Electronic Circuits. Diode Applications. Dr. Manar Mohaisen Office: F208 Department of EECE

Size: px
Start display at page:

Download "Electronic Circuits. Diode Applications. Dr. Manar Mohaisen Office: F208 Department of EECE"

Transcription

1 Electronic Circuits Diode Applications Dr. Manar Mohaisen Office: F208 Department of EECE

2 Review of the Precedent Lecture Doping It is a controlled addition of impurities to the pure semiconductive material to increase its conductivity. The impurities addition is for target to increase either the holes or the free electrons. Si Free (conduction) electron from Sb atom Si Hole fro m B atom Si Sb Si Si B Si Si Si n-type semiconductor. The extra electron from the antimony atom becomes a free electron. The impurity element is a pentavalent. Impurities: Arsenic (As), antimony (Sb) p-type semiconductor An extra hole is created because the impurity element is a trivalent (i.e., it has 3 valence electrons) Impurities: Boron (B), indium (In), gallium (Ga)

3 Diode Approximations Review of the Precedent Lecture contd. Reverse Current = 0 I F After BIAS exceeds the barrier potential, the diode acts like a short circuit I F B = 0.7 Reverse Current 0 I F R F R 0.7 F R 0.7 F I R I R I R Ideal Diode Model -Reverse current, barrier potential, and dynamic resistance are neglected. Not accurate model. - Useful for troubleshooting to check whether the diode is worki ng properly or not. - Forward current is given by: I F = R BIAS LIMIT Practical Diode Model -Reverse current and dynamic resistance are neglected. -Forward current is given by: I F = R BIAS LIMIT B Complete Diode Model - Nothing is neglected. - The most accurate model. - Forward current is given by I F = R BIAS LIMIT r B ' d

4 Class Objectives Explain the Operation of the Half-wave Rectifier Explain the Operation of the Full-wave Rectifier Discussions Explain the Use of Power Supply Filters and Regulators Explain Diode Limiting and Clamping Circuits Explain the Operation of the oltage Multipliers Discussions

5 Introduction DC Power Supply can be half-wave or full-wave rectifier smoothing filter (Low-pass filter)

6 Half-Wave Rectifier Connection 1 Forward Bias In the first half cycle, the diode is forward-biased. If the diode is ideal, the output voltage equals the input voltage. Reverse Bias In the second half cycle, the diode is reverse-biased. There is no output ( out = 0). Connection 2 Reverse biasing in the first half period Forward bias in the second half period. in 0 R L 0 t0 t1 2 t 0 t1 I out t t 2 I = 0 A out in 0 R t L 0 0 t1 t 2 t0 t1 t 2 in 0 Connection 1 R L 0 t0 t1 2 t 0 t1 I t t 2 Connection 2 out

7 Half-Wave Rectifier contd. Average alue AG 1 T = x() t dt T 0 1 T /2 = sin( ), 2 0 p ωt dt ω= π T T = 1 T p cos( ωt) ω T /2 0 cos 2π T cos(0) p T 2 p = = T 2π π T Peak Inverse oltage Equivalent to the peak value of the input voltage. Diode should be capable of withstanding this repetitive reverse voltage.

8 Half-Wave Rectifier contd. Example 2-2 Ideal Diode The peak output voltage = p (in) = 5 and 100, respectively. AG = out / π = 1.59 and Practical Diode The peak output voltage = p (in) 0.7 = 4.3 and 99.3, respectively. Find the average output voltage in this case [Homework: 2points].

9 Full-Wave Rectifier Center-Tapped Full-Wave Rectifier in 0 F D 1 I R L out 0 During the first half cycle, the upper diode is forward-biased and the lower diode is reverse -biased. D 2 F D 1 in 0 I R L out 0 During the second half cycle, the lower diode is forwardbiased and the upper diode is reverse-biased. D 2

10 Full-Wave Rectifier contd. Turn Ratio The ratio between the number of turns in the secondary winding and those in the primary winding. Designated n. Affects the output voltage. Peak Inverse oltage PI = 0.7 = 0.7 p(sec) p(sec) 2 2 = pout ( ) p(sec)

11 Full-Wave Rectifier contd. Example 2-5 p = n = 0.5(100) = 50 (sec) p( pri) p(sec) = 0.7 = 24.3 p( out) 2 PI = = 2(24.3) 0.7 = 49.3 p ( out ) Is this figure correct?

12 Full-Wave Rectifier contd. The Bridge Full-Wave Rectifier Uses four diodes connected as shown. F I D 3 D 1 p( out) = p(sec) 1.4 in D R L out 2 D 4 0 PI = 0.7 p(sec) = 0.7 p( out) F I D 3 D 1 in D R L out 2 D 4 0

13 Full-Wave Rectifier contd. The Bridge Full-Wave Rectifier p(sec) = 12 rms Input is sinusoidal, then = 2 = 17 p(sec) p(sec)( rms) = 1.4= = 15.6 ( ) p(sec) p out PI = 0.7 = = 16.3 p ( out ) Root Mean Square sin( ) 1 1 rms = t dt = cos(2 ωt) dt T T 2 T p 2 p ω T T T p dt 0 0 = 1 cos(2 ωt ) dt 2T 2 2 p p = T = 2T 2

14 Class Objectives Explain the Operation of the Half-wave Rectifier Explain the Operation of the Full-wave Rectifier Discussions Explain the Use of Power Supply Filters and Regulators Explain Diode Limiting and Clamping Circuits Explain the Operation of the oltage Multipliers Discussions

15 Power Supply Filters and Regulators Objective Convert the AC power line voltage into a DC voltage. The fluctuation in the filter output voltage is called ripple. in OUT Full-wave Rectified 0 Filter 0 rectif ier output Capacitor-Input Filter Consists of a capacitor connected from the output of the rectifier to the ground. in C R L

16 Capacitor-Input Filter contd. Positive 1st quarter cycle: Diode is forward-biased. Capacitor charges to within 0.7 of the input voltage. Load and capacitor have the same voltage. Remaining part of the cycle Diode is reverse-biased. Capacitor discharges in the load at a rate determined by RC. Power Supply Filters and Regulators contd. 1st quarter of next cycle Diode becomes forward-biased.

17 Capacitor-Input Filter contd. Ripple voltage Power Supply Filters and Regulators contd. without filter The variation in the capacitor voltage due to charging and discharging The smaller the ripple, the better the filtering performance. Ripple factor It is an indication of the effectiveness of the filter. It is defined as ( ) r = r pp DC 1 r( pp) fr C p( rect) L DC voltage of the filter s output voltage = 1 1 DC 2 fr C prect ( ) L

18 Capacitor-Input Filter contd. Half-wave vs. Full-wave rectifiers Power Supply Filters and Regulators contd.

19 Power Supply Filters and Regulators contd. Example 2-7 p(pri) = rms = 1.414(120 ) = 170 p(sec) = n p(pri) = 0.1(170 ) = 17 p(rect) = p(sec) 1.4 = = r( pp) p( rect) = 15.6 = fr C (120Hz)(220 Ω)(1000μF) DC = ( ) prect = = frlc 2(120Hz)(220 )(1000μF) Ω ( ) r = r pp = = L DC

20 Surge Current in the Capacitor-Input Filter Power Supply Filters and Regulators contd. Before closing the switch, the capacitor is uncharged Uncharged capacitor acts as a short circuit. When the switch is closed An initial current, called surge current, passes through the diodes D1 and D2. To avoid defecting the diodes, a fuse is used. A fuse is a protection device. A slow-blow fuse is generally used. Slow-blow indicates a slow melting of the wire inside the fuse. Fuse (source: wikipedia.org]

21 Power Supply Filters and Regulators contd. oltage Regulators A regulator is connected to the output of the capacitor-input filter. It maintains a constant output despite changes in the input. The input of the regulator should have a ripple < 10%. Percent Regulation Δ Line regulation = OUT 100%. Δ IN NL Load regulation = FL 100%, where NL and FL refer to no load FL and full load (i.e., maximum load) Capacitor-input filter SW1 F 1 T 1 D 3 D 1 oltage D 2 D 4 regulator Output capacitor To improve the transient response C 1 C 2

22 Diode Limiter (Clipper) Clips either positive or negative part Example 2-9 R 1 = 10 kω R L = 100 kω p(in) = 10 Diode Limiting and Clamping Circuits R L p( out) = R p( in) 1 RL R L p( out) = R p( in) 1 RL 100k = Ω = 110k Ω

23 Diode Limiting and Clamping Circuits contd. Biased Limiters A limiter that has a bias voltage in series with the diode. R 1 0 in R L BIAS Positive limiter BIAS The diode is forward-biased when p(in) exceeds the voltage bias by 0.7 (i.e., p(in) = 0.7 BIAS ). Since the load is connected in parallel with the diode and bias voltage (out) = BIAS 0.7. Otherwise, the diode is reverse-biased. The peak output voltage is then given by: R = L p( out) R p( in) 1 RL

24 Diode Limiting and Clamping Circuits contd. Biased Limiters contd. What is the input at this point?

25 Biased Limiters contd. Example 2-10 When A exceeds 5.7 D 1 becomes forward-biased. (out) equals 5.7. D 2 is still reverse-biased. When A goes below -5.7 D 2 becomes forward-biased. (out) equals D 1 is still reverse-biased For values between 5.7 and -5.7 Diode Limiting and Clamping Circuits contd. Both diodes are reverse-biased. Depending on the load value, the input voltage is partitioned between R 1 and the load.

26 oltage-divider Bias Diode Limiting and Clamping Circuits contd. BIAS is the voltage applied to R 3 BIAS is simply given by BIAS = R R 3 R 3 2 SUPPLY

27 Example 2-11 Diode Limiting and Clamping Circuits contd. Note that there is a power supply of 12 and R2 parallel to the bias voltage. These two elements are not shown in the figure. BIAS = R R 3 R 3 2 SUPPLY = = R 1 in BIAS 0.7 = R L BIAS 0

28 Diode Limiting and Clamping Circuits contd. Diode Clampers A clamper is a circuit that adds a DC level to an AC signal. Clampers are also referred to as DC restorers. The capacitor charges and acts as a DC voltage source. RC time constant should be large enough to avoid discharging of the capacitor. RC = 100 for excellent clamping action.

29 Diode Clampers Example 2-12 Diode Limiting and Clamping Circuits contd. When the input reaches about 0.7, the diode is forward-biased. The capacitor is charged up to (-(24 0.7) = ) Consider the polarity of the capacitor! The diode is then reverse-biased. The capacitor acts as a DC voltage source (consider a negligible discharging) The circuit can be analyzed as if it includes an AC voltage source and a DC voltage source (The later one replaces the capacitor).

30 oltage Multipliers oltage Doubler Half-wave Doubler During the positive half cycle D1 is forward-biased, and C1 is charged to p less the diode drop. D2 is reverse-biased. During the negative half cycle D2 is forward-biased and C2 is charged by both the input and C1 which acts as a DC voltage source. C2 is charged to (2 p 1.4 ) D1 is reverse-biased. The output is a half-wave filtered voltage.

31 oltage Multipliers oltage Doubler Full-wave Doubler Class discussion Groups of students analyze the full-wave doubler based on the following Figures. 0 p D 1 I C 1 p 0 Reverse-biased p I D 1 C 1 p 2 p D 2 Reverse-biased C 2 D 2 C 2 p

32 oltage Tripler & Quadrupler oltage Tripler 1st positive half cycle D1 is forward-biased. C1 charges to p st negative half cycle D2 is forward-biased. C1 acts as a DC voltage source. C2 charges to 2(p 0.7). 2nd positive half cycle D3 is forward-biased. C1 and C2 acts as DC voltage sources. C3 charges to 2(p 0.7). oltage Tripler oltage Quadrupler

33 Summary and Discussion Explain the Operation of the Half-wave Rectifier Explain the Operation of the Full-wave Rectifier Discussions Explain the Use of Power Supply Filters and Regulators Explain Diode Limiting and Clamping Circuits Explain the Operation of the oltage Multipliers Discussions

34 Discussion & Notes K K A K A A A A K K K K A K A K K A K A K A

CHAPTER 2. Diode Applications

CHAPTER 2. Diode Applications CHAPTER 2 Diode Applications 1 Objectives Explain and analyze the operation of both half and full wave rectifiers Explain and analyze filters and regulators and their characteristics Explain and analyze

More information

Diodes and Applications

Diodes and Applications Diodes and Applications Diodes and Applications 2 1 Diode Operation 2 2 Voltage-Current (V-I) Characteristics 2 3 Diode Models 2 4 Half-Wave Rectifiers 2 5 Full-Wave Rectifiers 2 6 Power Supply Filters

More information

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications

Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H. Chapter 2. Diodes and Applications Basic Electronic Devices and Circuits EE 111 Electrical Engineering Majmaah University 2 nd Semester 1432/1433 H Chapter 2 Diodes and Applications 1 Diodes A diode is a semiconductor device with a single

More information

Lecture (04) Diode applications, cont.

Lecture (04) Diode applications, cont. Lecture (04) Diode applications, cont. By: Dr. Ahmed ElShafee Agenda Full wave rectifier, cont.,.. Filters Voltage Regulators Diode limiters Diode Clampers ١ ٢ Bridge Full Wave Rectifier Operation uses

More information

Lecture (04) PN Diode applications II

Lecture (04) PN Diode applications II Lecture (04) PN Diode applications II By: Dr. Ahmed ElShafee ١ Agenda Full wave rectifier, cont.,.. Filters Voltage Regulators ٢ RMS The RMS value of a set of values (or a continuous time waveform) is

More information

Electronic Devices. Floyd. Chapter 2. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd

Electronic Devices. Floyd. Chapter 2. Ninth Edition. Electronic Devices, 9th edition Thomas L. Floyd Electronic Devices Ninth Edition Floyd Chapter 2 Agenda Diode Circuits and Applications Half-wave Rectifier Full-wave Rectifier Power Supply Filter Power Supply Regulator Diode Limiting Circuits Diode

More information

Chapter 1 Introduction to Electronics

Chapter 1 Introduction to Electronics Chapter 1 Introduction to Electronics Section 1-1 Atomic Structure 1. An atom with an atomic number of 6 has 6 electrons and 6 protons.. The third shell of an atom can have n = (3) = 18 electrons. Section

More information

Chapter 2. Diodes & Applications

Chapter 2. Diodes & Applications Chapter 2 Diodes & Applications The Diode A diode is made from a small piece of semiconductor material, usually silicon, in which half is doped as a p region and half is doped as an n region with a pn

More information

RECTIFIERS POWER SUPPLY AND VOLTAGE REGULATION. Rectifier. Basic DC Power Supply. Filter. Regulator

RECTIFIERS POWER SUPPLY AND VOLTAGE REGULATION. Rectifier. Basic DC Power Supply. Filter. Regulator RECTIFIERS POWER SUPPLY AND OLTAGE REGULATION Prepared by Engr. JP Timola Reference: Electronic Devices by Thomas L. Floyd Because of their ability to conduct current in one direction and block current

More information

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU

IENGINEERS- CONSULTANTS QUESTION BANK SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU ELECTRONICS ENGINEERING Unit 1 Objectives Q.1 The breakdown mechanism in a lightly doped p-n junction under reverse biased condition is called. (A) avalanche breakdown. (B) zener breakdown. (C) breakdown

More information

CHAPTER 5: REGULATED DC POWER SUPPLY

CHAPTER 5: REGULATED DC POWER SUPPLY CHAPTER 5: REGULATED DC POWER SUPPLY Dr. Wan Mahani Hafizah binti Wan Mahmud Topics in Chapter 5 5.0Introduction 5.1Rectifier 5.2Filter 5.3oltage Regulator 5.4Switching Regulator 2 Power Supply Block Diagram

More information

Part I Lectures 1-7 Diode Circuit Applications

Part I Lectures 1-7 Diode Circuit Applications Part Lectures -7 iode Circuit Applications The PN Junction iode Electrical and Electronic Engineering epartment Lecture One - Page of 7 Second Year, Electronics, 9 - The PN Junction iode Basic Construction:

More information

2) The larger the ripple voltage, the better the filter. 2) 3) Clamping circuits use capacitors and diodes to add a dc level to a waveform.

2) The larger the ripple voltage, the better the filter. 2) 3) Clamping circuits use capacitors and diodes to add a dc level to a waveform. TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 1) A diode conducts current when forward-biased and blocks current when reverse-biased. 1) 2) The larger the ripple voltage,

More information

Diode Applications 1

Diode Applications 1 Diode Applications 1 Explain and analyze the operation of both half and full wave rectifiers Explain and analyze filters and regulators and their characteristics Explain and analyze the operation of diode

More information

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร EN2042102 วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 6 ไดโอด Diode สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร Objectives Explain and analyze the operation

More information

Lecture (03) Diode applications

Lecture (03) Diode applications Lecture (03) Diode applications By: Dr. Ahmed ElShafee ١ Agenda The Basic DC Power Supply Half wave rectifier Full wave rectifier Filters Voltage Regulators ٢ The Basic DC Power Supply All active electronic

More information

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is

1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is 1) A silicon diode measures a low value of resistance with the meter leads in both positions. The trouble, if any, is A [ ]) the diode is open. B [ ]) the diode is shorted to ground. C [v]) the diode is

More information

Lecture 3 Diodes & Applications :Outline

Lecture 3 Diodes & Applications :Outline Lecture 3 Diodes & Applications :Outline Introduction Diode biasing Diode model Testing a diode Diode application: Rectifiers Diode application: Voltage multipliers Diode application: Optoelectronics 1

More information

Zener Diodes. Specifying and modeling the zener diode. - Diodes operating in the breakdown region can be used in the design of voltage regulators.

Zener Diodes. Specifying and modeling the zener diode. - Diodes operating in the breakdown region can be used in the design of voltage regulators. Zener Diodes - Diodes operating in the breakdown region can be used in the design of voltage regulators. Specifying and modeling the zener diode Dynamic resistance, r Z a few ohms to a few tens of ohms

More information

Lecture (03) Diodes and Diode Applications I

Lecture (03) Diodes and Diode Applications I Lecture (03) Diodes and Diode Applications I By: Dr. Ahmed ElShafee ١ Agenda VOLTAGE CURRENT CHARACTERISTIC OF A DIODE Forward bias Reverse Bias V I Characteristic for Forward Bias V I Characteristic for

More information

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud

Electronic Circuits I. Instructor: Dr. Alaa Mahmoud Electronic Circuits I Instructor: Dr. Alaa Mahmoud alaa_y_emam@hotmail.com Chapter 27 Diode and diode application Outline: Semiconductor Materials The P-N Junction Diode Biasing P-N Junction Volt-Ampere

More information

Electronic I Lecture 3 Diode Rectifiers. By Asst. Prof Dr. Jassim K. Hmood

Electronic I Lecture 3 Diode Rectifiers. By Asst. Prof Dr. Jassim K. Hmood Electronic I Lecture 3 Diode Rectifiers By Asst. Prof Dr. Jassim K. Hmood Diode Approximations 1- The Ideal Model When forward biased, act as a closed (on) switch When reverse biased, act as open (off)

More information

EET1240/ET212 EET1240/ET212

EET1240/ET212 EET1240/ET212 EET1240/ET212 Electronics Semiconductors and Diodes Electrical and Telecommunications Engineering Technology Department Prepared by textbook based on Electronics Devices by Floyd, Prentice Hall, 7 th edition.

More information

EXPERIMENTS USING SEMICONDUCTOR DIODES

EXPERIMENTS USING SEMICONDUCTOR DIODES EXPERIMENT 9 EXPERIMENTS USING SEMICONDUCTOR DIODES Semiconductor Diodes Structure 91 Introduction Objectives 92 Basics of Semiconductors Revisited 93 A p-n Junction Operation of a p-n Junction A Forward

More information

Examples to Power Supply

Examples to Power Supply Examples to Power Supply Example-1: A center-tapped full-wave rectifier connected to a transformer whose each secondary coil has a r.m.s. voltage of 1 V. Assume the internal resistances of the diode and

More information

RECTIFIERS AND POWER SUPPLIES

RECTIFIERS AND POWER SUPPLIES UNIT V RECTIFIERS AND POWER SUPPLIES Half-wave, full-wave and bridge rectifiers with resistive load. Analysis for Vdc and ripple voltage with C,CL, L-C and C-L-C filters. Voltage multipliers Zenerdiode

More information

Applications of Diode

Applications of Diode Applications of Diode Diode Approximation: (Large signal operations): 1. Ideal Diode: When diode is forward biased, resistance offered is zero, When it is reverse biased resistance offered is infinity.

More information

Table of Contents. iii

Table of Contents. iii Table of Contents Subject Page Experiment 1: Diode Characteristics... 1 Experiment 2: Rectifier Circuits... 7 Experiment 3: Clipping and Clamping Circuits 17 Experiment 4: The Zener Diode 25 Experiment

More information

Mechatronics Chapter 3-1 Semiconductor devices Diode

Mechatronics Chapter 3-1 Semiconductor devices Diode MEMS1082 Mechatronics Chapter 3-1 Semiconductor devices Diode Semiconductor: Si Semiconductor N-type and P-type Semiconductors There are two types of impurities: N-type - In N-type doping, phosphorus or

More information

Power Supplies. Linear Regulated Supplies Switched Regulated Supplies Batteries

Power Supplies. Linear Regulated Supplies Switched Regulated Supplies Batteries Power Supplies Linear Regulated Supplies Switched Regulated Supplies Batteries Im Alternating Current The Power -Im π/2 π 2π π t Im Idc Direct Current Supply π/2 π 2 π πt -Im ٢ http://bkaragoz.kau.edu.sa

More information

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents

CHAPTER 1 DIODE CIRCUITS. Semiconductor act differently to DC and AC currents CHAPTER 1 DIODE CIRCUITS Resistance levels Semiconductor act differently to DC and AC currents There are three types of resistances 1. DC or static resistance The application of DC voltage to a circuit

More information

Diode Bridges. Book page

Diode Bridges. Book page Diode Bridges Book page 450-454 Rectification The process of converting an ac supply into dc is called rectification The device that carries this out is called a rectifier Half wave rectifier only half

More information

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the

Sheet 2 Diodes. ECE335: Electronic Engineering Fall Ain Shams University Faculty of Engineering. Problem (1) Draw the Ain Shams University Faculty of Engineering ECE335: Electronic Engineering Fall 2014 Sheet 2 Diodes Problem (1) Draw the i) Charge density distribution, ii) Electric field distribution iii) Potential distribution,

More information

Electronics 1 Lab (CME 2410) Part I - Diode Clipper

Electronics 1 Lab (CME 2410) Part I - Diode Clipper Electronics 1 Lab (CME 2410) School of Informatics & Computing German Jordanian University Laboratory Experiment (3) Prelab: 1. Simulate the procedure describe in Part I, Section 5d (Negative Polarized

More information

Intrinsic Semiconductor

Intrinsic Semiconductor Semiconductors Crystalline solid materials whose resistivities are values between those of conductors and insulators. Good electrical characteristics and feasible fabrication technology are some reasons

More information

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR!

Diode conducts when V anode > V cathode. Positive current flow. Diodes (and transistors) are non-linear device: V IR! Diodes: What do we use diodes for? Lecture 5: Diodes and Transistors protect circuits by limiting the voltage (clipping and clamping) turn AC into DC (voltage rectifier) voltage multipliers (e.g. double

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Code: Model Answer Page No: 1/

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Code: Model Answer Page No: 1/ MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC 27001 2005 Certified) SUMMER 13 EXAMINATION Subject Code: 12025 Model Answer Page No: 1/ Important Instructions to examiners: 1) The

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

Electronics 1 Lab (CME 2410)

Electronics 1 Lab (CME 2410) Electronics 1 Lab (CME 410) School of Informatics & Computing German Jordanian University Laboratory Experiment () 1. Objective: Half-Wave, Full-Wave Rectifiers o be familiar with the half-wave rectifier,

More information

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Lecture - 6 Full Wave Rectifier and Peak Detector In

More information

Introduction to Solid State Electronics

Introduction to Solid State Electronics Introduction to Solid State Electronics Semiconductors: These are the materials, which do not have free electrons to support the flow of electrical current through them at room temperature. However, valence

More information

BASIC ELECTRONICS ENGINEERING

BASIC ELECTRONICS ENGINEERING BASIC ELECTRONICS ENGINEERING Objective Questions UNIT 1: DIODES AND CIRCUITS 1 2 3 4 5 6 7 8 9 10 11 12 The process by which impurities are added to a pure semiconductor is A. Diffusing B. Drift C. Doping

More information

3. Diode, Rectifiers, and Power Supplies

3. Diode, Rectifiers, and Power Supplies 3. Diode, Rectifiers, and Power Supplies Semiconductor diodes are active devices which are extremely important for various electrical and electronic circuits. Diodes are active non-linear circuit elements

More information

Lecture -1: p-n Junction Diode

Lecture -1: p-n Junction Diode Lecture -1: p-n Junction Diode Diode: A pure silicon crystal or germanium crystal is known as an intrinsic semiconductor. There are not enough free electrons and holes in an intrinsic semi-conductor to

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (I max = 1A, PIV = 400V) Diodes Center tap transformer (35.6V pp, 12.6 V RMS ) 100 F Electrolytic Capacitor

More information

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208 Department of EECE

Electronic Circuits. Power Amplifiers. Manar Mohaisen Office: F208   Department of EECE Electronic Circuits Power Amplifiers Manar Mohaisen Office: F208 Email: manar.subhi@kut.ac.kr Department of EECE Review of the Precedent Lecture Explain the Amplifier Operation Explain the BJT AC Models

More information

Term Roadmap : Materials Types 1. INSULATORS

Term Roadmap : Materials Types 1. INSULATORS Term Roadmap : Introduction to Signal Processing Differentiating and Integrating Circuits (OpAmps) Clipping and Clamping Circuits(Diodes) Design of analog filters Sinusoidal Oscillators Multivibrators

More information

Power Electronics Single Phase Uncontrolled Half Wave Rectifiers. Dr. Firas Obeidat

Power Electronics Single Phase Uncontrolled Half Wave Rectifiers. Dr. Firas Obeidat Power Electronics Single Phase Uncontrolled Half Wave Rectifiers Dr. Firas Obeidat 1 Table of contents 1 Resistive Load 2 R-L Load 3 R-L Load with Freewheeling Diode 4 Half Wave Rectifier with a Capacitor

More information

Diodes & Rectifiers Nafees Ahamad

Diodes & Rectifiers Nafees Ahamad Diodes & Rectifiers Nafees Ahamad Asstt. Prof., EECE Deptt, DIT University, Dehradun Website: www.eedofdit.weebly.com 1 Diodes Electronic devices created by bringing together a p-type and n-type region

More information

3.4. Operation in the Reverse Breakdown

3.4. Operation in the Reverse Breakdown 3.4. peration in the Reverse Breakdown Under certain circumstances, diodes may be intentionally used in the reverse breakdown region These are referred to as Zener Diode or Breakdown Diode Voltage regulator

More information

EXPERIMENT 5 : DIODES AND RECTIFICATION

EXPERIMENT 5 : DIODES AND RECTIFICATION EXPERIMENT 5 : DIODES AND RECTIFICATION Component List Resistors, one of each o 2 1010W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic

More information

Experiments in Analog Electronics

Experiments in Analog Electronics Ministry of Higher Education and Scientific Research University of Technology Department of Electrical Engineering Analog Electronics Laboratory Experiments in Analog Electronics By Firas Mohammed Ali

More information

Experiment #2 Half Wave Rectifier

Experiment #2 Half Wave Rectifier PURPOSE: ELECTRONICS 224 ETR620S Experiment #2 Half Wave Rectifier This laboratory session acquaints you with the operation of a diode power supply. You will study the operation of half-wave and the effect

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Component List Resistors, one of each o 1 10 10W o 1 1k o 1 10k 4 1N4004 (Imax = 1A, PIV = 400V) Diodes Center tap transformer (35.6Vpp, 12.6 VRMS) 100 F Electrolytic Capacitor

More information

Physics 160 Lecture 5. R. Johnson April 13, 2015

Physics 160 Lecture 5. R. Johnson April 13, 2015 Physics 160 Lecture 5 R. Johnson April 13, 2015 Half Wave Diode Rectifiers Full Wave April 13, 2015 Physics 160 2 Note that there is no ground connection on this side of the rectifier! Output Smoothing

More information

Diode Limiters or Clipper Circuits

Diode Limiters or Clipper Circuits Diode Limiters or Clipper Circuits Circuits which are used to clip off portions of signal voltages above or below certain levels are called limiters or clippers. Types of Clippers Positive Clipper Negative

More information

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N

SUMMER 13 EXAMINATION Subject Code: Model Answer Page No: / N Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2) The model answer and the answer written by candidate

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

Module 04.(B1) Electronic Fundamentals

Module 04.(B1) Electronic Fundamentals 1.1a. Semiconductors - Diodes. Module 04.(B1) Electronic Fundamentals Question Number. 1. What gives the colour of an LED?. Option A. The active element. Option B. The plastic it is encased in. Option

More information

EE 105. Diode Circuits. Prof. Ali M. Niknejad and Prof. Rikky Muller. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad

EE 105. Diode Circuits. Prof. Ali M. Niknejad and Prof. Rikky Muller. U.C. Berkeley Copyright c 2017 by Ali M. Niknejad EE 105 Diode Circuits Prof. Ali M. Niknejad and Prof. Rikky Muller U.C. Berkeley Copyright c 2017 by Ali M. Niknejad March 2, 2017 1 / 23 Diode Introduction A diode is a non-linear element. To a very good

More information

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I

Federal Urdu University of Arts, Science & Technology Islamabad Pakistan SECOND SEMESTER ELECTRONICS - I SECOND SEMESTER ELECTRONICS - I BASIC ELECTRICAL & ELECTRONICS LAB DEPARTMENT OF ELECTRICAL ENGINEERING Prepared By: Checked By: Approved By: Engr. Yousaf Hameed Engr. M.Nasim Khan Dr.Noman Jafri Lecturer

More information

ENG2210 Electronic Circuits. Chapter 3 Diodes

ENG2210 Electronic Circuits. Chapter 3 Diodes ENG2210 Electronic Circuits Mokhtar A. Aboelaze York University Chapter 3 Diodes Objectives Learn the characteristics of ideal diode and how to analyze and design circuits containing multiple diodes Learn

More information

Downloaded from

Downloaded from Question 14.1: In an n-type silicon, which of the following statement is true: (a) Electrons are majority carriers and trivalent atoms are the dopants. (b) Electrons are minority carriers and pentavalent

More information

Diodes (non-linear devices)

Diodes (non-linear devices) C H A P T E R 4 Diodes (non-linear devices) Ideal Diode Figure 4.2 The two modes of operation of ideal diodes and the use of an external circuit to limit (a) the forward current and (b) the reverse voltage.

More information

AC Theory and Electronics

AC Theory and Electronics AC Theory and Electronics An Alternating Current (AC) or Voltage is one whose amplitude is not constant, but varies with time about some mean position (value). Some examples of AC variation are shown below:

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Chapter 1 & 2 A. Kruger Diode Review, Page-1 Semiconductors licon () atoms have 4 electrons in valence band and form strong covalent bonds with surrounding atoms. Section 1.1.2

More information

Diode Applications Half-Wave Rectifying

Diode Applications Half-Wave Rectifying Lab 5 Diode Applications Half-Wave ectifying Objectives: Study the half-wave rectifying and smoothing with a capacitor for a simple diode circuit. Study the use of a Zener diode in a circuit with an AC

More information

LECTURE.3 : AC-DC CONVERSION

LECTURE.3 : AC-DC CONVERSION LECTURE.3 : AC-DC CONVERSION (RECTIFICATIONS) 3.1Basic Rectifier Circuits Several types of rectifier circuits are available: single-phase and three-phase half-wave and full-wave, controlled and uncontrolled,

More information

PHYS 3050 Electronics I

PHYS 3050 Electronics I PHYS 3050 Electronics I Chapter 4. Semiconductor Diodes and Transistors Earth, Moon, Mars, and Beyond Dr. Jinjun Shan, Associate Professor of Space Engineering Department of Earth and Space Science and

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR TESTING OF HALF WAVE, FULL WAVE AND BRIDGE RECTIFIERS WITH AND WITHOUT CAPACITOR Aim: To determine the ripple factor, efficiency and regulation of the half wave, full wave and bridge rectifier circuits

More information

Chapter Semiconductor Electronics

Chapter Semiconductor Electronics Chapter Semiconductor Electronics Q1. p-n junction is said to be forward biased, when [1988] (a) the positive pole of the battery is joined to the p- semiconductor and negative pole to the n- semiconductor

More information

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4

IENGINEERS- CONSULTANTS LECTURE NOTES SERIES ELECTRONICS ENGINEERING 1 YEAR UPTU. Lecture-4 2 P-n Lecture-4 20 Introduction: If a junction is formed between a p-type and a n-type semiconductor this combination is known as p-n junction diode and has the properties of a rectifier 21 Formation of

More information

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS

EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS EXPERIMENT 4 LIMITER AND CLAMPER CIRCUITS 1. OBJECTIVES 1.1 To demonstrate the operation of a diode limiter. 1.2 To demonstrate the operation of a diode clamper. 2. INTRODUCTION PART A: Limiter Circuit

More information

OBJECTIVE TYPE QUESTIONS FOR PRACTICAL EXAMINATION Subject : Electronics-I ( EC 112)

OBJECTIVE TYPE QUESTIONS FOR PRACTICAL EXAMINATION Subject : Electronics-I ( EC 112) OBJECTIVE TYPE QUESTIONS FOR PRACTICAL EXAMINATION Subject : Electronics-I ( EC 112) 1. Which mathematical notation specifies the condition of periodicity for a continuous time signal? a. x(t) = x( t +T)

More information

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET)

FET Channel. - simplified representation of three terminal device called a field effect transistor (FET) FET Channel - simplified representation of three terminal device called a field effect transistor (FET) - overall horizontal shape - current levels off as voltage increases - two regions of operation 1.

More information

Ching-Yuan Yang. (symbol) Called breakdown diode or Zener diode, it can be used as voltage regulator. Breakdown voltage V ZK

Ching-Yuan Yang. (symbol) Called breakdown diode or Zener diode, it can be used as voltage regulator. Breakdown voltage V ZK Diodes Read Chapter 3, Section 3.4-3.6, 3.9 Sedra/Smith s Microelectronic Circuits Ching-Yuan Yang National Chung Hsing University Department of Electrical Engineering Zener diode Operate in the reverse

More information

Basic Electronics Important questions

Basic Electronics Important questions Basic Electronics Important questions B.E-2/4 Mech- B Faculty: P.Lakshmi Prasanna Note: Read the questions in the following order i. Assignment questions ii. Class test iii. Expected questions iv. Tutorials

More information

Power Supplies and Circuits. Bill Sheets K2MQJ Rudolf F. Graf KA2CWL

Power Supplies and Circuits. Bill Sheets K2MQJ Rudolf F. Graf KA2CWL Power Supplies and Circuits Bill Sheets K2MQJ Rudolf F. Graf KA2CWL The power supply is an often neglected important item for any electronics experimenter. No one seems to get very excited about mundane

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร

ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร EN2042102 วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 5 สารก งต วน า Semiconductor สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร Bohr model of an atom As seen

More information

State the application of negative feedback and positive feedback (one in each case)

State the application of negative feedback and positive feedback (one in each case) (ISO/IEC - 700-005 Certified) Subject Code: 073 Model wer Page No: / N Important Instructions to examiners: ) The answers should be examined by key words and not as word-to-word as given in the model answer

More information

EXPERIMENT 5 : THE DIODE

EXPERIMENT 5 : THE DIODE EXPERIMENT 5 : THE DIODE Equipment List Dual Channel Oscilloscope R, 330, 1k, 10k resistors P, Tri-Power Supply V, 2x Multimeters D, 4x 1N4004: I max = 1A, PIV = 400V Silicon Diode P 2 35.6V pp (12.6 V

More information

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s.

Circuit operation Let s look at the operation of this single diode rectifier when connected across an alternating voltage source v s. Diode Rectifier Circuits One of the important applications of a semiconductor diode is in rectification of AC signals to DC. Diodes are very commonly used for obtaining DC voltage supplies from the readily

More information

EE 105. Diode Circuits. Prof. Ali M. Niknejad and Prof. Rikky Muller. March 2, U.C. Berkeley Copyright 2017 by Ali M.

EE 105. Diode Circuits. Prof. Ali M. Niknejad and Prof. Rikky Muller. March 2, U.C. Berkeley Copyright 2017 by Ali M. EE 105 Diode Circuits Prof. Ali M. Niknejad and Prof. Rikky Muller U.C. Berkeley Copyright 2017 by Ali M. Niknejad March 2, 2017 1/ 23 Diode Introduction A diode is a non-linear element. To a very good

More information

FINALTERM EXAMINATION. Spring PHY301- Circuit Theory

FINALTERM EXAMINATION. Spring PHY301- Circuit Theory Date 14/2/2013 Eini FINALTERM EXAMINATION Spring 2010 PHY301- Circuit Theory Time: 90 min Marks: 60 Question No: 1 If we connect 3 capacitors in parallel, the combined effect of all these capacitors will

More information

After performing this experiment, you should be able to:

After performing this experiment, you should be able to: Objectives: After performing this experiment, you should be able to: Demonstrate the strengths and weaknesses of the two basic rectifier circuits. Draw the output waveforms for the two basic rectifier

More information

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS

EXPERIMENT 2.2 NON-LINEAR OP-AMP CIRCUITS 2.16 EXPERIMENT 2.2 NONLINEAR OPAMP CIRCUITS 2.2.1 OBJECTIVE a. To study the operation of 741 opamp as comparator. b. To study the operation of active diode circuits (precisions circuits) using opamps,

More information

Physics 310 Lab 4 Transformers, Diodes, & Power Supplies

Physics 310 Lab 4 Transformers, Diodes, & Power Supplies Physics 310 Lab 4 Transformers, Diodes, & Power Supplies Equipment: O scope, W02G Bridge Rectifier, 110 6.3V transformer, four 1N4004 diodes, 1k, 10µF, 100µF, 1N5231 Zeener diode, ½ - Watt 100 Ω, 270Ω,

More information

Lecture 7: Diode Rectifier Circuits (Half Cycle, Full Cycle, and Bridge).

Lecture 7: Diode Rectifier Circuits (Half Cycle, Full Cycle, and Bridge). Whites, EE 320 Lecture 7 Page 1 of 9 Lecture 7: Diode Rectifier Circuits (Half Cycle, Full Cycle, and Bridge). We saw in the previous lecture that Zener diodes can be used in circuits that provide (1)

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits Chapter 1 & 2 A. Kruger Diode Review, Page-1 Semiconductors licon () atoms have 4 electrons in valence band and form strong covalent bonds with surrounding atoms. Section 1.1.2

More information

Ch5 Diodes and Diodes Circuits

Ch5 Diodes and Diodes Circuits Circuits and Analog Electronics Ch5 Diodes and Diodes Circuits 5.1 The Physical Principles of Semiconductor 5.2 Diodes 5.3 Diode Circuits 5.4 Zener Diode References: Floyd-Ch2; Gao-Ch6; 5.1 The Physical

More information

CHAPTER 4 FULL WAVE RECTIFIER. AC DC Conversion

CHAPTER 4 FULL WAVE RECTIFIER. AC DC Conversion CHAPTER 4 FULL WAVE RECTIFIER AC DC Conversion SINGLE PHASE FULL-WAVE RECTIFIER The objective of a full wave rectifier is to produce a voltage or current which is purely dc or has some specified dc component.

More information

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras

Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Electronics for Analog Signal Processing - I Prof. K. Radhakrishna Rao Department of Electrical Engineering Indian Institute of Technology - Madras Lecture - 4 Rectifier We have had a discussion about

More information

Clipper diode circuits have the ability to clip o a portion of the input signal without distorting the remaining part of the alternating waveform.

Clipper diode circuits have the ability to clip o a portion of the input signal without distorting the remaining part of the alternating waveform. Contents Parallel Voltage Multiplier Circuits Peak Rectier Voltage Doubler Voltage Tripler and Quadrupler Zener Regulator Other Regulators Parameters Practical Applications of Diode Circuits Dr. U. Sezen

More information

Clippers limiter circuits Vi > V Vi < V

Clippers limiter circuits Vi > V Vi < V Semiconductor Diode Clipper and Clamper Circuits Clippers Clipper circuits, also called limiter circuits, are used to eliminate portion of a signal that are above or below a specified level clip value.

More information

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors

Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss the basic structure of atoms Discuss properties of insulators, conductors, and semiconductors Discuss covalent bonding Describe the properties of both p and n type materials Discuss both forward

More information

WINTER 14 EXAMINATION. Model Answer. Subject Code: ) The answers should be examined by key words and not as word-to-word as given in the

WINTER 14 EXAMINATION. Model Answer. Subject Code: ) The answers should be examined by key words and not as word-to-word as given in the Subject Code: 17215 WINTER 14 EXAMINATION Model Answer Important Instructions to examiners: 1) The answers should be examined by key words and not as word-to-word as given in the model answer scheme. 2)

More information

SEMICONDUCTOR EECTRONICS MATERIAS, DEVICES AND SIMPE CIRCUITS Important Points: 1. In semiconductors Valence band is almost filled and the conduction band is almost empty. The energy gap is very small

More information

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M)

R a) Draw and explain VI characteristics of Si & Ge diode. (8M) b) Explain the operation of SCR & its characteristics (8M) SET - 1 1. a) Define i) transient capacitance ii) Diffusion capacitance (4M) b) Explain Fermi level in intrinsic and extrinsic semiconductor (4M) c) Derive the expression for ripple factor of Half wave

More information