Trustworthy Positioning for Next Generation Intelligent Transport Systems Ahmed El-Mowafy

Size: px
Start display at page:

Download "Trustworthy Positioning for Next Generation Intelligent Transport Systems Ahmed El-Mowafy"

Transcription

1 Trustworthy Positioning for Next Generation Intelligent Transport Systems Ahmed El-Mowafy

2 Contents Background on ITS and C-ITS Requirements Challenges RAIM Test and Results Utilisation Workshop, Sydney, 6 Feb

3 ITS objectives Make transportation safer, more efficient and reduce emissions Safety Efficiency Emissions Utilisation Workshop, Sydney, 6 Feb

4 C-ITS V2V and V2I Source: Austroads, 2010 Utilisation Workshop, Sydney, 6 Feb

5 C-ITS Communication using DSRC. DSRC-based range-rating measurements can enable GNSS/DSRC cooperative positioning. VANET (Vehicular ad hoc network) Source: Internet Utilisation Workshop, Sydney, 6 Feb

6 Satellite positioning accuracy requirements Road level (few m) Lane-level (< 1m) More accuracy is needed Where-in-lane level (sub-m) Current systems mainly use SPS (Standard Positioning Service). SPS gives 1-5 m accuracy - not suitable for lane-level precision. Use of augmentation techniques, such as SBAS has the potential to offer the required accuracy. Most imported C-ITS uses SBAS technology. Utilisation Workshop, Sydney, 6 Feb

7 But: Is it only accuracy we are interested in! Utilisation Workshop, Sydney, 6 Feb

8 Ex: Curtin University Driverless Buss Utilisation Workshop, Sydney, 6 Feb

9 Accuracy VS Integrity Alert to driver/user PL AL Accuracy Integrity Utilisation Workshop, Sydney, 6 Feb

10 Challenges Standards? need to be set based on performance requirements. Complete map of risks (e.g. collision types, faults, etc.) and vulnerabilities (system errors, interference, jamming spoofing, etc.) and identify their probabilities. Integration of sensors (GNSS is a main component but not alone) Cost Communications Application dependence. Technology. Utilisation Workshop, Sydney, 6 Feb

11 Ex: Vulnerabilities due to the work environment Urban environment: Loss of lock Heavy multipath Non Line of Sight (NLOS) Frequent cycle-slips Example of NLOS Mitigations: Multipath mitigation at the antenna 3D city-models ray-tracing algorithms SNR monitoring Non-Gaussian error models VANET CIM concept Use 3D citymodels Utilisation Workshop, Sydney, 6 Feb

12 Characterisation of errors (ex: clock corrections) Histograms Q-Q CDF PRN16 PRN 29 PRN30 Utilisation Workshop, Sydney, 6 Feb

13 Accuracy GNSS Positioning Methods 1m 80cm 60cm DGNSS SBAS 40cm 20cm 10cm 4cm 10km RTK PPP 100km 1,000km 10,000km Baseline length Worldwide Utilisation Workshop, Sydney, 6 Feb

14 SBAS Improved positioning: sub-m (DGPS L1, L1/L5) deci-metre (PPP) Integrity monitoring: error bounds for PL Vulnerabilities linked to hardware, software and data link with the satellites GEO Satellites SBAS Ionosphere Troposphere SBAS Reference stations Utilisation Workshop, Sydney, 6 Feb

15 Integrity monitoring Advanced RAIM (ARAIM) Fault Detection & Exclusion based on statistical hypothesis testing PLs computation based on estimated impact of faults on position solution Determine Protection Levels (PLs) as safety bounds to positioning errors Take into account risk of anomalies/faults PLs must be smaller than the Alert Limits (ALs) to guarantee availability Utilisation Workshop, Sydney, 6 Feb

16 ARAIM For standalone vehicle Multi-sensor V2V and V2I. AT CT Multi-sensor integration Utilisation Workshop, Sydney, 6 Feb

17 Testing Ex. Kinematic test in Tokyo (with TUMSAT) Trimble RTK (10Hz) GPS, GLONASS and BeiDou a Bosch-consumer grade MEMS IMU The heading error of this IMU ranged from -2 o to 5 o, can accumulate to 10 o after 30 min if left uncalibrated. Speed sensor: s = 5 cm/s GNSS-Doppler: s = 10 cm/s. Reference : PPK & POS/LV Utilisation Workshop, Sydney, 6 Feb

18 Testing: challenging environment Utilisation Workshop, Sydney, 6 Feb

19 Integrity prediction Identify critical locations on the map, at different times of the day Integrity unavailable: red points (PL>AL) Along Track Cross Track Utilisation Workshop, Sydney, 6 Feb

20 Actual data: Flow chart of sensor fusion (RTK, IMU, odometer) 1 RTK available Yes Computes positions using RTK No Doppler available Yes 2 3 Meets GNSS Velocity Conditions No No Meets GNSS heading Conditions Yes Computes heading from GNSS Doppler No Yes Compute velocity from GNSS Doppler Compute positions from GNSS velocity Update heading of the IMU (GNSS & ZUPT) Computes positions from Speed of Speed sensor and IMU heading Output position Utilisation Workshop, Sydney, 6 Feb

21 Protection levels RTK PL AT,i = K fa, i σ δat,i + K md,i σ AT,i + (cos θ a 1 T S i b o ) 2 + (sin θ a 2 T S i b o ) 2 PL CT,i = K fa, i σ δct,i + K md,i σ CT,i + (sin θ a 1 T S i b o ) 2 + (cos θ a 2 T S i b o ) 2 IMU+odometre PL AT,i = K md,i σ AT,i + (cos θ a 1 T S b θimu b v ) 2 + (sin θ a 2 T S b θimu b v ) 2 biases PL CT,i = K md,i σ CT,i + (sin θ a 1 T S b θimu b v ) 2 + (cos θ a 2 T S b θimu b v ) 2 Doppler PL AT,i = K md,i σ AT,i + (cos θ a 1 T S b ve b vn ) 2 + (sin θ a 2 T S b ve b vn ) 2 PL CT,i = K md,i σ CT,i + (sin θ a 1 T S b ve b vn ) 2 + (cos θ a 2 T S b ve b vn ) 2 Utilisation Workshop, Sydney, 6 Feb

22 RTK Results * b = G+R+B AT CT G+R G+B G Utilisation Workshop, Sydney, 6 Feb

23 CT Combined * b = PL_AT (All) Time(Doppler) (sec) PL_AT Time (sec) Utilisation Workshop, Sydney, 6 Feb err_ct (RTK) err_at (IMU+odo) Time (sec) Time (sec) PL_CT (RTK) err_at (Doppler) PL_AT (IMU+odo) err_ct (All) PL & Error (m) PL & Error (m) PL_CT (All) 0.5 PL & Error (m) PL & Error (m) PL & Error (m) err_at (RTK) 0.3 PL & Error (m) IMU+odometer Doppler PL_AT (RTK) Time (sec) 0.5 RTK err_at (All) PL & Error (m) All sensors PL & Error (m) AT Time (sec) PL_CT (Doppler) err_ct (Doppler) PL_CT (IMU+odo) Time (sec) err_ct (IMU+odo) Time (sec) 23

24 Summary ITS / C-ITS might be the norm in the near future. Real-time safety related applications in ITS/C-ITS require highly trustworthy positioning: i.e. integrity monitoring. The technology might not be the problem: cost and interoperability might be. Integrity Monitoring (IM) is challenging IM can be achieved, but which standards? Applications? Utilisation Workshop, Sydney, 6 Feb

25 Thank you Questions Ahmed El-Mowafy Spatial Sciences 25

Reliability Estimation for RTK-GNSS/IMU/Vehicle Speed Sensors in Urban Environment

Reliability Estimation for RTK-GNSS/IMU/Vehicle Speed Sensors in Urban Environment Laboratory of Satellite Navigation Engineering Reliability Estimation for RTK-GNSS/IMU/Vehicle Speed Sensors in Urban Environment Ren Kikuchi, Nobuaki Kubo (TUMSAT) Shigeki Kawai, Ichiro Kato, Nobuyuki

More information

Intelligent Transport Systems and GNSS. ITSNT 2017 ENAC, Toulouse, France 11/ Nobuaki Kubo (TUMSAT)

Intelligent Transport Systems and GNSS. ITSNT 2017 ENAC, Toulouse, France 11/ Nobuaki Kubo (TUMSAT) Intelligent Transport Systems and GNSS ITSNT 2017 ENAC, Toulouse, France 11/14-17 2017 Nobuaki Kubo (TUMSAT) Contents ITS applications in Japan How can GNSS contribute to ITS? Current performance of GNSS

More information

Webinar. 9 things you should know about centimeter-level GNSS accuracy

Webinar. 9 things you should know about centimeter-level GNSS accuracy Webinar 9 things you should know about centimeter-level GNSS accuracy Webinar agenda 9 things you should know about centimeter-level GNSS accuracy 1. High precision GNSS challenges 2. u-blox F9 technology

More information

Introduction to GNSS Base-Station

Introduction to GNSS Base-Station Introduction to GNSS Base-Station Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp Slide : 1 Introduction GPS or GNSS observation

More information

Assessing & Mitigation of risks on railways operational scenarios

Assessing & Mitigation of risks on railways operational scenarios R H I N O S Railway High Integrity Navigation Overlay System Assessing & Mitigation of risks on railways operational scenarios Rome, June 22 nd 2017 Anja Grosch, Ilaria Martini, Omar Garcia Crespillo (DLR)

More information

High Precision GNSS in Automotive

High Precision GNSS in Automotive High Precision GNSS in Automotive Jonathan Auld, VP Engineering and Safety 6, March, 2018 2 Global OEM Positioning Solutions and Services for Land, Sea, and Air. GNSS in Automotive Today Today the primary

More information

One Source for Positioning Success

One Source for Positioning Success novatel.com One Source for Positioning Success RTK, PPP, SBAS OR DGNSS. NOVATEL CORRECT OPTIMIZES ALL CORRECTION SOURCES, PUTTING MORE POWER, FLEXIBILITY AND CONTROL IN YOUR HANDS. NovAtel CORRECT is the

More information

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning

3D-Map Aided Multipath Mitigation for Urban GNSS Positioning Summer School on GNSS 2014 Student Scholarship Award Workshop August 2, 2014 3D-Map Aided Multipath Mitigation for Urban GNSS Positioning I-Wen Chu National Cheng Kung University, Taiwan. Page 1 Outline

More information

GNSS Low-Cost High-Accuracy Receiver (L-CHAR)

GNSS Low-Cost High-Accuracy Receiver (L-CHAR) GNSS Low-Cost High-Accuracy Receiver (L-CHAR) Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp Slide : 1 High Accuracy Receivers

More information

Precise Positioning with NovAtel CORRECT Including Performance Analysis

Precise Positioning with NovAtel CORRECT Including Performance Analysis Precise Positioning with NovAtel CORRECT Including Performance Analysis NovAtel White Paper April 2015 Overview This article provides an overview of the challenges and techniques of precise GNSS positioning.

More information

GPS-Aided INS Datasheet Rev. 2.6

GPS-Aided INS Datasheet Rev. 2.6 GPS-Aided INS 1 GPS-Aided INS The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO and BEIDOU navigation

More information

Motion & Navigation Solution

Motion & Navigation Solution Navsight Land & Air Solution Motion & Navigation Solution FOR SURVEYING APPLICATIONS Motion, Navigation, and Geo-referencing NAVSIGHT LAND/AIR SOLUTION is a full high performance inertial navigation solution

More information

AUTONOMOUS ISOTROPY-BASED INTEGRITY USING GPS AND GLONASS

AUTONOMOUS ISOTROPY-BASED INTEGRITY USING GPS AND GLONASS ION GNSS 2010 AUTONOMOUS ISOTROPY-BASED INTEGRITY USING GPS AND GLONASS SEPTEMBER 21-24, 2010 - PORTLAND, OREGON SESSION E4: INTEGRITY MONITORING FOR NEXT GENERATION APPLICATIONS M. Azaola D. Calle A.Mozo

More information

MGA Webinar Series : 1 Very Cheap RTK Receivers: Changing the Landscape of Positioning Services

MGA Webinar Series : 1 Very Cheap RTK Receivers: Changing the Landscape of Positioning Services MGA Webinar Series : 1 Very Cheap RTK Receivers: Changing the Landscape of Positioning Services Dinesh Manandhar Center for Spatial Information Science The University of Tokyo Contact Information: dinesh@iis.u-tokyo.ac.jp

More information

Fast convergence of Trimble CenterPoint RTX by regional augmentation

Fast convergence of Trimble CenterPoint RTX by regional augmentation Fast convergence of Trimble CenterPoint RTX by regional augmentation Dr. Ralf Drescher Trimble Terrasat GmbH, Munich EGU General Assembly 2015, Vienna Thursday, 16 April 2015 Outline Introduction CenterPoint

More information

Performance Evaluation of the Effect of QZS (Quasi-zenith Satellite) on Precise Positioning

Performance Evaluation of the Effect of QZS (Quasi-zenith Satellite) on Precise Positioning Performance Evaluation of the Effect of QZS (Quasi-zenith Satellite) on Precise Positioning Nobuaki Kubo, Tomoko Shirai, Tomoji Takasu, Akio Yasuda (TUMST) Satoshi Kogure (JAXA) Abstract The quasi-zenith

More information

Introduction to Advanced RAIM. Juan Blanch, Stanford University July 26, 2016

Introduction to Advanced RAIM. Juan Blanch, Stanford University July 26, 2016 Introduction to Advanced RAIM Juan Blanch, Stanford University July 26, 2016 Satellite-based Augmentation Systems Credit: Todd Walter Receiver Autonomous Integrity Monitoring (556 m Horizontal Error Bound)

More information

Performance Evaluation of Differential Global Navigation Satellite System with RTK Corrections

Performance Evaluation of Differential Global Navigation Satellite System with RTK Corrections IOSR Journal of Electronics and Communication Engineering (IOSR-JECE) e-issn: 2278-2834,p- ISSN: 2278-8735.Volume 9, Issue 2, Ver. VI (Mar - Apr. 2014), PP 43-47 Performance Evaluation of Differential

More information

Precise Positioning... what does it mean? Precise GNSS Positioning Not just a niche technology. Chris Rizos 15/12/15

Precise Positioning... what does it mean? Precise GNSS Positioning Not just a niche technology. Chris Rizos 15/12/15 Precise GNSS Positioning Not just a niche technology Chris Rizos Precise Positioning... what does it mean? 1 Precise Positioning... a spectrum of users... Few mm 1cm 2cm < dm 1dm sub-m Precision agriculture

More information

ATLANS-C. mobile mapping position and orientation solution

ATLANS-C. mobile mapping position and orientation solution mobile mapping position and orientation solution mobile mapping position and orientation solution THE SMALLEST ATLANS-C is a high performance all-in-one position and orientation solution for both land

More information

GPS-Aided INS Datasheet Rev. 3.0

GPS-Aided INS Datasheet Rev. 3.0 1 GPS-Aided INS The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO, QZSS, BEIDOU and L-Band navigation

More information

SSR Technology for Scalable Real-Time GNSS Applications

SSR Technology for Scalable Real-Time GNSS Applications SSR Technology for Scalable Real-Time GNSS Applications Gerhard Wübbena, Jannes Wübbena, Temmo Wübbena, Martin Schmitz Geo++ GmbH 30827 Garbsen, Germany www.geopp.de Abstract SSR Technology for scalable

More information

Inertial Navigation System

Inertial Navigation System Apogee Series ULTIMATE ACCURACY MEMS Inertial Navigation System INS MRU AHRS ITAR Free 0.005 RMS Motion Sensing & Georeferencing APOGEE SERIES makes high accuracy affordable for all surveying companies.

More information

GPS-Aided INS Datasheet Rev. 2.3

GPS-Aided INS Datasheet Rev. 2.3 GPS-Aided INS 1 The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined L1 & L2 GPS, GLONASS, GALILEO and BEIDOU navigation and

More information

ARAIM Fault Detection and Exclusion

ARAIM Fault Detection and Exclusion ARAIM Fault Detection and Exclusion Boris Pervan Illinois Institute of Technology Chicago, IL November 16, 2017 1 RAIM ARAIM Receiver Autonomous Integrity Monitoring (RAIM) uses redundant GNSS measurements

More information

and Vehicle Sensors in Urban Environment

and Vehicle Sensors in Urban Environment AvailabilityImprovement ofrtk GPS GPSwithIMU and Vehicle Sensors in Urban Environment ION GPS/GNSS 2012 Tk Tokyo University it of Marine Si Science and Technology Nobuaki Kubo, Chen Dihan 1 Contents Background

More information

GPS-Aided INS Datasheet Rev. 2.7

GPS-Aided INS Datasheet Rev. 2.7 1 The Inertial Labs Single and Dual Antenna GPS-Aided Inertial Navigation System INS is new generation of fully-integrated, combined GPS, GLONASS, GALILEO, QZSS and BEIDOU navigation and highperformance

More information

Performance Evaluation of Multi-GNSS RTK for Automobiles in Urban Areas

Performance Evaluation of Multi-GNSS RTK for Automobiles in Urban Areas Performance Evaluation of Multi-GNSS RTK for Automobiles in Urban Areas ISGNSS2014 21-24 October, 2014, ICC Jeju, Korea Nobuaki Kubo, Hiroko Tokura, Taro Suzuki (TUMSAT) 1 Contents Current Status of Multi-GNSS

More information

Future GNSS Precision Applications. Stuart Riley

Future GNSS Precision Applications. Stuart Riley Future GNSS Precision Applications Stuart Riley Major Trimble Precision Markets Survey Mostly person portable equipment Construction Machine control and person carried equipment Includes Marine applications

More information

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney

GPS and Recent Alternatives for Localisation. Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney GPS and Recent Alternatives for Localisation Dr. Thierry Peynot Australian Centre for Field Robotics The University of Sydney Global Positioning System (GPS) All-weather and continuous signal system designed

More information

Generation of Consistent GNSS SSR Corrections

Generation of Consistent GNSS SSR Corrections Generation of Consistent GNSS SSR Corrections for Distributed CORS Networks Jannes Wübbena, Martin Schmitz, Gerhard Wübbena Geo++ GmbH 30827 Garbsen, Germany www.geopp.de Abstract Generation of Consistent

More information

Precise Positioning with Smartphones running Android 7 or later

Precise Positioning with Smartphones running Android 7 or later Precise Positioning with Smartphones running Android 7 or later * René Warnant, * Cécile Deprez, + Quentin Warnant * University of Liege Geodesy and GNSS + Augmenteo, Plaine Image, Lille (France) Belgian

More information

Hydrofest The Hydrographic Society in Scotland

Hydrofest The Hydrographic Society in Scotland Hydrofest 2017 The Hydrographic Society in Scotland POSITIONING SYSTEMS Eddie Milne 1. GNSS Positioning 2. Additional Sensors 3. Alternative Positioning 4. Bringing it altogether GNSS = GPS + Glonass +

More information

ADVANCED GNSS ALGORITHMS FOR SAFE AUTONOMOUS VEHICLES

ADVANCED GNSS ALGORITHMS FOR SAFE AUTONOMOUS VEHICLES ION GNSS+ 2017 ADVANCED GNSS ALGORITHMS FOR SAFE AUTONOMOUS VEHICLES SEPTEMBER 29 TH, 2017 ION GNSS+ 2017, PORTLAND, OREGON, USA SESSION A5: Autonomous and Assisted Vehicle Applications Property of GMV

More information

Integrated Navigation System

Integrated Navigation System Integrated Navigation System Adhika Lie adhika@aem.umn.edu AEM 5333: Design, Build, Model, Simulate, Test and Fly Small Uninhabited Aerial Vehicles Feb 14, 2013 1 Navigation System Where am I? Position,

More information

Precise Positioning GNSS Applications

Precise Positioning GNSS Applications Precise Point Positioning: Is the Era of Differential GNSS Positioning Drawing to an End? School of Surveying & Spatial Information Systems, UNSW, Sydney, Australia Chris Rizos 1, Volker Janssen 2, Craig

More information

Assessment of GNSS Ionospheric Scintillation and TEC Monitoring Using the Multi-constellation GPStation-6 Receiver

Assessment of GNSS Ionospheric Scintillation and TEC Monitoring Using the Multi-constellation GPStation-6 Receiver Assessment of GNSS Ionospheric Scintillation and TEC Monitoring Using the Multi-constellation GPStation-6 Receiver Rod MacLeod Regional Manager Asia/Pacific NovAtel Australia Pty Ltd Outline Ionospheric

More information

Future of GNSS Receivers. Éamonn Glennon

Future of GNSS Receivers. Éamonn Glennon Future of GNSS Receivers Éamonn Glennon Future of GNSS Receivers? What have we got now? What do customers want? What does government want? What are the problems with current receivers? What type of receivers?

More information

GPS Application. Global Positioning System. We provide GPS module ODM / OEM service, any GPS receiver you want, we can provide customized services.

GPS Application. Global Positioning System. We provide GPS module ODM / OEM service, any GPS receiver you want, we can provide customized services. GPS Application Global Positioning System We provide GPS module ODM / OEM service, any GPS receiver you want, we can provide customized services. www.win-tec.com.tw sales@win-tec.com.tw GNSS Receiver WGM-303

More information

High Precision Applications with BeiDou

High Precision Applications with BeiDou High Precision Applications with BeiDou Lei HUANG Unicore Communications, Inc May 14, 2013 Contents 1 2 3 4 Background Overview of BeiDou high precision products Applications of BeiDou high precision products

More information

Bring satellites into your lab: GNSS simulators from the T&M expert.

Bring satellites into your lab: GNSS simulators from the T&M expert. Bring satellites into your lab: GNSS simulators from the T&M expert. www.rohde-schwarz.com/gnss-solutions Your challenge GNSS receiver tests can only be conclusive when they are performed under realistic

More information

Multi-Receiver Vector Tracking

Multi-Receiver Vector Tracking Multi-Receiver Vector Tracking Yuting Ng and Grace Xingxin Gao please feel free to view the.pptx version for the speaker notes Cutting-Edge Applications UAV formation flight remote sensing interference

More information

The International Scene: How Precise Positioning Will Underpin Critical GNSS Applications

The International Scene: How Precise Positioning Will Underpin Critical GNSS Applications The International Scene: How Precise Positioning Will Underpin Critical GNSS Applications School of Civil & Environmental Engineering, UNSW, Sydney, Australia Chris Rizos Member of the IGS Governing Board

More information

Report of the Working Group B: Enhancement of Global Navigation Satellite Systems (GNSS) Services Performance

Report of the Working Group B: Enhancement of Global Navigation Satellite Systems (GNSS) Services Performance Report of the Working Group B: Enhancement of Global Navigation Satellite Systems (GNSS) Services Performance 1. The Working Group on Enhancement of Global Navigation Satellite Systems (GNSS) Service Performance

More information

GPS Technologies in PPUs Clarifying some misunderstandings. A presentation to the Latin American Forum, September Peter Selwyn Chief Executive

GPS Technologies in PPUs Clarifying some misunderstandings. A presentation to the Latin American Forum, September Peter Selwyn Chief Executive GPS Technologies in PPUs Clarifying some misunderstandings A presentation to the Latin American Forum, September 2013 Peter Selwyn Chief Executive Photo courtesy of Flinders Ports Our Company Our staff:

More information

Bring satellites into your lab

Bring satellites into your lab Bring satellites into your lab GNSS simulators from the T&M expert 5215.5042.32 02.01 PDP 1 en www.rohde-schwarz.com/gnss-solutions GNSS-Simulators--------Bring-satellites_fly_5215-5042-32_v0201.indd 7

More information

GNSS & Coordinate Systems

GNSS & Coordinate Systems GNSS & Coordinate Systems Matthew McAdam, Marcelo Santos University of New Brunswick, Department of Geodesy and Geomatics Engineering, Fredericton, NB May 29, 2012 Santos, 2004 msantos@unb.ca 1 GNSS GNSS

More information

The Possibility of Precise Automobile Navigation using GPS/QZS L5 and (Galileo E5) Pseudo ranges

The Possibility of Precise Automobile Navigation using GPS/QZS L5 and (Galileo E5) Pseudo ranges The Possibility of Precise Automobile Navigation using GPS/QZS L5 and (Galileo E5 Pseudo ranges ION ITM ITM 013 Hiroko Tokura, Taro Suzuki, Tomoji Takasu, Nobuaki Kubo (Tokyo University of Marine Scienceand

More information

Fugro Marinestar Improvements

Fugro Marinestar Improvements Fugro Marinestar Improvements Hans Visser Fugro Intersite B.V. Improvements in Marinestar Positioning Hydro 2016 Warnemünde, 10 November 2016 Overview of presentation The Marinestar GNSS Networks The supplied

More information

When do you expect Athena to be available for VS330? This is currently being beta-tested and will be released in the very near future.

When do you expect Athena to be available for VS330? This is currently being beta-tested and will be released in the very near future. Why Athena? Athena GNSS Engine What improvements does Athena offer over the RTK firmware I m running now? Compared to the Hemisphere firmware most users are currently using (Qf4), there are significant

More information

Assessment of high-rate GPS using a single-axis shake table

Assessment of high-rate GPS using a single-axis shake table Assessment of high-rate GPS using a single-axis shake table S. Häberling, M. Rothacher, A. Geiger Institute of Geodesy and Photogrammetry, ETH Zurich Introduction Project: Study the applicability of high-rate

More information

GNSS analysis software GSILIB for utilizing Multi- GNSS data

GNSS analysis software GSILIB for utilizing Multi- GNSS data Technical Seminar Reference Frame in Practice, GNSS analysis software GSILIB for utilizing Multi- GNSS data *Satoshi Kawamoto, Naofumi Takamatsu Geospatial Information Authority of Japan Sponsors: Geospatial

More information

Technical Specifications Document. for. Satellite-Based Augmentation System (SBAS) Testbed

Technical Specifications Document. for. Satellite-Based Augmentation System (SBAS) Testbed Technical Specifications Document for Satellite-Based Augmentation System (SBAS) Testbed Revision 3 13 June 2017 Table of Contents Acronym Definitions... 3 1. Introduction... 4 2. SBAS Testbed Realisation...

More information

Development of Hong Kong GNSS infrastructure

Development of Hong Kong GNSS infrastructure Development of Hong Kong GNSS infrastructure Wu Chen Department of Land Surveying and Geoinformatics (LSGI) Hong Kong Polytechnic University Hong Kong 1 Research Areas Research Areas GNSS Positioning and

More information

On Location at Stanford University

On Location at Stanford University Thank you for inviting me to Calgary On Location at Stanford University by Per Enge (with the help of many) May 29, 2009 With Gratitude to the Federal Aviation Administration from Misra and Enge, 2006

More information

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse 2 Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.1 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

CODEVINTEC. Miniature and accurate IMU, AHRS, INS/GNSS Attitude and Heading Reference Systems

CODEVINTEC. Miniature and accurate IMU, AHRS, INS/GNSS Attitude and Heading Reference Systems 45 27 39.384 N 9 07 30.145 E Miniature and accurate IMU, AHRS, INS/GNSS Attitude and Heading Reference Systems Aerospace Land/Automotive Marine Subsea Miniature inertial sensors 0.1 Ellipse Series New

More information

Foreword by Glen Gibbons About this book Acknowledgments List of abbreviations and acronyms List of definitions

Foreword by Glen Gibbons About this book Acknowledgments List of abbreviations and acronyms List of definitions Table of Foreword by Glen Gibbons About this book Acknowledgments List of abbreviations and acronyms List of definitions page xiii xix xx xxi xxv Part I GNSS: orbits, signals, and methods 1 GNSS ground

More information

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse 2 Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse 2 Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.1 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS

GPS: The Basics. Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University. Expected Learning Outcomes for GPS GPS: The Basics Darrell R. Dean, Jr. Civil and Environmental Engineering West Virginia University Expected Learning Outcomes for GPS Explain the acronym GPS Name 3 important tdt dates in history of GPS

More information

SPAN Tightly Coupled GNSS+INS Technology Performance for Exceptional 3D, Continuous Position, Velocity & Attitude

SPAN Tightly Coupled GNSS+INS Technology Performance for Exceptional 3D, Continuous Position, Velocity & Attitude SPAN Tightly Coupled GNSSINS Technology Performance for Exceptional 3D, Continuous Position, Velocity & Attitude SPAN Technology NOVATEL S SPAN TECHNOLOGY PROVIDES CONTINUOUS 3D POSITIONING, VELOCITY AND

More information

Understanding GPS: Principles and Applications Second Edition

Understanding GPS: Principles and Applications Second Edition Understanding GPS: Principles and Applications Second Edition Elliott Kaplan and Christopher Hegarty ISBN 1-58053-894-0 Approx. 680 pages Navtech Part #1024 This thoroughly updated second edition of an

More information

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.1 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

GNSS-based Flight Inspection Systems

GNSS-based Flight Inspection Systems GNSS-based Flight Inspection Systems Euiho Kim, Todd Walter, and J. David Powell Department of Aeronautics and Astronautics Stanford University Stanford, CA 94305, USA Abstract This paper presents novel

More information

Inertial Navigation System

Inertial Navigation System Apogee Marine Series ULTIMATE ACCURACY MEMS Inertial Navigation System INS MRU AHRS ITAR Free 0.005 RMS Navigation, Motion & Heave Sensing APOGEE SERIES makes high accuracy affordable for all surveying

More information

The experimental evaluation of the EGNOS safety-of-life services for railway signalling

The experimental evaluation of the EGNOS safety-of-life services for railway signalling Computers in Railways XII 735 The experimental evaluation of the EGNOS safety-of-life services for railway signalling A. Filip, L. Bažant & H. Mocek Railway Infrastructure Administration, LIS, Pardubice,

More information

GPS PERFORMANCE EVALUATION OF THE HUAWEI MATE 9 WITH DIFFERENT ANTENNA CONFIGURATIONS

GPS PERFORMANCE EVALUATION OF THE HUAWEI MATE 9 WITH DIFFERENT ANTENNA CONFIGURATIONS GPS PERFORMANCE EVALUATION OF THE HUAWEI MATE 9 WITH DIFFERENT ANTENNA CONFIGURATIONS AND P10 IN THE FIELD Gérard Lachapelle & Research Team PLAN Group, University of Calgary (http://plan.geomatics.ucalgary.ca)

More information

Asian Journal of Science and Technology Vol. 08, Issue, 11, pp , November, 2017 RESEARCH ARTICLE

Asian Journal of Science and Technology Vol. 08, Issue, 11, pp , November, 2017 RESEARCH ARTICLE Available Online at http://www.journalajst.com ASIAN JOURNAL OF SCIENCE AND TECHNOLOGY ISSN: 0976-3376 Asian Journal of Science and Technology Vol. 08, Issue, 11, pp.6697-6703, November, 2017 ARTICLE INFO

More information

Signals, and Receivers

Signals, and Receivers ENGINEERING SATELLITE-BASED NAVIGATION AND TIMING Global Navigation Satellite Systems, Signals, and Receivers John W. Betz IEEE IEEE PRESS Wiley CONTENTS Preface Acknowledgments Useful Constants List of

More information

Near Term Improvements to WAAS Availability

Near Term Improvements to WAAS Availability Near Term Improvements to WAAS Availability Juan Blanch, Todd Walter, R. Eric Phelts, Per Enge Stanford University ABSTRACT Since 2003, when it was first declared operational, the Wide Area Augmentation

More information

Name: Chengming Jin Supervisor: Allison Kealy. GNSS-based Positioning Scheme & Application in Safety-critical Systems of Rail Transport

Name: Chengming Jin Supervisor: Allison Kealy. GNSS-based Positioning Scheme & Application in Safety-critical Systems of Rail Transport Name: Chengming Jin Supervisor: Allison Kealy GNSS-based Positioning Scheme & Application in Safety-critical Systems of Rail Transport CONTENT 1 Introduction 2 Challenges 3 Solutions Introduction How Modern

More information

Report of Working Group B: Enhancement of Global Navigation Satellite Systems Services Performance

Report of Working Group B: Enhancement of Global Navigation Satellite Systems Services Performance Report of : Enhancement of Global Navigation Satellite Systems Services Performance 1. The Working Group on Enhancement of Global Navigation Satellite Systems (GNSS) Service Performance (WG-B) of the International

More information

Connecting a Cadastral Survey to PNG94 using GNSS

Connecting a Cadastral Survey to PNG94 using GNSS 43rd Association of Surveyors PNG Congress, Lae, 12th-15th August 2009 Connecting a Cadastral Survey to PNG94 using GNSS Richard Stanaway QUICKCLOSE Workshop overview Legal requirements to connect surveys

More information

NovAtel s. Performance Analysis October Abstract. SPAN on OEM6. SPAN on OEM6. Enhancements

NovAtel s. Performance Analysis October Abstract. SPAN on OEM6. SPAN on OEM6. Enhancements NovAtel s SPAN on OEM6 Performance Analysis October 2012 Abstract SPAN, NovAtel s GNSS/INS solution, is now available on the OEM6 receiver platform. In addition to rapid GNSS signal reacquisition performance,

More information

GNSS Technologies. PPP and RTK

GNSS Technologies. PPP and RTK PPP and RTK 29.02.2016 Content Carrier phase based positioning PPP RTK VRS Slides based on: GNSS Applications and Methods, by S. Gleason and D. Gebre-Egziabher (Eds.), Artech House Inc., 2009 http://www.gnssapplications.org/

More information

School of Civil & Environmental Engineering, UNSW, Sydney, Australia. Chris Rizos. President Australian Institute of Navigation

School of Civil & Environmental Engineering, UNSW, Sydney, Australia. Chris Rizos. President Australian Institute of Navigation The Threat to Space Based Service (for PNT applications) School of Civil & Environmental Engineering, UNSW, Sydney, Australia Chris Rizos President Australian Institute of Navigation Outline GNSS... a

More information

Feasibility Studies of Time Synchronization Using GNSS Receivers in Vehicle to Vehicle Communications. Queensland University of Technology

Feasibility Studies of Time Synchronization Using GNSS Receivers in Vehicle to Vehicle Communications. Queensland University of Technology Feasibility Studies of Time Synchronization Using GNSS Receivers in Vehicle to Vehicle Communications Khondokar Fida Hasan Professor Yanming Feng Professor Glen Tian Queensland University of Technology

More information

Geodetic Reference via Precise Point Positioning - RTK

Geodetic Reference via Precise Point Positioning - RTK 2012 Geo++ GmbH Geodetic Reference via Precise Point Positioning - RTK Gerhard Wübbena Geo++ GmbH 30827 Garbsen Germany www.geopp.de 2012 Geo++ GmbH Contents Terms and Abbreviations GNSS Principles GNSS

More information

ARAIM: Utilization of Modernized GNSS for Aircraft-Based Navigation Integrity

ARAIM: Utilization of Modernized GNSS for Aircraft-Based Navigation Integrity ARAIM: Utilization of Modernized GNSS for Aircraft-Based Navigation Integrity Alexandru (Ene) Spletter Deutsches Zentrum für Luft- und Raumfahrt (DLR), e.v. The author gratefully acknowledges the support

More information

The added value of new GNSS to monitor the ionosphere

The added value of new GNSS to monitor the ionosphere The added value of new GNSS to monitor the ionosphere R. Warnant 1, C. Deprez 1, L. Van de Vyvere 2 1 University of Liege, Liege, Belgium. 2 M3 System, Wavre, Belgium. Monitoring TEC for geodetic applications

More information

Robust Positioning for Urban Traffic

Robust Positioning for Urban Traffic Robust Positioning for Urban Traffic Motivations and Activity plan for the WG 4.1.4 Dr. Laura Ruotsalainen Research Manager, Department of Navigation and positioning Finnish Geospatial Research Institute

More information

FieldGenius Technical Notes GPS Terminology

FieldGenius Technical Notes GPS Terminology FieldGenius Technical Notes GPS Terminology Almanac A set of Keplerian orbital parameters which allow the satellite positions to be predicted into the future. Ambiguity An integer value of the number of

More information

The Benefits of Three Frequencies for the High Accuracy Positioning

The Benefits of Three Frequencies for the High Accuracy Positioning The Benefits of Three Frequencies for the High Accuracy Positioning Nobuaki Kubo (Tokyo University of Marine and Science Technology) Akio Yasuda (Tokyo University of Marine and Science Technology) Isao

More information

HIGHTS: towards sub-meter positioning accuracy in vehicular networks. Jérôme Härri (EURECOM) on Behalf of HIGHTS ETSI ITS Workshop March 6-8, 2018

HIGHTS: towards sub-meter positioning accuracy in vehicular networks. Jérôme Härri (EURECOM) on Behalf of HIGHTS ETSI ITS Workshop March 6-8, 2018 HIGHTS: towards sub-meter positioning accuracy in vehicular networks Jérôme Härri (EURECOM) on Behalf of HIGHTS ETSI ITS Workshop March 6-8, 2018 The HIGHTS Consortium 09.03.2018 H2020 HIGHTS Project 2

More information

Locata: A New Constellation for High Accuracy Outdoor & Indoor Positioning

Locata: A New Constellation for High Accuracy Outdoor & Indoor Positioning Locata: A New Constellation for High Accuracy Outdoor & Indoor Positioning Chris Rizos, Yong Li, Nonie Politi School of Surveying & Spatial Information Systems University of New South Wales, Sydney, Australia

More information

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG

Inertial Sensors. Ellipse Series MINIATURE HIGH PERFORMANCE. Navigation, Motion & Heave Sensing IMU AHRS MRU INS VG Ellipse Series MINIATURE HIGH PERFORMANCE Inertial Sensors IMU AHRS MRU INS VG ITAR Free 0.2 RMS Navigation, Motion & Heave Sensing ELLIPSE SERIES sets up new standard for miniature and cost-effective

More information

Evaluation of Multi-Constellation GNSS Precise Point Positioning (PPP) Techniques in Egypt

Evaluation of Multi-Constellation GNSS Precise Point Positioning (PPP) Techniques in Egypt Evaluation of Multi-Constellation GNSS Precise Point Positioning (PPP) Techniques in Egypt Mahmoud Abd Rabbou and Adel El-Shazly Department of Civil Engineering, Cairo University Presented by; Dr. Mahmoud

More information

Global Navigation Satellite System (GNSS) for Disaster Mitigation

Global Navigation Satellite System (GNSS) for Disaster Mitigation Global Navigation Satellite System (GNSS) for Disaster Mitigation By Chathura H. Wickramasinghe Geoinformatics Center Asian Institute of Technology Establish in 1959 as a Post Graduate School Catering

More information

Prototyping Advanced RAIM for Vertical Guidance

Prototyping Advanced RAIM for Vertical Guidance Prototyping Advanced RAIM for Vertical Guidance Juan Blanch, Myung Jun Choi, Todd Walter, Per Enge. Stanford University Kazushi Suzuki. NEC Corporation Abstract In the next decade, the GNSS environment

More information

GNSS for Landing Systems and Carrier Smoothing Techniques Christoph Günther, Patrick Henkel

GNSS for Landing Systems and Carrier Smoothing Techniques Christoph Günther, Patrick Henkel GNSS for Landing Systems and Carrier Smoothing Techniques Christoph Günther, Patrick Henkel Institute of Communications and Navigation Page 1 Instrument Landing System workhorse for all CAT-I III approach

More information

TEST RESULTS OF A HIGH GAIN ADVANCED GPS RECEIVER

TEST RESULTS OF A HIGH GAIN ADVANCED GPS RECEIVER TEST RESULTS OF A HIGH GAIN ADVANCED GPS RECEIVER ABSTRACT Dr. Alison Brown, Randy Silva, Gengsheng Zhang,; NAVSYS Corporation. NAVSYS High Gain Advanced GPS Receiver () uses a digital beam-steering antenna

More information

Connecting a Survey to PNG94 and MSL using GNSS

Connecting a Survey to PNG94 and MSL using GNSS 45th Association of Surveyors PNG Congress, Madang, 19-22 July 2011 Connecting a Survey to PNG94 and MSL using GNSS Richard Stanaway QUICKCLOSE Workshop overview Legal requirements to connect surveys to

More information

Demonstrations of Multi-Constellation Advanced RAIM for Vertical Guidance using GPS and GLONASS Signals

Demonstrations of Multi-Constellation Advanced RAIM for Vertical Guidance using GPS and GLONASS Signals Demonstrations of Multi-Constellation Advanced RAIM for Vertical Guidance using GPS and GLONASS Signals Myungjun Choi, Juan Blanch, Stanford University Dennis Akos, University of Colorado Boulder Liang

More information

Robust Position and Velocity Estimation Methods in Integrated Navigation Systems for Inland Water Applications

Robust Position and Velocity Estimation Methods in Integrated Navigation Systems for Inland Water Applications Robust Position and Velocity Estimation Methods in Integrated Navigation Systems for Inland Water Applications D. Arias-Medina, M. Romanovas, I. Herrera-Pinzón, R. Ziebold German Aerospace Centre (DLR)

More information

HIGH GAIN ADVANCED GPS RECEIVER

HIGH GAIN ADVANCED GPS RECEIVER ABSTRACT HIGH GAIN ADVANCED GPS RECEIVER NAVSYS High Gain Advanced () uses a digital beam-steering antenna array to enable up to eight GPS satellites to be tracked, each with up to dbi of additional antenna

More information

ION ITM Tokyo University of Marine Science and Technology H. Sridhara, N. Kubo, R.Kikuchi

ION ITM Tokyo University of Marine Science and Technology H. Sridhara, N. Kubo, R.Kikuchi Single-Frequency Multi-GNSS RTK Positioning for Moving Platform ION ITM 215 215.1.27-29 Tokyo University of Marine Science and Technology H. Sridhara, N. Kubo, R.Kikuchi 1 Agenda Motivation and Background

More information

Low-Cost GNSS for Geodetic Applications

Low-Cost GNSS for Geodetic Applications Institut für Ingenieurgeodäsie Presented at the FIG Congress 2018, May 6-11, 2018 in Istanbul, Turkey Low-Cost GNSS for Geodetic Applications Dr.-Ing. Li Zhang Institute of Engineering Geodesy (IIGS),

More information

Resilient PNT: From PNT-Unit concept to first realization

Resilient PNT: From PNT-Unit concept to first realization www.dlr.de Chart 1 >Resilient PNT: From PNT Unit concept to first realization> R. Ziebold > e-navigation Underway 1/3/213 Resilient PNT: From PNT-Unit concept to first realization Ralf Ziebold, Z. Dai,

More information

GPS-Based Navigation & Positioning Challenges in Communications- Enabled Driver Assistance Systems

GPS-Based Navigation & Positioning Challenges in Communications- Enabled Driver Assistance Systems GPS-Based Navigation & Positioning Challenges in Communications- Enabled Driver Assistance Systems Chaminda Basnayake, Ph.D. Senior Research Engineer General Motors Research & Development and Planning

More information

Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia

Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia International Global Navigation Satellite Systems Society IGNSS Symposium 2015 Multi-Constellation GNSS Precise Point Positioning using GPS, GLONASS and BeiDou in Australia Xiaodong Ren 1,Suelynn Choy

More information