A&M University, USA Large power transformers belong to a class of very expensive and vital components

More information

Power System Protection

Power System Protection I Power System Protection Arun Phadke Virginia Polytechnic Institute 1 Transfor mer Protection Alexander Apostolov, John Apple yard, Ahmed Elneweihi, Robert Haas, and Glenn W Swift 1-1 Ty pes of Transformer

More information

2015 Relay School Bus Protection Mike Kockott March, 2015

2015 Relay School Bus Protection Mike Kockott March, 2015 2015 Relay School Bus Protection Mike Kockott March, 2015 History of Bus Protection Circulating current differential (1900s) High impedance differential (1940s) Percentage restrained differential (1960s)

More information

CURRENT TRANSFORMER SELECTION TECHNIQUES FOR LOW-VOLTAGE MOTOR CONTROL CENTERS

CURRENT TRANSFORMER SELECTION TECHNIQUES FOR LOW-VOLTAGE MOTOR CONTROL CENTERS CURRENT TRANSFORMER SELEION TECHNIQUES FOR LOW-OLTAGE MOTOR CONTROL CENTERS Copyright Material IEEE Paper No. PCIC-TBD Scott Manson Senior Member, IEEE Schweitzer Engineering Laboratories, Inc. 235 NE

More information

Protecting Large Machines for Arcing Faults

Protecting Large Machines for Arcing Faults Protecting Large Machines for Arcing Faults March 2, 2010 INTRODUCTION Arcing faults occur due to dirty insulators or broken strands in the stator windings. Such faults if undetected can lead to overheating

More information

PRC Generator Relay Loadability. A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1

PRC Generator Relay Loadability. A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1 A. Introduction 1. Title: Generator Relay Loadability 2. Number: PRC-025-1 Purpose: To set load-responsive protective relays associated with generation Facilities at a level to prevent unnecessary tripping

More information

Considerations and Experiences in Implementing Ground Differential Protection for Transformer Protection at TVA

Considerations and Experiences in Implementing Ground Differential Protection for Transformer Protection at TVA Considerations and Experiences in Implementing Ground Differential Protection for Transformer Protection at TVA Meyer Kao - Consultant, Gary Kobet - Tennessee Valley Authority George Pitts -Tennessee Valley

More information

Protection of a 138/34.5 kv transformer using SEL relay

Protection of a 138/34.5 kv transformer using SEL relay Scholars' Mine Masters Theses Student Theses and Dissertations Fall 2016 Protection of a 138/34.5 kv transformer using SEL 387-6 relay Aamani Lakkaraju Follow this and additional works at: http://scholarsmine.mst.edu/masters_theses

More information

Solutions to Common Distribution Protection Challenges

Solutions to Common Distribution Protection Challenges 1 Solutions to Common Distribution Protection Challenges Jeremy Blair, Greg Hataway, and Trevor Mattson, Schweitzer Engineering Laboratories, Inc. 235 NE Hopkins Court, Pullman, WA 99163 USA, +1.59.332.189

More information

PLAN... RESPOND... RESTORE! Utility Automation & Information Technology... Automation Rising

PLAN... RESPOND... RESTORE! Utility Automation & Information Technology... Automation Rising Automation Rising Q U A R T E R LY First Quarter 2013 The Digital Magazine of Automation & Information Technology for Electric, Gas and Water Utilities Utility Automation & Information Technology... PLAN...

More information

Study of the Impact of Energization of 500 kv Autotransformer in Directional Overcurrent Relays of Adjacent Transmission Lines

Study of the Impact of Energization of 500 kv Autotransformer in Directional Overcurrent Relays of Adjacent Transmission Lines Siemens Industry, Inc. Power Technology Issue 124 Study of the Impact of Energization of 5 k Autotransformer in Directional Overcurrent Relays of Adjacent Transmission Lines Carlos Andrés Ramírez Cadavid

More information

Back to the Basics Event Analysis Using Symmetrical Components

Back to the Basics Event Analysis Using Symmetrical Components Back to the Basics Event Analysis Using Symmetrical Components Amanvir Sudan Schweitzer Engineering Laboratories, Inc. 218 SEL Motivation Overview Back to Basics Introduction Symmetrical components refresher

More information

Module 9. Fault Type Form 4.X RELIABILITY ACCOUNTABILITY

Module 9. Fault Type Form 4.X RELIABILITY ACCOUNTABILITY Module 9 Fault Type Form 4.X 1 M9 Fault Type The descriptor of the fault, if any, associated with each Automatic Outage of an Element. 1. No fault 2. Phase-to-phase fault (P-P) 3. Single phase-to-ground

More information

Research on the Reason for Transformer Differential Protection Mal-operation Caused by Sympathetic Inrush

Research on the Reason for Transformer Differential Protection Mal-operation Caused by Sympathetic Inrush Energy and Power Engineering, 13, 5, 177-18 doi:1.436/epe.13.54b5 Published Online July 13 (http://www.scirp.org/journal/epe) Research on the Reason for Transformer Differential Protection Mal-operation

More information

Power Plant and Transmission System Protection Coordination

Power Plant and Transmission System Protection Coordination Technical Reference Document Power Plant and Transmission System Protection Coordination NERC System Protection and Control Subcommittee Revision 1 July 2010 Table of Contents 1. Introduction... 1 1.1.

More information

Sequence Networks p. 26 Sequence Network Connections and Voltages p. 27 Network Connections for Fault and General Unbalances p. 28 Sequence Network

Sequence Networks p. 26 Sequence Network Connections and Voltages p. 27 Network Connections for Fault and General Unbalances p. 28 Sequence Network Preface p. iii Introduction and General Philosophies p. 1 Introduction p. 1 Classification of Relays p. 1 Analog/Digital/Numerical p. 2 Protective Relaying Systems and Their Design p. 2 Design Criteria

More information

Bus Protection Fundamentals

Bus Protection Fundamentals Bus Protection Fundamentals Terrence Smith GE Grid Solutions 2017 Texas A&M Protective Relay Conference Bus Protection Requirements High bus fault currents due to large number of circuits connected: CT

More information

Utility Interconnection and System Protection

Utility Interconnection and System Protection Utility Interconnection and System Protection Alex Steselboim President, Advanced Power Technologies, Inc. Utility paralleling vs. isolated operation. Isochronous kw load sharing Reactive power (VAR) sharing

More information

Line Protection Roy Moxley Siemens USA

Line Protection Roy Moxley Siemens USA Line Protection Roy Moxley Siemens USA Unrestricted Siemens AG 2017 siemens.com/digitalgrid What is a Railroad s Biggest Asset? Rolling Stock Share-holders Relationships Shipping Contracts Employees (Engineers)

More information

Power Quality Basics. Presented by. Scott Peele PE

Power Quality Basics. Presented by. Scott Peele PE Power Quality Basics Presented by Scott Peele PE PQ Basics Terms and Definitions Surge, Sag, Swell, Momentary, etc. Measurements Causes of Events Possible Mitigation PQ Tool Questions Power Quality Measurement

More information

Power Plant and Transmission System Protection Coordination

Power Plant and Transmission System Protection Coordination Agenda Item 5.h Attachment 1 A Technical Reference Document Power Plant and Transmission System Protection Coordination Draft 6.9 November 19, 2009 NERC System Protection and Control Subcommittee November

More information

Analysis of Modern Digital Differential Protection for Power Transformer

Analysis of Modern Digital Differential Protection for Power Transformer Analysis of Modern Digital Differential Protection for Power Transformer Nikhil Paliwal (P.G. Scholar), Department of Electrical Engineering Jabalpur Engineering College, Jabalpur, India Dr. A. Trivedi

More information

Introduction to Harmonics and Power Quality

Introduction to Harmonics and Power Quality NWEMS Introduction to Harmonics and Power Quality August 20 24, 2018 Seattle, WA Track B Anaisha Jaykumar (SEL) Class Content» Definition of power quality (PQ)» Impact of PQ problems» Sources of poor PQ»

More information

NVESTIGATIONS OF RECENT BLACK-

NVESTIGATIONS OF RECENT BLACK- DIGITAL VISION outs indicate that the root cause of almost all major power system disturbances is voltage collapse rather than the underfrequency conditions prevalent in the blackouts of the 1960s and

More information

Power System Protection. Dr. Lionel R. Orama Exclusa, PE Week 3

Power System Protection. Dr. Lionel R. Orama Exclusa, PE Week 3 Power System Protection Dr. Lionel R. Orama Exclusa, PE Week 3 Operating Principles: Electromagnetic Attraction Relays Readings-Mason Chapters & 3 Operating quantities Electromagnetic attraction Response

More information

International Journal of Digital Application & Contemporary research Website: (Volume 2, Issue 10, May 2014)

International Journal of Digital Application & Contemporary research Website:  (Volume 2, Issue 10, May 2014) Digital Differential Protection of Power Transformer Gitanjali Kashyap M. Tech. Scholar, Dr. C. V. Raman Institute of Science and technology, Chhattisgarh (India) alisha88.ele@gmail.com Dharmendra Kumar

More information

NOVEL PROTECTION SYSTEMS FOR ARC FURNACE TRANSFORMERS

NOVEL PROTECTION SYSTEMS FOR ARC FURNACE TRANSFORMERS NOVEL PROTECTION SYSTEMS FOR ARC FURNACE TRANSFORMERS Ljubomir KOJOVIC Cooper Power Systems - U.S.A. Lkojovic@cooperpower.com INTRODUCTION In steel facilities that use Electric Arc Furnaces (EAFs) to manufacture

More information

Fundamentals of Power Quality

Fundamentals of Power Quality NWEMS Fundamentals of Power Quality August 20 24, 2018 Seattle, WA Track D Anaisha Jaykumar (SEL) Class Content» Introduction to power quality (PQ)» Causes of poor PQ and impact of application» PQ characteristics»

More information

NERC Protection Coordination Webinar Series June 9, Phil Tatro Jon Gardell

NERC Protection Coordination Webinar Series June 9, Phil Tatro Jon Gardell Power Plant and Transmission System Protection Coordination GSU Phase Overcurrent (51T), GSU Ground Overcurrent (51TG), and Breaker Failure (50BF) Protection NERC Protection Coordination Webinar Series

More information

A Model of A Differential Protection Relay

A Model of A Differential Protection Relay International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 3, Issue 3 (August 2012), PP. 22-28 A Model of A Differential Protection Relay Ezechukwu

More information

Substation Testing and Commissioning: Power Transformer Through Fault Test

Substation Testing and Commissioning: Power Transformer Through Fault Test 1 Substation Testing and Commissioning: Power Transformer Through Fault Test M. Talebi, Member, IEEE, Power Grid Engineering Y. Unludag Electric Power System Abstract This paper reviews the advantage of

More information

Hands-On-Relay School 2015 Distribution Event Analysis. Randy Spacek Protection Engineer Manager

Hands-On-Relay School 2015 Distribution Event Analysis. Randy Spacek Protection Engineer Manager Hands-On-Relay School 2015 Distribution Event Analysis Randy Spacek Protection Engineer Manager OVERVIEW Available Tools Fault Type Identification: line and transformer Relay Event Record: Oscillography

More information

www. ElectricalPartManuals. com Generator Differential Relay MD32G Rotating Machine Differential Relay

www. ElectricalPartManuals. com Generator Differential Relay MD32G Rotating Machine Differential Relay Generator Differential Relay The MD3G Rotating Machine Differential Relay is a member of Cooper Power Systems Edison line of microprocessor based protective relays. The MD3G relay offers the following

More information

COPYRIGHTED MATERIAL. Index

COPYRIGHTED MATERIAL. Index Index Note: Bold italic type refers to entries in the Table of Contents, refers to a Standard Title and Reference number and # refers to a specific standard within the buff book 91, 40, 48* 100, 8, 22*,

More information

Using a Multiple Analog Input Distance Relay as a DFR

Using a Multiple Analog Input Distance Relay as a DFR Using a Multiple Analog Input Distance Relay as a DFR Dennis Denison Senior Transmission Specialist Entergy Rich Hunt, M.S., P.E. Senior Field Application Engineer NxtPhase T&D Corporation Presented at

More information

Data. Dr Murari Mohan Saha ABB AB. KTH/EH2740 Lecture 3. Data Acquisition Block. Logic. Measurement. S/H and A/D Converter. signal conditioner

Data. Dr Murari Mohan Saha ABB AB. KTH/EH2740 Lecture 3. Data Acquisition Block. Logic. Measurement. S/H and A/D Converter. signal conditioner Digital Protective Relay Dr Murari Mohan Saha ABB AB KTH/EH2740 Lecture 3 Introduction to Modern Power System Protection A digital protective relay is an industrial microprocessor system operating in real

More information

NERC Requirements for Setting Load-Dependent Power Plant Protection: PRC-025-1

NERC Requirements for Setting Load-Dependent Power Plant Protection: PRC-025-1 NERC Requirements for Setting Load-Dependent Power Plant Protection: PRC-025-1 Charles J. Mozina, Consultant Beckwith Electric Co., Inc. www.beckwithelectric.com I. Introduction During the 2003 blackout,

More information

Application for A Sub-harmonic Protection Relay. ERLPhase Power Technologies

Application for A Sub-harmonic Protection Relay. ERLPhase Power Technologies Application for A Sub-harmonic Protection Relay ERLPhase Power Technologies 1 Outline Introduction System Event at Xcel Energy Event Analysis Microprocessor based relay hardware architecture Sub harmonic

More information

A New Subsynchronous Oscillation (SSO) Relay for Renewable Generation and Series Compensated Transmission Systems

A New Subsynchronous Oscillation (SSO) Relay for Renewable Generation and Series Compensated Transmission Systems 21, rue d Artois, F-75008 PARIS CIGRE US National Committee http : //www.cigre.org 2015 Grid of the Future Symposium A New Subsynchronous Oscillation (SSO) Relay for Renewable Generation and Series Compensated

More information

g GE POWER MANAGEMENT

g GE POWER MANAGEMENT 745 FREQUENTLY ASKED QUESTIONS 1 I get a communication error with the relay when I try to store a setpoint. This error can occur for several different reasons. First of all, verify that the address is

More information

Redundant Bus Protection Using High-Impedance Differential Relays

Redundant Bus Protection Using High-Impedance Differential Relays Redundant Bus Protection Using High-Impedance Relays Josh LaBlanc, Schweitzer Engineering Laboratories, Inc. (formerly of Minnesota Power) Michael Thompson, Schweitzer Engineering Laboratories, Inc. 2018

More information

T-68 Protecting Your Equipment through Power Quality Solutions

T-68 Protecting Your Equipment through Power Quality Solutions T-68 Protecting Your Equipment through Power Quality Solutions Dr. Bill Brumsickle Vice President, Engineering Nov. 7-8, 2012 Copyright 2012 Rockwell Automation, Inc. All rights reserved. 2 Agenda What

More information

Impact of transient saturation of Current Transformer during cyclic operations Analysis and Diagnosis

Impact of transient saturation of Current Transformer during cyclic operations Analysis and Diagnosis 1 Impact of transient saturation of Current Transformer during cyclic operations Analysis and Diagnosis BK Pandey, DGM(OS-Elect) Venkateswara Rao Bitra, Manager (EMD Simhadri) 1.0 Introduction: Current

More information

Performance of Relaying During Wide-area Stressed Conditions

Performance of Relaying During Wide-area Stressed Conditions Performance of Relaying During Wide-area Stressed Conditions IEEE Power Systems Relaying Committee C12 Working Group Report Presented by Pratap Mysore HDR Engineering Inc. July 25, 2012, San Diego, CA

More information

Z. Kuran Institute of Power Engineering Mory 8, Warszawa (Poland)

Z. Kuran Institute of Power Engineering Mory 8, Warszawa (Poland) 111 Study Committee B5 Colloquium 2005 September 14-16 Calgary, CANADA Summary TRANSFORMERS DIGITAL DIFFERENTIAL PROTECTION WITH CRITERION VALUES RECORDING FUNCTION Z. Kuran Institute of Power Engineering

More information

Considerations for Power Plant and Transmission System Protection Coordination

Considerations for Power Plant and Transmission System Protection Coordination Considerations for Power Plant and Transmission System Protection Coordination Technical Reference Document Revision 2 System Protection and Control Subcommittee July 2015 I Table of Contents Preface...

More information