PROBLEMS 244 SERIES-PARALLEL NETWORKS. FIG C response to an analysis of the ladder network of Fig without the elements R 5 and R 6.

Size: px
Start display at page:

Download "PROBLEMS 244 SERIES-PARALLEL NETWORKS. FIG C response to an analysis of the ladder network of Fig without the elements R 5 and R 6."

Transcription

1 244 R-PARALLL NTWORK FG C response to an analysis of the ladder network of Fig without the elements and. PROBLM CTON 7.2 Descriptive xamples 1. Which elements of the networks in Fig are in series or parallel? n other words, which elements of the given networks have the same current (series) or voltage (parallel)? Restrict your decision to single elements, and do not include combined elements. (a) (b) R2 R7 (c) (d) FG Problem 1.

2 PROBLM Determine for the networks of Fig (a) (b) (c) (d) FG Problem For the network of Fig. 7.66: a. Does 6? xplain. b. f 5 A and 1 2 A, find 2. c. Does 1 5? xplain. d. f V 1 6 V and 10 V, find V 2. e. f,,, and R 1, what is? f. f the resistors have the values given in part (e) and 10 V, what is the value of in amperes? g. Using values given in parts (e) and (f), find the power delivered by the battery and dissipated by the resistors and. 4. For the network of Fig. 7.67: a. Calculate. b. Determine and 1. c. Find V For the network of Fig. 7.68: a. Determine. b. Find s, 1, and 2. c. Calculate V a. 1 2 V 1 3 FG Problem V 2 6 s V V V V a FG Problem 4. FG Problem 5.

3 246 R-PARALLL NTWORK 6. Determine the currents 1 and 2 for the network of Fig V V 25 FG Problem a. Find the magnitude and direction of the currents, 1, 2, and 3 for the network of Fig b. ndicate their direction on Fig *8. For the network of Fig. 7.71: a. Determine the currents s, 1, 3, and 4. b. Calculate V a and V bc. 24 V V a 2 c b 8 V V 5 1 s FG Problem 7. FG Problem V 1 9. For the network of Fig. 7.72: a. Determine the current 1. b. Calculate the currents 2 and 3. c. Determine the voltage levels V a and V b. 2 V a V b 3 FG Problem 9.

4 PROBLM For the network of Fig. 7.73: a. Find the currents and 6. b. Find the voltages V 1 and V 5. c. Find the power delivered to the 6-k resistor. 9 k 6 = 28 V V 1 3 k 12 k 12 k 6 k V k FG Problem 10. *11. For the series-parallel network of Fig. 7.74: a. Find the current. b. Find the currents 3 and 9. c. Find the current 8. d. Find the voltage V ab. 80 V 5 3 R 7 8 a V ab R 9 b 9 = R 8 FG Problem 11. *12. Determine the dc levels for the transistor network of Fig using the fact that V B 0.7 V, V 2 V, and C. That is: a. Determine and C. b. Calculate B. c. Determine V B and V C. d. Find V C and V BC. R B V CC = 8 V C 220 k R C 2.2 k B V B B C V C V B V BC V C V = 2 V R 1 k FG Problem 12.

5 248 R-PARALLL NTWORK V G = 1.75 V G = 0 A D = V DD = 16 V 1 2 M R D V G G 2 G V G 270 k R D 2.5 k D V 1.5 k *13. The network of Fig is the basic biasing arrangement for the field-effect transistor (FT), a device of increasing importance in electronic design. (Biasing simply means the application of dc levels to establish a particular set of operating conditions.) ven though you may be unfamiliar with the FT, you can perform the following analysis using only the basic laws introduced in this chapter and the information provided on the diagram. a. Determine the voltages V G and V. b. Find the currents 1, 2, D, and. c. Determine V D. d. Calculate V DG. FG Problem 13. *14. For the network of Fig. 7.77: a. Determine. b. Calculate V a. c. Find V 1. d. Calculate V 2. e. Determine (with direction). 15. For the network of Fig. 7.78: a. Determine the current. b. Find V. 400 V V 1 = 9 V 32 V 400 V V a V 5 7 FG Problem 14. V 2 = 19 V FG Problem k 1 k V b *16. Determine the current and the voltages V a, V b, and V ab for the network of Fig V 2 k 0.5 k V a 1.5 k FG Problem 16.

6 PROBLM For the configuration of Fig. 7.80: a. Find the currents 2, 6, and 8. b. Find the voltages V 4 and V 8. V V 2 30 R 7 R 8 8 V 8 FG Problem Determine the voltage V and the current for the network of Fig V V FG Problem 18. *19. For the network of Fig. 7.82: a. Determine by combining resistive elements. b. Find V 1 and V 4. c. Calculate 3 (with direction). d. Determine s by finding the current through each element and then applying Kirchhoff s current law. Then calculate from / s, and compare the answer with the solution of part (a). V 1 1 V V s FG Problem For the network of Fig. 7.83: a. Determine the voltage V ab. (Hint: Just use Kirchhoff s voltage law.) b. Calculate the current. 6 V a b 5 20 V FG Problem 20.

7 250 R-PARALLL NTWORK *21. For the network of Fig. 7.84: a. Determine the current. b. Calculate the open-circuit voltage V. *22. For the network of Fig. 7.85, find the resistance if the current through it is 2 A. V 20 V 18 V 120 V 20 2 A FG Problem 21. FG Problem 22. *23. f all the resistors of the cube in Fig are, what is the total resistance? (Hint: Make some basic assumptions about current division through the cube.) *24. Given the voltmeter reading V 27 V in Fig. 7.87: a. s the network operating properly? b. f not, what could be the cause of the incorrect reading? V = 27 V 6 k 12 k 6 k 45 V 36 k FG Problem 23. FG Problem V V 3 5 V 5 1 V 7 R 7 7 CTON 7.3 Ladder Networks 25. For the ladder network of Fig. 7.88: a. Find the current. b. Find the current 7. c. Determine the voltages V 3, V 5, and V 7. d. Calculate the power delivered to R 7, and compare it to the power delivered by the 240-V supply. FG Problem 25.

8 PROBLM For the ladder network of Fig. 7.89: a. Determine. b. Calculate. c. Find 8. 2 V R 7 R 8 1 FG Problem *27. Determine the power delivered to the 10- load of Fig V 2 P FG Problem 27. *28. For the multiple ladder configuration of Fig. 7.91: a. Determine. b. Calculate 4. c. Find 6. d. Find 10. CTON 7.4 Voltage Divider upply (Unloaded and Loaded) 29. Given the voltage divider supply of Fig. 7.92: a. Determine the supply voltage. b. Find the load resistors R L2 and R L3. c. Determine the voltage divider resistors,, and. R 9 R 8 R V = 1 = s = 72 ma 40 ma 6 48 V 12 ma R L1 1.6 k FG Problem V 8 ma R L2 R L3 FG Problem 29.

9 252 R-PARALLL NTWORK 120 V 10 ma *30. Determine the voltage divider supply resistors for the configuration of Fig Also determine the required wattage rating for each resistor, and compare their levels. 40 ma 180 V 20 ma R L2 40 V R L1 100 V R L3 36 V 4 ma 60 V FG Problem V 1 k Pot. R L 10 k 3 V CTON 7.5 Potentiometer Loading *31. For the system of Fig. 7.94: a. At first exposure, does the design appear to be a good one? b. n the absence of the 10-k load, what are the values of and to establish 3 V across? c. Determine the values of and when the load is applied, and compare them to the results of part (b). FG Problem V Pot. FG Problem 32. a 1 k V ab b 10 k V bc c *32. For the potentiometer of Fig. 7.95: a. What are the voltages V ab and V bc with no load applied? b. What are the voltages V ab and V bc with the indicated loads applied? c. What is the power dissipated by the potentiometer under the loaded conditions of Fig. 7.95? d. What is the power dissipated by the potentiometer with no loads applied? Compare it to the results of part (c). CTON 7.6 Ammeter, Voltmeter, and Ohmmeter Design 33. A d Arsonval movement is rated 1 ma, 100. a. What is the current sensitivity? b. Design a 20-A ammeter using the above movement. how the circuit and component values.

10 PROBLM Using a 50-mA, d Arsonval movement, design a multirange milliammeter having scales of 25 ma, 50 ma, and 100 ma. how the circuit and component values. 35. A d Arsonval movement is rated 50 ma, a. Design a 15-V dc voltmeter. how the circuit and component values. b. What is the ohm/volt rating of the voltmeter? 36. Using a 1-mA, 100- d Arsonval movement, design a multirange voltmeter having scales of 5 V, 50 V, and 500 V. how the circuit and component values. 37. A digital meter has an internal resistance of 10 M on its 0.5-V range. f you had to build a voltmeter with a d Arsonval movement, what current sensitivity would you need if the meter were to have the same internal resistance on the same voltage scale? *38. a. Design a series ohmmeter using a 100-mA, movement; a zero-adjust with a maximum value of 2 k ; a battery of 3 V; and a series resistor whose value is to be determined. b. Find the resistance required for full-scale, 3/4-scale, 1/2-scale, and 1/4-scale deflection. c. Using the results of part (b), draw the scale to be used with the ohmmeter. 39. Describe the basic construction and operation of the megohmmeter. *40. Determine the reading of the ohmmeter for the configuration of Fig (a) (b) FG Problem 40. CTON 7.9 Computer Analysis Ppice or lectronics Workbench 41. Using schematics, determine V 1, V 3, V ab, and s for the network of Fig Using schematics, determine s, 5, and V 7 for the network of Fig

11 254 R-PARALLL NTWORK Programming Language (C, QBAC, Pascal, etc.) 43. Write a program that will find the complete solution for the network of Fig That is, given all the parameters of the network, calculate the current, voltage, and power to each element. 44. Write a program to find all the quantities of xample 7.8 given the network parameters. GLOARY d Arsonval movement An iron-core coil mounted on bearings between a permanent magnet. A pointer connected to the movable core indicates the strength of the current passing through the coil. Ladder network A network that consists of a cascaded set of series-parallel combinations and has the appearance of a ladder. Megohmmeter An instrument for measuring very high resistance levels, such as in the megohm range. eries ohmmeter A resistance-measuring instrument in which the movement is placed in series with the unknown resistance. eries-parallel network A network consisting of a combination of both series and parallel branches. Transistor A three-terminal semiconductor electronic device that can be used for amplification and switching purposes.

XII PHYSICS INSTRUMENTS] CHAPTER NO. 15 [ELECTRICAL MEASURING MUHAMMAD AFFAN KHAN LECTURER PHYSICS, AKHSS, K

XII PHYSICS INSTRUMENTS] CHAPTER NO. 15 [ELECTRICAL MEASURING MUHAMMAD AFFAN KHAN LECTURER PHYSICS, AKHSS, K XII PHYSICS MUHAMMAD AFFAN KHAN LECTURER PHYSICS, AKHSS, K affan_414@live.com https://promotephysics.wordpress.com [ELECTRICAL MEASURING INSTRUMENTS] CHAPTER NO. 15 MOVING COIL GALVANOMETER An electrical

More information

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS ANALOG Metering devices Provides monotonous (continuous) movement. ELECTRICAL MEASURING INSTRUMENTS ANALOG METERS A d Arsonval galvanometer (Moving

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

2. Meter Measurements and Loading Effects in Resistance Circuits

2. Meter Measurements and Loading Effects in Resistance Circuits 2. Meter Measurements and Loading Effects in Resistance Circuits 2.1. Purpose 1. To measure and predict the affects of multimeter(s) on a circuit when measuring electrical quantities. 2. To make use of

More information

Series-Parallel Circuits

Series-Parallel Circuits Series-Parallel Circuits INTRODUCTION A series-parallel configuration is one that is formed by a combination of series and parallel elements. A complex configuration is one in which none of the elements

More information

Sine waves by far the most important form of alternating quantity important properties are shown below

Sine waves by far the most important form of alternating quantity important properties are shown below AC DC METERS 1 Sine waves by far the most important form of alternating quantity important properties are shown below 2 Average value of a sine wave average value over one (or more) cycles is clearly zero

More information

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Fundamentals of Electric Circuits Chapter 2. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Fundamentals of Electric Circuits Chapter 2 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Overview This chapter will introduce Ohm s law: a central concept

More information

ELE.B: Original Assignment Resistors in Series Classwork Homework

ELE.B: Original Assignment Resistors in Series Classwork Homework ELE.B: Original Assignment Resistors in Series Classwork 1. A 3 Ω resistor is connected in series to a 6 Ω resistor and a 12-V battery. What is the current in each of the resistors? What is the voltage

More information

Practical 2.2 EXTENSION OF THE RANGES OF ELECTRICAL MEASURING DEVICES

Practical 2.2 EXTENSION OF THE RANGES OF ELECTRICAL MEASURING DEVICES Practical. EXTENSION OF THE RANGES OF ELECTRICAL MEASURING DEVICES September 8, 07 Introduction An important characteristic of the electrical instrument is its internal resistance R instr. During the measurements

More information

Measurement of Resistance and Potentiometers

Measurement of Resistance and Potentiometers Electrical Measurements International Program Department of Electrical Engineering UNIVERSITAS INDONESIA Measurement of Resistance and Potentiometers Jahroo Renardi Lecturer : Ir. Chairul Hudaya, ST, M.Eng.,

More information

EE Chapter 7 Measuring Instruments

EE Chapter 7 Measuring Instruments EE 2145230 Chapter 7 Measuring Instruments 7.1 Meter Movements The basic principle of many electric instruments is that of the galvanometer. This is a device which reacts to minute electromagnetic influences

More information

Exercise 1: The DC Ammeter

Exercise 1: The DC Ammeter Exercise 1: The DC Ammeter EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine current by using a basic meter movement. You will verify ammeter operation by measuring

More information

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT PSPM II 2005/2006 NO. 3 3. (a) Write Kirchhoff s law for the conservation of energy. FIGURE 2 (b) A circuit of two batteries and two resistors is

More information

a) b) c) d) 0.01.

a) b) c) d) 0.01. 1. A galvanometer is an electromechanical device, it concerts: a) Mechanical energy into electrical energy. b) Electrical energy into mechanical energy. c) Elastic energy into electrical energy. d) Electromagnetic

More information

E 1 Ι 1 R 1 R 2 Ι 3 R 3 E 2 Ι 2

E 1 Ι 1 R 1 R 2 Ι 3 R 3 E 2 Ι 2 1 (a) A student has been asked to make an electric heater. The heater is to be rated as 12 V 60 W, and is to be constructed of wire of diameter 0.54 mm. The material of the wire has resistivity 4.9 x 10

More information

BASIC ELECTRICAL Measuring Instruments and Test Equipment H.H. Sheik Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E

BASIC ELECTRICAL Measuring Instruments and Test Equipment H.H. Sheik Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E BASIC ELECTRICAL Measuring Instruments and Test Equipment H.H. Sheik Sultan Tower (0) Floor Corniche Street Abu Dhabi U.A.E www.ictd.ae ictd@ictd.ae Course Introduction: This course covers the principles

More information

A.C voltmeters using rectifier

A.C voltmeters using rectifier Lecture 5 A.C voltmeters using rectifier The PMMC movement used in d.c. voltmeters can be effectively used in a.c. voltmeters. The rectifier is used to convert a.c. voltage to be measured, to d.c. This

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

CK-12 Physics Concepts - Intermediate Answer Key

CK-12 Physics Concepts - Intermediate Answer Key Chapter 19: Electrical Circuits 19.1 Series Circuits CK-12 Physics Concepts - Intermediate Answer Key 1. There are three 20.0 Ohm resistors connected in series across a 120 V generator. a. What is the

More information

Experiment 45. Three-Phase Circuits. G 1. a. Using your Power Supply and AC Voltmeter connect the circuit shown OBJECTIVE

Experiment 45. Three-Phase Circuits. G 1. a. Using your Power Supply and AC Voltmeter connect the circuit shown OBJECTIVE Experiment 45 Three-Phase Circuits OBJECTIVE To study the relationship between voltage and current in three-phase circuits. To learn how to make delta and wye connections. To calculate the power in three-phase

More information

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters

Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Physics 227: Lecture 11 Circuits, KVL, KCL, Meters Lecture 10 review: EMF ξ is not a voltage V, but OK for now. Physical emf source has V ab = ξ - Ir internal. Power in a circuit element is P = IV. For

More information

ECE215 Lecture 7 Date:

ECE215 Lecture 7 Date: Lecture 7 Date: 29.08.2016 AC Circuits: Impedance and Admittance, Kirchoff s Laws, Phase Shifter, AC bridge Impedance and Admittance we know: we express Ohm s law in phasor form: where Z is a frequency-dependent

More information

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS VISUAL PHYSICS ONLINE Experiment PA41A ELECTRIC CIRCUITS Equipment (see Appendices) 12V DC power supply (battery): multimeter (and/or milliammeter and voltmeter); electrical leads; alligator clips; fixed

More information

2008 D AI Prove that the current density of a metallic conductor is directly proportional to the drift speed of electrons.

2008 D AI Prove that the current density of a metallic conductor is directly proportional to the drift speed of electrons. 2008 D 1. Prove that the current density of a metallic conductor is directly proportional to the drift speed of electrons. 2. A number of identical cells, n, each of emf E, internal resistance r connected

More information

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge

Chapter 20. Circuits. q I = t. (a) (b) (c) Energy Charge Chapter 0 n an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges move. Circuits Within a battery, a chemical reaction occurs

More information

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem Name of the faculty: GYANENDRA KUMAR YADAV Discipline: APPLIED SCIENCE(C.S.E,E.E.ECE) Year : 1st Subject: FEEE Lesson Plan Lesson Plan Duration: 31 weeks (from July, 2018 to April, 2019) Week Theory Practical

More information

SF026: PAST YEAR UPS QUESTIONS

SF026: PAST YEAR UPS QUESTIONS CHAPTER 3: ELECTRIC CURRENT AND DIRECT-CURRENT CIRCUITS UPS SEMESTER 2 2011/2012 1. (a) (i) What is meant by electrical resistivity? (ii) Calculate the resistance of an iron wire of uniform diameter 0.8

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

Analog Multimeter. household devices.

Analog Multimeter. household devices. 1 Analog Multimeter A multimeter or a multitester, a.k.a.vom (volt-ohmmilliammeter), is an electronic measuring instrument that combines several measurement functions in one unit. A typical multimeter

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

Pre-Laboratory Assignment

Pre-Laboratory Assignment Measurement of Electrical Resistance and Ohm's Law PreLaboratory Assignment Read carefully the entire description of the laboratory and answer the following questions based upon the material contained

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 20 Electric Circuits 1 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges

More information

Electronic Instrument Disadvantage of moving coil meter Low input impedance High loading error for low-voltage range voltmeter

Electronic Instrument Disadvantage of moving coil meter Low input impedance High loading error for low-voltage range voltmeter EIE 240 Electrical and Electronic Measurement Class 6, February 20, 2015 1 Electronic Instrument Disadvantage of moving coil meter Low input impedance High loading error for low-voltage range voltmeter

More information

REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A. Topic and Description NIDA Lesson CARD #

REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A. Topic and Description NIDA Lesson CARD # REQUIRED SKILLS AND KNOWLEDGE UEENEEE104A KS01-EE104A Direct current circuits T1 Topic and Description NIDA Lesson CARD # Basic electrical concepts encompassing: electrotechnology industry static and current

More information

10Vdc. Figure 1. Schematics for verifying Kirchhoff's Laws

10Vdc. Figure 1. Schematics for verifying Kirchhoff's Laws ECE 231 Laboratory Exercise 2 Laboratory Group (Names) OBJECTVE Verify Kirchhoff s voltage law Verify Kirchhoff s current law Gain experience in using both an ammeter and voltmeter Construct two (2) circuits

More information

Entry Level Assessment Blueprint Electronics

Entry Level Assessment Blueprint Electronics Entry Level Assessment Blueprint Electronics Test Code: 3034 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Safety Demonstrate understanding of SDS Exhibit understanding of ESD

More information

Field - Effect Transistor

Field - Effect Transistor Page 1 of 6 Field - Effect Transistor Aim :- To draw and study the out put and transfer characteristics of the given FET and to determine its parameters. Apparatus :- FET, two variable power supplies,

More information

Practical 2.1 BASIC ELECTRICAL MEASUREMENTS AND DATA PROCESSING

Practical 2.1 BASIC ELECTRICAL MEASUREMENTS AND DATA PROCESSING Practical 2.1 BASIC ELECTRICAL MEASUREMENTS AND DATA PROCESSING September 6, 2017 1 Introduction To measure electrical quantities one uses electrical measuring instruments. There are three main quantities

More information

Basic Electronics. Chapter 2, 3A (test T5, T6) Basic Electrical Principles and the Functions of Components. PHYS 401 Physics of Ham Radio

Basic Electronics. Chapter 2, 3A (test T5, T6) Basic Electrical Principles and the Functions of Components. PHYS 401 Physics of Ham Radio Basic Electronics Chapter 2, 3A (test T5, T6) Basic Electrical Principles and the Functions of Components Figures in this course book are reproduced with the permission of the American Radio Relay League.

More information

ELECTRICAL MEASUREMENTS

ELECTRICAL MEASUREMENTS R10 Set No: 1 1. a) Derive the expression for torque equation for a moving iron attraction type instrument and comment up on the nature of scale [8] b) Define the terms current sensitivity, voltage sensitivity

More information

Electronics Review 1 Cornerstone Electronics Technology and Robotics II Week 1

Electronics Review 1 Cornerstone Electronics Technology and Robotics II Week 1 Electronics Review 1 Cornerstone Electronics Technology and Robotics II Week 1 Administration: o Prayer o Welcome back o Review Quiz 1 Review: o Reading meters: When a current or voltage value is unknown,

More information

Unijunction Transistor (Volt-Ampere Characteristics)

Unijunction Transistor (Volt-Ampere Characteristics) Page 1 of 5 Unijunction Transistor (Volt-Ampere Characteristics) Aim :- To draw the volt-ampere characteristics of the unijunction transistor and to find the UJT pameters. Apparatus :- UJT, two variable

More information

electronics fundamentals

electronics fundamentals electronics fundamentals circuits, devices, and applications THOMAS L. FLOYD DAVID M. BUCHLA chapter 6 Identifying series-parallel relationships Most practical circuits have combinations of series and

More information

Forces and Electrical Charges

Forces and Electrical Charges CHAPTER 7 BLM 3-8 Forces and Electrical Charges Goal Review your knowledge of electric charge and its interaction with conductors, insulators, and electroscopes. Answer the questions that follow. 1. Classify

More information

Ohm's Law and the Measurement of Resistance

Ohm's Law and the Measurement of Resistance Ohm's Law and the Measurement of Resistance I. INTRODUCTION An electric current flows through a conductor when a potential difference is placed across its ends. The potential difference is generally in

More information

Note: 1. All the students must strictly follow all the safety precautions. 2. In case of any question or concern, please contact LAB INSTRUCTOR or TA.

Note: 1. All the students must strictly follow all the safety precautions. 2. In case of any question or concern, please contact LAB INSTRUCTOR or TA. UNIVERSITY OF WATERLOO ELECTRICAL & COMPUTER ENGINEERING DEPARTMENT FALL 2006 E&CE 261: Energy Systems and Components EXPERIMENT 1: THREE-PHASE SYSTEMS Contents covered in this laboratory exercise: 1.

More information

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward

Emitter base bias. Collector base bias Active Forward Reverse Saturation forward Forward Cut off Reverse Reverse Inverse Reverse Forward SEMICONDUCTOR PHYSICS-2 [Transistor, constructional characteristics, biasing of transistors, transistor configuration, transistor as an amplifier, transistor as a switch, transistor as an oscillator] Transistor

More information

RADIO AMATEUR EXAM GENERAL CLASS

RADIO AMATEUR EXAM GENERAL CLASS RAE-Lessons by 4S7VJ 1 CHAPTER-7 RADIO AMATEUR EXAM GENERAL CLASS MEASURMENTS By 4S7VJ 7.1 TEST EQUIPMENT & MEASUREMENTS Correct operation of amateur radio equipment involves measurements to ensure optimum

More information

Laboratory Exercise - Seven

Laboratory Exercise - Seven Basic D.C. AVIM 121 Lab 7 Page 1 of 9 rev. 08.09 Laboratory Exercise - Seven Objectives Determine milliammeter equivalent resistance. Calculate and apply meter shunts and multipliers. Determine voltmeter

More information

NODIA AND COMPANY. Model Test Paper - I GATE Electrical & Electronic Measurement. Copyright By Publishers

NODIA AND COMPANY. Model Test Paper - I GATE Electrical & Electronic Measurement. Copyright By Publishers No part of this publication may be reproduced or distributed in any form or any means, electronic, mechanical, photocopying, or otherwise without the prior permission of the author. Model Test Paper -

More information

Contents. Acknowledgments. About the Author

Contents. Acknowledgments. About the Author Contents Figures Tables Preface xi vii xiii Acknowledgments About the Author xv xvii Chapter 1. Basic Mathematics 1 Addition 1 Subtraction 2 Multiplication 2 Division 3 Exponents 3 Equations 5 Subscripts

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: Voltage, current, and power. In the simplest

More information

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. By substituting the definition for resistance into the formula for conductance, the reciprocal formula for resistance in parallel circuits is obtained: In parallel circuits, there are junctions where two

More information

Application of diode as Clippers

Application of diode as Clippers Application of diode as Clippers Clippers have ability to clip/remove off a portion of the input signal without distorting the remaining part of the alternating waveform. HWR is simplest form of clippers.

More information

Name: Period: Date: 2. In the circuit below, n charge carriers pass the point P in a time t. Each charge carrier has charge q.

Name: Period: Date: 2. In the circuit below, n charge carriers pass the point P in a time t. Each charge carrier has charge q. Name: Period: Date: IB-1 Practice Electrical Currents, Resistance, and Circuits Multiple Choice Questions 1. In the circuit below, which meter is not correctly connected? A 1 3 A 2 4 A. 1 B. 2 C. 3 D.

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Resistance and Ohm s Law Textbook pages 290 301 Section 8.3 Summary Before You Read Do you think electrons can move through all conducting substances equally well? Give your reasons why or why not on the

More information

RESISTANCE & OHM S LAW (PART I

RESISTANCE & OHM S LAW (PART I RESISTANCE & OHM S LAW (PART I and II) Objectives: To understand the relationship between potential and current in a resistor and to verify Ohm s Law. To understand the relationship between potential and

More information

SCRIPT. Voltage Dividers

SCRIPT. Voltage Dividers SCRIPT Hello friends in our earlier discussion we talked about series resistive circuits, when connected in series, resistors form a "string" in which there is only one path for current. Ohm's law can

More information

Resistance and Ohm s Law

Resistance and Ohm s Law Need to know info: Resistance and Ohm s Law 1. slows down the flow of electrons and transforms electrical energy. 2. is measured in ohms.we calculate resistance by applying a voltage and measuring the

More information

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 3

ME411 Engineering Measurement & Instrumentation. Winter 2017 Lecture 3 ME411 Engineering Measurement & Instrumentation Winter 2017 Lecture 3 1 Current Measurement DC or AC current Use of a D Arsonval Meter - electric current carrying conductor passing through a magnetic field

More information

FIELD- EFFECT TRANSISTORS: MOSFETS

FIELD- EFFECT TRANSISTORS: MOSFETS FIELD- EFFECT TRANSISTORS: MOSFETS LAB 8: INTRODUCTION TO FETS AND USING THEM AS CURRENT CONTROLLERS As discussed in the last lab, transistors are the basic devices providing control of large currents

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW

EE301 - SERIES CIRCUITS, KIRCHHOFF S VOLTAGE LAW Learning Objectives a. Identify elements that are connected in series b. State and apply KVL in analysis of a series circuit c. Determine the net effect of series-aiding and series-opposing voltage sources

More information

Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation

Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation Bhoj Reddy Engineering College for Women, Hyderabad Department of Electronics and Communication Engineering Electrical and Electronics Instrumentation Academic Year: 2016-17 III B Tech II Semester Branch:

More information

Experiment #3 Kirchhoff's Laws

Experiment #3 Kirchhoff's Laws SAN FRANCSC STATE UNVERSTY ELECTRCAL ENGNEERNG Kirchhoff's Laws bjective To verify experimentally Kirchhoff's voltage and current laws as well as the principles of voltage and current division. ntroduction

More information

Physics 201 Laboratory: Analog and Digital Electronics. I-0. Introductory Notes

Physics 201 Laboratory: Analog and Digital Electronics. I-0. Introductory Notes Physics 201 Laboratory: Analog and Digital Electronics -0. ntroductory Notes Definitions of circuit and current. Current is the flow of charge. We may think of electrons flowing through a wire as a current

More information

Radar. Television. Radio. Electronics. lira" ,g;tif. Sr REVISED 1967 UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY

Radar. Television. Radio. Electronics. lira ,g;tif. Sr REVISED 1967 UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY Electronics Radio Television,g;tif Radar UNITED ELECTRONICS LABORATORIES LOUISVILLE KENTUCKY lira" Sr REVISED 1967 COPYRIGHT 1956 UNITED ELECTRONICS LABORATORIES DIRECT -CURRENT CIRCUITS -OHM'S LAW ASSIGNMENT

More information

AC/DC ELECTRONICS LABORATORY

AC/DC ELECTRONICS LABORATORY Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model EM-8656 012-05892A 1/96 AC/DC ELECTRONICS LABORATORY 1995 PASCO scientific

More information

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter...

Table of Contents...2. About the Tutorial...6. Audience...6. Prerequisites...6. Copyright & Disclaimer EMI INTRODUCTION Voltmeter... 1 Table of Contents Table of Contents...2 About the Tutorial...6 Audience...6 Prerequisites...6 Copyright & Disclaimer...6 1. EMI INTRODUCTION... 7 Voltmeter...7 Ammeter...8 Ohmmeter...8 Multimeter...9

More information

Electricity. Electric Circuits. Real Investigations in Science and Engineering

Electricity. Electric Circuits. Real Investigations in Science and Engineering Electricity Electric Circuits Real Investigations in Science and Engineering A1 A2 Overview Chart for Investigations Electric Circuits Investigation Key Question Summary Learning Goals Vocabulary What

More information

Električni krugovi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved.

Električni krugovi. Copyright 2015 John Wiley & Sons, Inc. All rights reserved. Električni krugovi 20.1 Electromotive Force and Current In an electric circuit, an energy source and an energy consuming device are connected by conducting wires through which electric charges move. 20.1

More information

Chapter 1: DC circuit basics

Chapter 1: DC circuit basics Chapter 1: DC circuit basics Overview Electrical circuit design depends first and foremost on understanding the basic quantities used for describing electricity: voltage, current, and power. In the simplest

More information

BEST BMET CBET STUDY GUIDE MODULE ONE

BEST BMET CBET STUDY GUIDE MODULE ONE BEST BMET CBET STUDY GUIDE MODULE ONE 1 OCTOBER, 2008 1. The phase relation for pure capacitance is a. current leads voltage by 90 degrees b. current leads voltage by 180 degrees c. current lags voltage

More information

FCC Technician License Course

FCC Technician License Course FCC Technician License Course 2018-2022 FCC Element 2 Technician Class Question Pool Presented by: Tamiami Amateur Radio Club (TARC) WELCOME To the SECOND of 3, 4-hour classes presented by TARC to prepare

More information

Home Map Projects Construction Soldering Study Components Symbols Membership FAQ Links

Home Map Projects Construction Soldering Study Components Symbols Membership FAQ Links Home Map Projects Construction Soldering Study Components Symbols Membership FAQ Links Multimeters Choosing Digital Analogue Voltage & Current Resistance Diode Transistor Next Page: Resistance Also See:

More information

EN วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 2 พ นฐานวงจรไฟฟ า

EN วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 2 พ นฐานวงจรไฟฟ า EN2042102 วงจรไฟฟ าและอ เล กทรอน กส Circuits and Electronics บทท 2 พ นฐานวงจรไฟฟ า สาขาว ชาว ศวกรรมคอมพ วเตอร คณะว ศวกรรมศาสตร มหาว ทยาล ยเทคโนโลย ราชมงคลพระนคร INTRODUCTION Two types of current are readily

More information

Basic Electronics. Chapter 2 Basic Electrical Principles and the Functions of Components. PHYS 401 Physics of Ham Radio

Basic Electronics. Chapter 2 Basic Electrical Principles and the Functions of Components. PHYS 401 Physics of Ham Radio Basic Electronics Chapter 2 Basic Electrical Principles and the Functions of Components Figures in this course book are reproduced with the permission of the American Radio Relay League. This booklet was

More information

Entry Level Assessment Blueprint Electronics Technology

Entry Level Assessment Blueprint Electronics Technology Blueprint Test Code: 4135 / Version: 01 Specific Competencies and Skills Tested in this Assessment: Safety Practices Demonstrate safe working procedures Explain the purpose of OSHA and how it promotes

More information

The Fundamentals of Circuits

The Fundamentals of Circuits The Fundamentals of Circuits Now that we have an understanding of current and resistance, we re ready to start studying basic direct current (DC)circuits. We ll start with resistor circuits, and then move

More information

NZQA registered unit standard version 3 Page 1 of 5. Demonstrate and apply fundamental knowledge of electrical circuit engineering principles

NZQA registered unit standard version 3 Page 1 of 5. Demonstrate and apply fundamental knowledge of electrical circuit engineering principles Page 1 of 5 Title Demonstrate and apply fundamental knowledge of electrical circuit engineering principles Level 3 Credits 15 Purpose This unit standard covers general fundamental electrical circuit theory

More information

Experiment 6. Electromagnetic Induction and transformers

Experiment 6. Electromagnetic Induction and transformers Experiment 6. Electromagnetic Induction and transformers 1. Purpose Confirm the principle of electromagnetic induction and transformers. 2. Principle The PASCO scientific SF-8616 Basic Coils Set and SF-8617

More information

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The 1 Lab 1a Input and Output Impedance Fig. 1: (a) Complicated circuit. (b) Its Thévenin equivalent Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The circuit

More information

Electric Circuits Notes 1 Circuits

Electric Circuits Notes 1 Circuits Electric Circuits Notes 1 Circuits In the last chapter we examined how static electric charges interact with one another. These fixed electrical charges are not the same as the electricity that we use

More information

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt

Electric Circuits. Alternate Units. V volt (V) 1 V = 1 J/C V = E P /q V = W/q. Current I ampere (A) 1 A = 1 C/s V = IR I = Δq/Δt Electric Circuits Quantity Symbol Units Charge Q,q coulomb (C) Alternate Units Formula Electric Potential V volt (V) 1 V = 1 J/C V = E P /q V = W/q Work, energy W, E P joule (J) W = qv E P = qv Current

More information

EXPERIMENT 10: Power Amplifiers

EXPERIMENT 10: Power Amplifiers EXPERIMENT 10: Power Amplifiers 10.1 Examination Of Class A Amplifier 10.2 Examination Of Class B Amplifier 10.3 Examination Of Class C Amplifier BASIC ELECTRONICS set 15.1 INTRODUCTION There are classes

More information

MODERN ACADEMY FOR ENGINEERING & TECHNOLOGY IN MAADI

MODERN ACADEMY FOR ENGINEERING & TECHNOLOGY IN MAADI MODERN ACADEMY FOR ENGINEERING & TECHNOLOGY IN MAADI 1 2/25/2018 ELECTRONIC MEASUREMENTS ELC_314 2 2/25/2018 Text Books David A. Bell, A. Foster Chin, Electronic Instrumentation & Measurements, 2 nd Ed.,

More information

Generic Lab Manual: An overview on the major functionalities of the equipment.

Generic Lab Manual: An overview on the major functionalities of the equipment. Generic Lab Manual: This being a generic lab manual is not a complete description or tutorial on everything that the test equipment is capable of measuring. But rather a quick guide on how each piece of

More information

ELEXBO A-Car-Engineering

ELEXBO A-Car-Engineering 1 Task: -Construct successively all schematic diagrams and describe your findings. -Describe also the differences between the previous electrical diagram. Construct this electrical circuit and describe

More information

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance)

SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance) SAMPLE OF THE STUDY MATERIAL PART OF CHAPTER 2 Measurements of Basic Electrical Quantities 1 (Current Voltage, Resistance) 2.1 Indicating Instruments Analog Instruments: An analog device is one in which

More information

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors

EE 201 Lab 1. Meters, DC sources, and DC circuits with resistors Meters, DC sources, and DC circuits with resistors 0. Prior to lab Read through the lab and do as many of the calculations as possible. Then, learn how to determine resistance values using the color codes.

More information

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c

CURRENT ELECTRICITY. 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour Ans: c CURRENT ELECTRICITY 1. The S.I. unit of power is (a) Henry (b) coulomb (c) watt (d) watt-hour 2. Electric pressure is also called (a) resistance (b) power (c) voltage (d) energy 3. The substances which

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

555 Morse Code Practice Oscillator Kit (draft 1.1)

555 Morse Code Practice Oscillator Kit (draft 1.1) This kit was designed to be assembled in about 30 minutes and accomplish the following learning goals: 1. Learn to associate schematic symbols with actual electronic components; 2. Provide a little experience

More information

Engineering Laboratory Exercises (Electric Circuits Module) Prepared by

Engineering Laboratory Exercises (Electric Circuits Module) Prepared by Engineering 1040 Laboratory Exercises (Electric Circuits Module) Prepared by Eric W. Gill FALL 2008 2 EXP 1040-EL1 VOLTAGE, CURRENT, RESISTANCE AND POWER PURPOSE To (i) investigate the relationship between

More information

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Circuits Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Preview Looking Ahead: Analyzing Circuits Practical circuits consist

More information

Direct Current Circuits

Direct Current Circuits PC1143 Physics III Direct Current Circuits 1 Objectives Apply Kirchhoff s rules to several circuits, solve for the currents in the circuits and compare the theoretical values predicted by Kirchhoff s rule

More information

D ELCO. electronic parts AUTO RADIO BULLETIN. Connect Signal Generator to

D ELCO. electronic parts AUTO RADIO BULLETIN. Connect Signal Generator to D ELCO electronic parts AUTO RADIO BULLETIN Bulletin 6D-864 Date 10-15-56 Page 1 FIRST ISSUE SUBJECT: SERVICE INSTRUCTIONS - CHEVROLET CUSTOM DELUXE WITH PUSH BUTTON TUNING - MODEL 987575 GENERAL M O U

More information

ERS. HOW to USE / Igh VA 41U/14 -TUBE JOHN F. RIDER. a RIDER pub 1 i c a i i o n PANLETER. Installation & Repair. INIUSTRIAL Applications TRANSMITTER

ERS. HOW to USE / Igh VA 41U/14 -TUBE JOHN F. RIDER. a RIDER pub 1 i c a i i o n PANLETER. Installation & Repair. INIUSTRIAL Applications TRANSMITTER HOW to USE / ERS by JOHN F. RIDER TV & RADIO Servicing TRANSMITTER Igh VA 41U/14 -TUBE PANLETER 1AfitTER Installation & Repair N. LABORATORY Practice INIUSTRIAL Applications a RIDER pub 1 i c a i i o n

More information

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits

SECTION 2 Basic Electric Circuits. UNIT 6 Series Circuits SECTION 2 Basic Electric Circuits UNIT 6 Series Circuits OUTLINE 6-1 Series Circuits 6-2 Voltage Drops in a Series Circuit 6-3 Resistance in a Series Circuit 6-4 Calculating Series Circuit Values 6-5 Solving

More information

Lesson 3: Electronics & Circuits

Lesson 3: Electronics & Circuits Lesson 3: Electronics & Circuits Preparation for Amateur Radio Technician Class Exam Topics Review Ohm s Law Energy & Power Circuits Inductors & Inductance Capacitors & Capacitance Analog vs Digital Exam

More information