RADIATIONS. ELECTROMAGNETIC WAVES. Talián Csaba Gábor Dept. Biophysics Apr

Size: px
Start display at page:

Download "RADIATIONS. ELECTROMAGNETIC WAVES. Talián Csaba Gábor Dept. Biophysics Apr"

Transcription

1 RADIATIONS. ELECTROMAGNETIC WAVES. Talián Csaba Gábor Dept. Biophysics Apr

2 WHAT IS RADIATION?

3 PROPAGATION OF ENERGY IN SPACE THROUGH TRAVELLING OF PARTICLES OR WAVES Particle: alfa-, beta-radiantion Electromagnetic radiation Mechanical: sound radiation source radiation irradiated body ENERGY Ionising: - Particle radiation, - UV, - X-ray, - gamma-radiation Non-ionising

4 SOURCE OF RADIATION Ω / isotropic anisotropic Radiant emittance and Irradiance (M and Ein) P 4 Δ Δ Δ Δ

5 Radiant flux: Δ Δ parameter of the radiation itself Flux-density, Intensity Δ Δ Illustrated by current lines

6 r A l constant 2 ~ 1 Non perpendicular cases: E in = E in, max cosα

7 WAVES

8 FERMAT-PRINCIPLE

9 HUYGENS-PRINCIPLE

10 INTERFERENCE, DIFFRACTION

11

12 POLARISATION

13 ABSORPTION A OD E ln

14

15 THERMAL RADIATION.

16 ELECTROMAGNETIC RADIATION. B 1 B C C. 1

17

18

19 RADIOWAVES EM radiation Properties Production Applications Extremely low frequence (ELF) 3-30 (-300) Hz km Lightning, electric disturbances Military communication (submarines), meteorology Super low frequence (SLF) Hz km Like ELF Like ELF, radio amateurs Ultra low frequence (ULF) Hz km (sound frequence) Outer atmosphere Magnetosphere-research, seizmology, military communication (in ground!) Very low frequence (VLF) 3-30 khz km Lightning Radio navigation, time signals, secure military communication (surface-close submarines) Long frequence (LF) khz 10-1 km Electric noise, lihgtning, arctic light AM broadcasting, timesignals, air navigation, military comm. Medium frequence (MF) 300 khz-3 MHz m AM broadcasting, coastal guard Short frequence (SW) 3-30 MHz m Broadcasting, CB, aviation communication

20 RADIOWAVES EM radiation Properties Production Applications Very high frequence (VHF) MHz 10-1 m FM, URH broadcasting, television, radar, marinal and air navigation, MRI Ultra high frequency (UHF) 300 MHz - 3 GHz 1 m - 10 cm Television, MRI, mobile phone, microwave oven Super high frequency (SHF) 3-30 GHz 10-1 cm WLAN, radar, radioastronomy, satellite television Extremely high frequency (EHF) GHz 1 cm 1 mm Oxygen resonance Radioastronomy, meteorology, telecommunication, radar, wifi, radiation therapy, security scanner

21 EM radiation Microwave (MW) Infrared (IR) Visible light Properties Production Applications GHz 30 cm 0,3 mm Dipole vibrations 300 GHz THz 1 mm nm Covalent bond vibrations ~ nm Excitation energy of weak σ- and π- electrons Semiconductors, vacuum tube (magnetron) Thermal radiation Lasers (CO 2 ) Thermal radiation Luminescence Microwave oven, radar, maser, cable tv and internet, WLAN, GSM, ESR Night vision, termography, military technic (positioning, tracking), heat therapy, temperature measurment, radiating heaters, wireless communication (shortdistance), meteorology, IRspectroscopy, astronomy

22 INFRARED RADIATION

23 EM radiation Ultraviolet( UV) X-ray (XR) Gammaradiation Properties Production Applications 800 THz 30 PHz nm Excitation energy of outer shell electrons 30 PHz - 30 EHz 10 pm - 10 nm Excitation energy of inner shell electrons > 30 EHz < 10 pm Excitation energy of atomic nuclei Thermal radiation, UV arch lamps, UV-laser, UV- LED, gas discharge tubes (Ar) X-ray fluorescence (characteristic) Brehmsstrahlung (continuous) Radioactive decay, electric atmospheric phenomena, nuclear fission and fusion, hypernova, pulsar, quasar, pair production Astronomy, spectroscopy, sterilisation, air and water cleaning, watermark, fire sensation, forensic, light therapy, tanning etc. Imaging, CT, crystallography, x- ray astronomy, security scanner, x-ray microscopy, instumental specroscopy (weldings) Container scan, sterilisation, tumour surgery (gamma-knife), PET, SPECT, gamma-camera

24 LIGHT

25 INTERACTIONS Transmission Scattering Rayleigh Raman Reflexion Absorption Relaxation Internal conversion Intersystem crossing Quenching Luminescence fluorescence phosphorescence

26 ELECTRON TRANSITIONS Splitting energy niveaus Kasha s rule

27 JABLONSKI DIAGRAM

28 SCATTERING Rayleigh elastic Raman non-elastic

29 IONISING RADIATIONS

30 RADIOACTIVE DECAY α β γ

31 X-RAY INTERACTIONS SO: shake-off P: photoionisation A: Auger-decay F: X-ray fluorescence S, RS: scattering

32 Relative penetration Effective range LET = linear energy transfer 2

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM

ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM LECTURE:2 ELECTROMAGNETIC SPECTRUM ELECTROMAGNETIC SPECTRUM Electromagnetic waves: In an electromagnetic wave the electric and magnetic fields are mutually perpendicular. They are also both perpendicular

More information

Data and Computer Communications Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media Data and Computer Communications Chapter 4 Transmission Media Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall,

More information

Non-ionizing radiation (RF radiation)

Non-ionizing radiation (RF radiation) Applications of the Electromagnetic Spectrum The table is based on the ITU frequency band subdivisions in the field of radio communication (RF), and has been extended to include the whole electromagnetic

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

Note 2 Electromagnetic waves N2/EMWAVES/PHY/XII/CHS2012

Note 2 Electromagnetic waves N2/EMWAVES/PHY/XII/CHS2012 ELECTROMAGNETIC SPECTRUM Electromagnetic waves include visible light waves, X-rays, gamma rays, radio waves, microwaves, ultraviolet and infrared waves. The classification of em waves according to frequency

More information

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre 3C5 Telecommunications what do radios look like? Linda Doyle CTVR The Telecommunications Research Centre ledoyle@tcd.ie Oriel/Dunlop House 2009 mobile phones talk is cheap.. bluetooth 3G WLAN/802.11 GSM

More information

ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks

ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks ELECTROMAGNETIC WAVES MARKS WEIGHTAGE 3 marks QUICK REVISION (Important Concepts & Formulas) Electromagnetic radiation is the radiation in which associated electric and magnetic field oscillations are

More information

Wave Behavior and The electromagnetic Spectrum

Wave Behavior and The electromagnetic Spectrum Wave Behavior and The electromagnetic Spectrum What is Light? We call light Electromagnetic Radiation. Or EM for short It s composed of both an electrical wave and a magnetic wave. Wave or particle? Just

More information

A bluffer s guide to Radar

A bluffer s guide to Radar A bluffer s guide to Radar Andy French December 2009 We may produce at will, from a sending station, an electrical effect in any particular region of the globe; (with which) we may determine the relative

More information

Uses of Electromagnetic Waves

Uses of Electromagnetic Waves Uses of Electromagnetic Waves 1 of 42 Boardworks Ltd 2016 Uses of Electromagnetic Waves 2 of 42 Boardworks Ltd 2016 What are radio waves? 3 of 42 Boardworks Ltd 2016 The broadcast of every radio and television

More information

Wireless Transmission Rab Nawaz Jadoon

Wireless Transmission Rab Nawaz Jadoon Wireless Transmission Rab Nawaz Jadoon DCS Assistant Professor COMSATS IIT, Abbottabad Pakistan COMSATS Institute of Information Technology Mobile Communication Frequency Spectrum Note: The figure shows

More information

Section 1 Wireless Transmission

Section 1 Wireless Transmission Part : Wireless Communication! section : Wireless Transmission! Section : Digital modulation! Section : Multiplexing/Medium Access Control (MAC) Section Wireless Transmission Intro. to Wireless Transmission

More information

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum.

Contents. ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications. Transmission Media and Spectrum. 2 ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications

ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications ITS323: Introduction to Data Communications CSS331: Fundamentals of Data Communications Sirindhorn International Institute of Technology Thammasat University Prepared by Steven Gordon on 3 August 2015

More information

Graph 1: This spectrum analysis graph reflects conditions in a home office in San Diego. Cellular Phones. Frequency

Graph 1: This spectrum analysis graph reflects conditions in a home office in San Diego. Cellular Phones. Frequency KNOW YOUR EMF S RF AND MICROWAVE RADIATION Peter Sierck, CIEC, CMC, CMRS, REA, BBEI President of ET&T 5431 Avenida Encinas, Suite F Carlsbad, CA 92008 Tel: 760-804-9400 PSierck@ETandT.com 1. INTRODUCTION

More information

Electromagnetic Spectrum

Electromagnetic Spectrum Electromagnetic Spectrum Wave - Review Waves are oscillations that transport energy. 2 Types of waves: Mechanical waves that require a medium to travel through (sound, water, earthquakes) Electromagnetic

More information

WIRELESS TRANSMISSION

WIRELESS TRANSMISSION COMP 635: WIRELESS NETWORKS WIRELESS TRANSMISSION Jasleen Kaur Fall 205 Outline Frequenc Spectrum Ø Usage and Licensing Signals and Antennas Ø Propagation Characteristics Multipleing Ø Space, Frequenc,

More information

RADIATIONS BEYOND THE VISIBLE. Radio UV IR Micro Gamma X-Rays

RADIATIONS BEYOND THE VISIBLE. Radio UV IR Micro Gamma X-Rays Lesson 1 Introduction 1. What name do we give the following set of waves; Radio UV IR Micro Gamma X-Rays 2. Copy the waves shown above in order of wavelength with the shortest at the top. 3. What speed

More information

Electromagnetic Waves & the Electromagnetic Spectrum

Electromagnetic Waves & the Electromagnetic Spectrum Electromagnetic Waves & the Electromagnetic Spectrum longest wavelength shortest wavelength The Electromagnetic Spectrum The name given to a group of energy waves that are mostly invisible and can travel

More information

What is a Communications System?

What is a Communications System? Introduction to Communication Systems: An Overview James Flynn Sharlene Katz What is a Communications System? A communications system transfers an information bearing signal from a source to one or more

More information

ECE 435 Network Engineering Lecture 21

ECE 435 Network Engineering Lecture 21 ECE 435 Network Engineering Lecture 21 Vince Weaver http://web.eece.maine.edu/~vweaver vincent.weaver@maine.edu 21 November 2017 Announcements Wireless Spectrum Allocation Poster Don t forget project status

More information

Antenna Engineering Lecture 0: Introduction

Antenna Engineering Lecture 0: Introduction Antenna Engineering Lecture 0: Introduction ELCN405 Fall 2011 Communications and Computer Engineering Program Faculty of Engineering Cairo University 2 Outline 1 Electromagnetic Spectrum Recent Advances

More information

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE

ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES AND THE EM SPECTRUM MR. BANKS 8 TH GRADE SCIENCE ELECTROMAGNETIC WAVES Do not need matter to transfer energy. Made by vibrating electric charges. When an electric charge vibrates,

More information

Microwave Intro (4 min.) https://www.youtube.com/watch?v=0fnlfvpnz2e

Microwave Intro (4 min.) https://www.youtube.com/watch?v=0fnlfvpnz2e Microwave Systems Microwave Intro (4 min.) https://www.youtube.com/watch?v=0fnlfvpnz2e Short Facts 3 to 30 GHz by definition 1 to 300 GHz broadly considered to be uw Point to Point Dish antennas (Yagi

More information

Radio spectrum From Wikipedia, the free encyclopedia

Radio spectrum From Wikipedia, the free encyclopedia Page 1 of 13 Radio spectrum From Wikipedia, the free encyclopedia The radio spectrum is the part of the electromagnetic spectrum from 3 Hz to 3000 GHz (3 THz). Electromagnetic waves in this range, called

More information

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl

Vehicle Networks. Wireless communication basics. Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Vehicle Networks Wireless communication basics Univ.-Prof. Dr. Thomas Strang, Dipl.-Inform. Matthias Röckl Outline Wireless Signal Propagation Electro-magnetic waves Signal impairments Attenuation Distortion

More information

An Introduction to Electrical and Electronic Engineering Electromagnetic. Dr. Cahit Karakuş, 2018

An Introduction to Electrical and Electronic Engineering Electromagnetic. Dr. Cahit Karakuş, 2018 An Introduction to Electrical and Electronic Engineering Electromagnetic Dr. Cahit Karakuş, 2018 Electromagnetic Spectrum Electromagnetic Spectrum Longest Wavelength Shortest Wavelength Electrical

More information

Electromagnetic Radiation

Electromagnetic Radiation Electromagnetic Radiation EMR Light: Interference and Optics I. Light as a Wave - wave basics review - electromagnetic radiation II. Diffraction and Interference - diffraction, Huygen s principle - superposition,

More information

CS441 Mobile & Wireless Computing Communication Basics

CS441 Mobile & Wireless Computing Communication Basics Department of Computer Science Southern Illinois University Carbondale CS441 Mobile & Wireless Computing Communication Basics Dr. Kemal Akkaya E-mail: kemal@cs.siu.edu Kemal Akkaya Mobile & Wireless Computing

More information

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc.

UNDER STANDING RADIO FREQUENCY Badger Meter, Inc. UNDER STANDING RADIO FREQUENCY UNDERSTANDING RADIO FREQUENCY Regional Sales Meeting March 1-2, 2011 Brian Fiut Sr. Product Manager Itron Inc. Liberty Lake, WA August 25, 2010 RADIO PROPAGATION Radio consists

More information

Electromagnetic Waves

Electromagnetic Waves Chapter 13 Electromagnetic Waves 13.1 Gamma Rays Gamma rays have a very short wavelength and are very penetrating. They are produced by radioactive substances and are very dangerous to humans unless used

More information

Radio Communication. Presentation created by: András Balogh

Radio Communication. Presentation created by: András Balogh Radio Communication Presentation created by: András Balogh AM and FM The goal is to transmit a modulating signal S(t) via a wave sin(ωt). In case of AM, the product of the modulation is f(t)=(a+s(t))*sin(ωt);

More information

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum).

Term Info Picture. A wave that has both electric and magnetic fields. They travel through empty space (a vacuum). Waves S8P4. Obtain, evaluate, and communicate information to support the claim that electromagnetic (light) waves behave differently than mechanical (sound) waves. A. Ask questions to develop explanations

More information

Developing and Implementing Protective Measures for ELF EMF - Sources and exposures- Rüdiger Matthes Federal Office for Radiation Protection Germany

Developing and Implementing Protective Measures for ELF EMF - Sources and exposures- Rüdiger Matthes Federal Office for Radiation Protection Germany Developing and Implementing Protective Measures for ELF EMF - Sources and exposures- Rüdiger Matthes Federal Office for Radiation Protection Germany 1 Non-ionising Radiation Ionising Radiation >0 to 300

More information

Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS. Waves and Radiation. Exam Questions

Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS. Waves and Radiation. Exam Questions Wallace Hall Academy Physics Department NATIONAL 5 PHYSICS Waves and Radiation Exam Questions 1 Wave Parameters and Behaviour 1. The following diagram gives information about a wave. 2011 Int2 12 MC Which

More information

Wireless Communication Fundamentals Feb. 8, 2005

Wireless Communication Fundamentals Feb. 8, 2005 Wireless Communication Fundamentals Feb. 8, 005 Dr. Chengzhi Li 1 Suggested Reading Chapter Wireless Communications by T. S. Rappaport, 001 (version ) Rayleigh Fading Channels in Mobile Digital Communication

More information

Class Overview. Antenna Fundamentals Repeaters Duplex and Simplex Nets and Frequencies Cool Radio Functions Review

Class Overview. Antenna Fundamentals Repeaters Duplex and Simplex Nets and Frequencies Cool Radio Functions Review Class Overview Antenna Fundamentals Repeaters Duplex and Simplex Nets and Frequencies Cool Radio Functions Review Antennas Antennas An antenna is a device used for converting electrical currents into electromagnetic

More information

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System

Elements of Communication System Channel Fig: 1: Block Diagram of Communication System Terminology in Communication System Content:- Fundamentals of Communication Engineering : Elements of a Communication System, Need of modulation, electromagnetic spectrum and typical applications, Unit V (Communication terminologies in communication

More information

National 4. Waves and Radiation. Summary Notes. Name:

National 4. Waves and Radiation. Summary Notes. Name: National 4 Waves and Radiation Summary Notes Name: Mr Downie 2014 1 Sound Waves To produce a sound the particles in an object must vibrate. This means that sound can travel through solids, liquids and

More information

Communications II. Mohammad Fathi Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus

Communications II. Mohammad Fathi Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus Communications II Mohammad Fathi mfathi@uok.ac.ir Course information Text book: J.G. Proakis and M. Salehi, Communication System Engineering (2 nd Ed) Syllabus Introduction: [1.1, 1.2, 1.3, and 1.4] Review

More information

Antenna Engineering Lecture 0: Introduction

Antenna Engineering Lecture 0: Introduction Antenna Engineering Lecture 0: Introduction ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Why Study Antenna Engineering?

More information

William Stallings Data and Computer Communications 7 th Edition. Chapter 4 Transmission Media

William Stallings Data and Computer Communications 7 th Edition. Chapter 4 Transmission Media William Stallings Data and Computer Communications 7 th Edition Chapter 4 Transmission Media Overview Guided - wire Unguided - wireless Characteristics and quality determined by medium and signal For guided,

More information

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib

Computer Networks Lecture -4- Transmission Media. Dr. Methaq Talib Computer Networks Lecture -4- Transmission Media Dr. Methaq Talib Transmission Media A transmission medium can be broadly defined as anything that can carry information from a source to a destination.

More information

Wireless data networks Why is wireless different?

Wireless data networks Why is wireless different? Wireless data networks Why is wireless different? Martin Heusse X L ATEX E General info This is TLEN 5520, or ECEN 5032 ECCS 1B12, WF, 3:00pm to 4:15pm Please register to the class mailing list! send a

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at COMMUNICATION SYSTEMS

Get Discount Coupons for your Coaching institute and FREE Study Material at   COMMUNICATION SYSTEMS COMMUNICATION SYSTEMS 1. BASICS OF COMMUNICATION 2. AMPLITUDE MODULATION Get Discount Coupons for your Coaching institute and FREE Study Material at www.pickmycoaching.com 1 BASICS OF COMMUNICATION 1.

More information

SPECTRUM MANAGEMENT Sirewu Baxton POTRAZ

SPECTRUM MANAGEMENT Sirewu Baxton POTRAZ ICTS FOR DISASTER SPECTRUM MANAGEMENT Sirewu Baxton POTRAZ sirewu@potraz.gov.zw DISASTER MANAGENT - A SPECTRUM PERSPECTIVE Aims of this Presentation Radio Spectrum Management at international and national

More information

Chapter 18 The Electromagnetic Spectrum

Chapter 18 The Electromagnetic Spectrum Pearson Prentice Hall Physical Science: Concepts in Action Chapter 18 The Electromagnetic Spectrum 18.1 Electromagnetic Waves Objectives: 1. Describe the characteristics of electromagnetic waves in a vacuum

More information

ELECTROMAGNETIC 0 Hz 300 GHz

ELECTROMAGNETIC 0 Hz 300 GHz ELECTROMAGNETIC 0 Hz 300 GHz Field characterization & occupational exposure sources Laura FILOSA 1. Organization of the NIR Module 2. European frame introduction 3. Electromagnetic field characterization

More information

Liquidmetal Electromagnetic Properties & RF Shielding Overview

Liquidmetal Electromagnetic Properties & RF Shielding Overview Liquidmetal Electromagnetic Properties & RF Shielding Overview Liquidmetal alloy is more transparent to RF signals than many similar materials 1 Introduction H ow a material interacts with radio frequency

More information

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

E-716-A Mobile Communications Systems. Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna October 2014 Ahmad El-Banna Integrated Technical Education Cluster At AlAmeeria E-716-A Mobile Communications Systems Lecture #2 Basic Concepts of Wireless Transmission (p1) Instructor: Dr. Ahmad El-Banna

More information

Chapter 21. Alternating Current Circuits and Electromagnetic Waves

Chapter 21. Alternating Current Circuits and Electromagnetic Waves Chapter 21 Alternating Current Circuits and Electromagnetic Waves AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source The output of an AC generator is sinusoidal

More information

Chapter 3. Mobile Radio Propagation

Chapter 3. Mobile Radio Propagation Chapter 3 Mobile Radio Propagation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Andrea Goldsmith, Stanford University Propagation Mechanisms Outline Radio Propagation

More information

UNIT Derive the fundamental equation for free space propagation?

UNIT Derive the fundamental equation for free space propagation? UNIT 8 1. Derive the fundamental equation for free space propagation? Fundamental Equation for Free Space Propagation Consider the transmitter power (P t ) radiated uniformly in all the directions (isotropic),

More information

Chapter 6 Propagation

Chapter 6 Propagation Chapter 6 Propagation Al Penney VO1NO Objectives To become familiar with: Classification of waves wrt propagation; Factors that affect radio wave propagation; and Propagation characteristics of Amateur

More information

Radio Propagation Fundamentals

Radio Propagation Fundamentals Radio Propagation Fundamentals Concept of Electromagnetic Wave Propagation Mechanisms Modes of Propagation Propagation Models Path Profiles Link Budget Fading Channels Electromagnetic (EM) Waves EM Wave

More information

Mm- Wave Propaga-on: Fundamentals and Models

Mm- Wave Propaga-on: Fundamentals and Models Mm- Wave Propaga-on: Fundamentals and Models Hajime Suzuki 7 April 2014 CSIRO Computa-onal Informa-cs CSIRO Radio Physics Laboratory Advanced Wireless Broadband Communica:ons in Rural Areas Page 2 Coded

More information

Ad hoc and Sensor Networks Chapter 4: Physical layer. Holger Karl

Ad hoc and Sensor Networks Chapter 4: Physical layer. Holger Karl Ad hoc and Sensor Networks Chapter 4: Physical layer Holger Karl Goals of this chapter Get an understanding of the peculiarities of wireless communication Wireless channel as abstraction of these properties

More information

RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS. Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, / 31

RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS. Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, / 31 RADIOWAVE PROPAGATION: PHYSICS AND APPLICATIONS Levis, Johnson, Teixeira (ESL/OSU) Radiowave Propagation August 17, 2018 1 / 31 I. Introduction 1 EM waves and propagation 2 Influence of frequency 3 Propagation

More information

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014

CHAPTER 17 AND 18 CHARACTERISTICS OF EM WAVES LEARNING OBJECTIVES CHARACTERISTICS OF EM WAVES 11/10/2014 STUDENT LEARNING GOALS PHYSICAL SCIENCE ELECTROMAGNETISM SC.912.P.10.18 CHAPTER 17 AND 18 Electromagnetic Spectrum, Light, and Sound Goal: Explore the theory of electromagnetism by comparting and contrasting

More information

Physics. Waves and Radiation Homework Exercises. National 4 & 5. Clackmannanshire Physics Network 0914

Physics. Waves and Radiation Homework Exercises. National 4 & 5. Clackmannanshire Physics Network 0914 Physics National 4 & 5 Waves and Radiation ----- 0914 Summary Homework 1: Homework 2: Homework 3: Homework 4: Homework 5: Homework 6: Homework 7: Waves I -Wave definitions - Speed, distance, time calculations

More information

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10.

Physics 1C. Lecture 24A. Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves. Average Quiz score = 6.8 out of 10. Physics 1C Lecture 24A Finish Chapter 27: X-ray diffraction Start Chapter 24: EM waves Average Quiz score = 6.8 out of 10 This is a B- Diffraction of X-rays by Crystals! X-rays are electromagnetic radiation

More information

Unguided Transmission Media

Unguided Transmission Media CS311 Data Communication Unguided Transmission Media by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

Broad Principles of Propagation 4C4

Broad Principles of Propagation 4C4 Broad Principles of Propagation ledoyle@tcd.ie 4C4 Starting at the start All wireless systems use spectrum, radiowaves, electromagnetic waves to function It is the fundamental and basic ingredient of

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum The Electromagnetic Spectrum Wavelength/frequency/energy MAP TAP 2003-2004 The Electromagnetic Spectrum 1 Teacher Page Content: Physical Science The Electromagnetic Spectrum Grade Level: High School Creator:

More information

Information theory II. Fisica dell Energia - a.a. 2017/2018

Information theory II. Fisica dell Energia - a.a. 2017/2018 Information theory II Fisica dell Energia - a.a. 2017/2018 Transfer of information Communication Communication is the transfer of information from one place to another. This should be done as efficiently

More information

An Introduction to Electrical and Electronic Engineering Communication. Dr. Cahit Karakuş, 2018

An Introduction to Electrical and Electronic Engineering Communication. Dr. Cahit Karakuş, 2018 An Introduction to Electrical and Electronic Engineering Communication Dr. Cahit Karakuş, 2018 Significance of Human Communication Methods of communication: 1. Face to face 2. Signals 3. Written word (letters)

More information

AGRON / E E / MTEOR 518: Microwave Remote Sensing

AGRON / E E / MTEOR 518: Microwave Remote Sensing AGRON / E E / MTEOR 518: Microwave Remote Sensing Dr. Brian K. Hornbuckle, Associate Professor Departments of Agronomy, ECpE, and GeAT bkh@iastate.edu What is remote sensing? Remote sensing: the acquisition

More information

High quality antennas A complete range of maritime solutions.

High quality antennas A complete range of maritime solutions. High quality antennas A complete range of maritime solutions www.jrc.am Antennas Our range of high quality antennas and accessories are intended for use in voice, data, GPS, marine based radio and other

More information

Direct Link Communication II: Wireless Media. Motivation

Direct Link Communication II: Wireless Media. Motivation Direct Link Communication II: Wireless Media Motivation WLAN explosion cellular telephony: 3G/4G cellular providers/telcos in the mix self-organization by citizens for local access large-scale hot spots:

More information

Data Communication and Media

Data Communication and Media Data Communication and Media Concept and Model of Communications Analogy Signal and Digital Signal Signal Frequency, Spectrum and Bandwidth System Frequency Response and Bandwidth Transmission Media and

More information

Chapter 18 The Electromagnetic Spectrum and Light

Chapter 18 The Electromagnetic Spectrum and Light Chapter 18 Sections 18.1 Electromagnetic Waves 18.2 The 18.3 Behavior of Light 18.4 Color 18.5 Sources of Light Chapter 18 The and Light Section 18.1 Electromagnetic Waves To review: mechanical waves require

More information

INTRODUCTION. 5. Electromagnetic Waves

INTRODUCTION. 5. Electromagnetic Waves INTRODUCTION An electric current produces a magnetic field, and a changing magnetic field produces an electric field Because of such a connection, we refer to the phenomena of electricity and magnetism

More information

Lesson 24 Electromagnetic Waves

Lesson 24 Electromagnetic Waves Physics 30 Lesson 24 Electromagnetic Waves On April 11, 1846, Michael Faraday was scheduled to introduce Sir Charles Wheatstone at a meeting of the Royal Society of London. Unfortunately, Wheatstone had

More information

Data and Computer Communications. Tenth Edition by William Stallings

Data and Computer Communications. Tenth Edition by William Stallings Data and Computer Communications Tenth Edition by William Stallings Data and Computer Communications, Tenth Edition by William Stallings, (c) Pearson Education - Prentice Hall, 2013 Wireless Transmission

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves What is an Electromagnetic Wave? An EM Wave is a disturbance that transfers energy through a field. A field is a area around an object where the object can apply a force on another

More information

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals

Chapter 2: Wireless Transmission. Mobile Communications. Spread spectrum. Multiplexing. Modulation. Frequencies. Antenna. Signals Mobile Communications Chapter 2: Wireless Transmission Frequencies Multiplexing Signals Spread spectrum Antenna Modulation Signal propagation Cellular systems Prof. Dr.-Ing. Jochen Schiller, http://www.jochenschiller.de/

More information

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6.

[4] (b) Fig. 6.1 shows a loudspeaker fixed near the end of a tube of length 0.6 m. tube m 0.4 m 0.6 m. Fig. 6. 1 (a) Describe, in terms of vibrations, the difference between a longitudinal and a transverse wave. Give one example of each wave.................... [4] (b) Fig. 6.1 shows a loudspeaker fixed near the

More information

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz.

Unit 1.5 Waves. The number waves per second. 1 Hz is 1waves per second. If there are 40 waves in 10 seconds then the frequency is 4 Hz. Unit 1.5 Waves Basic information Transverse: The oscillations of the particles are at right angles (90 ) to the direction of travel (propagation) of the wave. Examples: All electromagnetic waves (Light,

More information

WAVES & EM SPECTRUM. Chapters 10 & 15

WAVES & EM SPECTRUM. Chapters 10 & 15 WAVES & EM SPECTRUM Chapters 10 & 15 What s a wave? repeating disturbance transfers energy through matter or space Oscillation back & forth movement carries energy w/o transporting matter can travel through

More information

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves

4.6.1 Waves in air, fluids and solids Transverse and longitudinal waves Properties of waves 4.6 Waves Wave behaviour is common in both natural and man-made systems. Waves carry energy from one place to another and can also carry information. Designing comfortable and safe structures such as bridges,

More information

17-1 Electromagnetic Waves

17-1 Electromagnetic Waves 17-1 Electromagnetic Waves transfers energy called electromagnetic radiation no medium needed transverse some electrical, some magnetic properties speed is 300,000,000 m/s; nothing is faster; at this speed

More information

1 Introduction 1.1 RADIO: WHAT AND WHY...

1 Introduction 1.1 RADIO: WHAT AND WHY... 1 Introduction 1.1 RADIO: WHAT AND WHY... Radio is the use of unguided propagating electromagnetic fields in the frequency range 3 khz and 300 GHz to convey information. Propagating electromagnetic fields

More information

James Clerk Maxwell. Electric and Magnetic Fields

James Clerk Maxwell. Electric and Magnetic Fields L 30 Electricity and Magnetism [7] Electromagnetic Waves Faraday laid the groundwork with his discovery of electromagnetic induction Maxwell added the last piece of the puzzle Hertz made the experimental

More information

Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers

Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers 03/02/2014 Electromagnetic Spectrum Review Using Waves Lesson Objectives: The electromagnetic spectrum: To know the parts of To know their properties, uses, dangers To compare and contrast analogue and

More information

Essentia Electromagnetic Monitor Model: EM2

Essentia Electromagnetic Monitor Model: EM2 Essentia Electromagnetic Monitor Model: EM2 The Essentia EM2 was designed to bridge the gap between inexpensive monitors with limited response and expensive full spectrum units. It has a small, sensitive

More information

Satellite Navigation (and positioning)

Satellite Navigation (and positioning) Satellite Navigation (and positioning) Picture: ESA AE4E08 Instructors: Sandra Verhagen, Hans van der Marel, Christian Tiberius Course 2010 2011, lecture 1 Today s topics Course organisation Course contents

More information

Direct Link Communication II: Wireless Media. Current Trend

Direct Link Communication II: Wireless Media. Current Trend Direct Link Communication II: Wireless Media Current Trend WLAN explosion (also called WiFi) took most by surprise cellular telephony: 3G/4G cellular providers/telcos/data in the same mix self-organization

More information

PHYSICS. Speed of Sound. Mr R Gopie

PHYSICS. Speed of Sound. Mr R Gopie Speed of Sound Mr R Gopie a) Reciprocal firing Methods of determining the speed of sound in air include: Diag. 20 The time interval, t, between the flash and the sound represents the time taken for sound

More information

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 5: OTHER PROCESSES

COURSE: ADVANCED MANUFACTURING PROCESSES. Module No. 5: OTHER PROCESSES COURSE: ADVANCED MANUFACTURING PROCESSES Module No. 5: OTHER PROCESSES Lecture No-3 Microwave Processing of Materials Microwave processing is a relatively new and emerging area in material processing.

More information

National 3 Physics Waves and Radiation. 1. Wave Properties

National 3 Physics Waves and Radiation. 1. Wave Properties 1. Wave Properties What is a wave? Waves are a way of transporting energy from one place to another. They do this through some form of vibration. We see waves all the time, for example, ripples on a pond

More information

RADIO WAVES PROPAGATION

RADIO WAVES PROPAGATION RADIO WAVES PROPAGATION Definition Radio waves propagation is a term used to explain how radio waves behave when they are transmitted, or are propagated from one point on the Earth to another. Radio Waves

More information

Skoog Chapter 1 Introduction

Skoog Chapter 1 Introduction Skoog Chapter 1 Introduction Basics of Instrumental Analysis Properties Employed in Instrumental Methods Numerical Criteria Figures of Merit Skip the following chapters Chapter 2 Electrical Components

More information

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave?

DIN. A wave is traveling at 5,000 m/s. It has a wavelength of 10 centimeters. What is the wave s frequency? What is the period of the wave? 3. Wave Speed (v=fλ) and Wave period (T=1/f) problems. DIN 1. EOC Review Problem: Two carts are moving on a horizontal frictionless surface. A 8 kilogram cart is moving to the right at 6 m/s. A second

More information

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE

OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE WAVE PROPAGATION OBJECTIVES: PROPAGATION INTRO RADIO WAVES POLARIZATION LINE OF SIGHT, GROUND WAVE, SKY WAVE IONOSPHERE REGIONS PROPAGATION, HOPS, SKIPS ZONES THE IONOSPHERIC LAYERS ABSORPTION AND FADING

More information

MICROWAVE ENGINEERING

MICROWAVE ENGINEERING MICROWAVE ENGINEERING SANJEEVA GUPTA B.Sc. (Electrical) Electronics Engineering DINESH ARORA B.Sc. (Electrical) Electronics Engineering SATYA BHUSHAN SARNA B.Sec. (Electrical)Electronics Engineering PRASHANT

More information

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich

LECTURE 20 ELECTROMAGNETIC WAVES. Instructor: Kazumi Tolich LECTURE 20 ELECTROMAGNETIC WAVES Instructor: Kazumi Tolich Lecture 20 2 25.6 The photon model of electromagnetic waves 25.7 The electromagnetic spectrum Radio waves and microwaves Infrared, visible light,

More information

Radio Spectrum Allocations 101

Radio Spectrum Allocations 101 Radio Spectrum Allocations 101 Presentation to The National Academies Board on Physics and Astronomy Committee on Radio Frequencies Washington DC May 27 th, 2009 Andrew Clegg National Science Foundation

More information

Basics of RFID technology Thomas Holtstiege Technical Manager EECC. October 2009

Basics of RFID technology Thomas Holtstiege Technical Manager EECC. October 2009 Basics of RFID technology Thomas Holtstiege Technical Manager EECC October 2009 About the European EPC Competence Center (EECC) First European EPCglobal accredited performance test center Active since

More information