Investigating sensors

Size: px
Start display at page:

Download "Investigating sensors"

Transcription

1 Investigating sensors Possible circuits There are just two ways of constructing the voltage divider, with the LDR at the top, or with the LDR at the bottom: You are going to investigate the behaviour of these two circuits. You will also find out how to choose a sensible value for the fixed resistor in a voltage divider circuit. Remember the formula for calculating V out : What will happen to V out if R bottom gets smaller? Up. Measuring resistance What to do... 1

2 Start by switching your multimeter to a resistance scale: Using a multimeter as an ohmmeter With the setting shown, the fsd, or full scale deflection of the ohmmeter is 200. This means that the meter will measure resistances from zero up to a maximum of 200. With this setting, you will be able to see how the resistance of an LDR changes with illumination. The other resistance settings work in a similar way. When you select the 20 position, the maximum resistance which you can measure is 20. However, the postion of the decimal point in the display changes, so that measurements in this range can be made more accurately. With nothing connected to the meter, the display will look like this 2

3 This means that the resistance between the meter probes is too large to be measured within the range selected. When the meter isn't connected, the resistance between the probes is extremely large, giving a '1' reading on all the resistance ranges. Insert a black meter probe into the COM socket and a red probe into the V ma socket. What happens to the display when you touch the probes together? The meter reading should change to If the meter reading remains as '1', the most likely explanation is that the internal fuse in the meter has 'blown'. The fuse protects the meter from incorrect connection. This can easily happen when the multimeter is used as an ammeter or as an ohmmeter. If there is a problem, either replace the fuse (usually a 200 ma 'quick-blow' type), or use a different meter. If you moisten your fingers and hold the probes tightly, you should be able to measure your skin resistance. You might need to switch to the 2000 (that is, 2 M ) range to see this effect. Now measure the resistance of your LDR, as indicated below: Write down the resistance value you measure when the LDR is exposed to the room lights: 3

4 You don't need to shine light directly onto the LDR. If the reading on the meter changes as shadows fall onto the surface of the LDR, write down a resistance value which you think is a fair estimate of the average reading on the meter. Now cover the LDR with your hand so that it is in the shade. The resistance of the LDR will increase. Write down the new resistance value: Once again, the meter reading may fluctuate. Estimate the average resistance reading. Try to cover the LDR in a way which is easy to repeat. You are going to compare 'light' and 'shade' readings for sensor circuits using different values of fixed resistor and you want the comparison to be as fair as possible. If the LDR is placed completely in the dark, its resistance will increase to 1 M or more. This isn't necessary for the experiment you are going to do. You will get more meaningful results by shading the LDR.. Light sensor circuit Follow the diagram below to build a test circuit for a light sensor: 4

5 Up to previous stage To start with, use a 100 resistor as the test resistor. Make measurements of V out first with the LDR in the light and then with the LDR in the shade. Write these results in the table below: Fixed resistor value V out in the light V out in the shade Voltage change

6 1 M In the final column of the table, subtract the measurement of V out in the shade from the measurement of V out in the light to work out by how much the voltage has changed as a result of the difference in illumination. Repeat this whole process for each of the other test resistor values. You will find that some test resistors give V out readings which are dramatically different in the light and the shade. With this circuit, is V out HIGH or LOW in the light? Which test resistor gives the biggest voltage change between light and shade? Which resistor would you use to make your light sensor most sensitive to changes in illumination? (This is a different way of asking the same question.) Check back with the resistance measurements you made for the LDR in the light and in the shade. The test resistor which gives the biggest change in V out is expected to have a value about half way between these extremes. In fact, the voltage divider is most sensitive when the resistance of the fixed resistor is equal to the resistance of the LDR. KEY POINT: Voltage dividers are most sensitive when R bottom and R top have equal values Up. A different sensor circuit Rebuild your prototype circuit so that the LDR is in place of R bottom in the voltage divider: 6

7 Up to previous stage Repeat the experiment for this voltage divider, writing in the values of V out measured in the light and in the shade: Fixed resistor value V out in the light V out in the shade Voltage change M With the second circuit, is V out HIGH or LOW in the light? Which test resistor gives the biggest voltage change between light and shade? 7

8 Which resistor would you use to make your light sensor most sensitive to changes in illumination? Perhaps this circuit should be called a dark sensor, since it gives a HIGH V out when the LDR is covered. KEY POINT: The action of the voltage divider is reversed when the LDR is used as R bottom instead of as R top Up. Conclusions It matters what value of fixed resistor you use in a voltage divider. The optimum value of fixed resistor gives the biggest changes in V out. This happens when R bottom = R top. You can decide how a voltage divider circuit is going to work by thinking about whether to use the sensor component asr bottom or as R top. 8

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes

Module 1, Lesson 2 Introduction to electricity. Student. 45 minutes Module 1, Lesson 2 Introduction to electricity 45 minutes Student Purpose of this lesson Explanations of fundamental quantities of electrical circuits, including voltage, current and resistance. Use a

More information

Generic Lab Manual: An overview on the major functionalities of the equipment.

Generic Lab Manual: An overview on the major functionalities of the equipment. Generic Lab Manual: This being a generic lab manual is not a complete description or tutorial on everything that the test equipment is capable of measuring. But rather a quick guide on how each piece of

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS ANALOG Metering devices Provides monotonous (continuous) movement. ELECTRICAL MEASURING INSTRUMENTS ANALOG METERS A d Arsonval galvanometer (Moving

More information

Physics: 15. Electronics

Physics: 15. Electronics Physics: 15. Electronics Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP57 Describe a diode as a device that allows current to flow

More information

Laboratory 2 (drawn from lab text by Alciatore)

Laboratory 2 (drawn from lab text by Alciatore) Laboratory 2 (drawn from lab text by Alciatore) Instrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Objectives This exercise is designed

More information

Electric Circuit Experiments

Electric Circuit Experiments Electric Circuit Experiments 1. Using the resistor on the 5-resistor block, vary the potential difference across it in approximately equal increments for eight different values (i.e. use one to eight D-

More information

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 kω, 2.7 kω, 5.1 kω, 10 kω, two, Decade Resistor Box, potentiometer, 10 kω Thermistor, Multimeter Owner s Manual

More information

Electronic Instrument Disadvantage of moving coil meter Low input impedance High loading error for low-voltage range voltmeter

Electronic Instrument Disadvantage of moving coil meter Low input impedance High loading error for low-voltage range voltmeter EIE 240 Electrical and Electronic Measurement Class 6, February 20, 2015 1 Electronic Instrument Disadvantage of moving coil meter Low input impedance High loading error for low-voltage range voltmeter

More information

Introduction to Electronic Equipment

Introduction to Electronic Equipment Introduction to Electronic Equipment INTRODUCTION This semester you will be exploring electricity and magnetism. In order to make your time in here more instructive we ve designed this laboratory exercise

More information

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor

Laboratory 2. Lab 2. Instrument Familiarization and Basic Electrical Relations. Required Components: 2 1k resistors 2 1M resistors 1 2k resistor Laboratory 2 nstrument Familiarization and Basic Electrical Relations Required Components: 2 1k resistors 2 1M resistors 1 2k resistor 2.1 Objectives This exercise is designed to acquaint you with the

More information

EE283 Laboratory Exercise 1-Page 1

EE283 Laboratory Exercise 1-Page 1 EE283 Laboratory Exercise # Basic Circuit Concepts Objectives:. To become familiar with the DC Power Supply unit, analog and digital multi-meters, fixed and variable resistors, and the use of solderless

More information

Exercise MM About the Multimeter

Exercise MM About the Multimeter Exercise MM About the Multimeter Introduction Our world is filled with devices that contain electrical circuits in which various voltage sources cause currents to flow. Electrical currents generate heat,

More information

The Art of Electrical Measurements

The Art of Electrical Measurements The Art of Electrical Measurements Purpose: Introduce fundamental electrical test and measurement tools and the art of making electrical measurements. Equipment Required Prelab 1 Digital Multimeter 1 -

More information

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND Make sure you read the background in Activity 3 before doing this activity. WIRING DIRECTIONS Materials per group of two: one or two D-cells

More information

Lab 2 Electrical Safety, Breadboards, Using a DMM

Lab 2 Electrical Safety, Breadboards, Using a DMM Lab 2 Electrical Safety, Breadboards, Using a DMM Objectives concepts 1. Safety hazards related to household electricity and electronics equipment 2. Differences between schematic and breadboard representations

More information

1. SAFETY 1.1. SAFETY INFORMATION 1.2. SAFETY SYMBOLS

1. SAFETY 1.1. SAFETY INFORMATION 1.2. SAFETY SYMBOLS To all residents of the European Union Important environmental information about this product This symbol on the device or the package indicates that disposal of the device after its lifecycle could harm

More information

General Lab Notebook instructions (from syllabus)

General Lab Notebook instructions (from syllabus) Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 k, 2.7 k, 5.1 k, 10 k, two Decade Resistor Box, potentiometer, 10 k Thermistor, Multimeter Owner s Manual General

More information

VCE PHYSICS AOS 2 UNIT 3. Circuit Design and Application

VCE PHYSICS AOS 2 UNIT 3. Circuit Design and Application VCE PHYSICS AOS 2 UNIT 3 Circuit Design and Application The Components design, investigate and analyse circuits for particular purposes using technical specifications related to potential difference (voltage

More information

LAB 2 Circuit Tools and Voltage Waveforms

LAB 2 Circuit Tools and Voltage Waveforms LAB 2 Circuit Tools and Voltage Waveforms OBJECTIVES 1. Become familiar with a DC power supply and setting the output voltage. 2. Learn how to measure voltages & currents using a Digital Multimeter. 3.

More information

DVM98. True RMS Digital Multimeter. 1 Safety information. 1.1 Preliminary. 1.2 During use

DVM98. True RMS Digital Multimeter. 1 Safety information. 1.1 Preliminary. 1.2 During use True RMS Digital Multimeter DVM98 1 Safety information This multimeter has been designed according to IEC - 1010 concerning electronic measuring instruments with an overvoltage category (CAT II) and pollution

More information

ENGR 120 LAB #2 Electronic Tools and Ohm s Law

ENGR 120 LAB #2 Electronic Tools and Ohm s Law ENGR 120 LAB #2 Electronic Tools and Ohm s Law Objectives Understand how to use a digital multi-meter, power supply and proto board and apply that knowledge to constructing circuits to demonstrate ohm

More information

Home Map Projects Construction Soldering Study Components Symbols Membership FAQ Links

Home Map Projects Construction Soldering Study Components Symbols Membership FAQ Links Home Map Projects Construction Soldering Study Components Symbols Membership FAQ Links Multimeters Choosing Digital Analogue Voltage & Current Resistance Diode Transistor Next Page: Resistance Also See:

More information

Multimeter Introduction

Multimeter Introduction Multimeter Introduction Abstract The general aim of this lab is to introduce you to the proper use of a digital multimeter with its associated uncertainties and to show how to propagate those uncertainties.

More information

RESIDENTIAL & INDUSTRIAL ELECTRICITY. Schuylkill Technology Center- South Campus 15 Maple Avenue Marlin, Pennsylvania (570) NAME: DATE:

RESIDENTIAL & INDUSTRIAL ELECTRICITY. Schuylkill Technology Center- South Campus 15 Maple Avenue Marlin, Pennsylvania (570) NAME: DATE: RESIDENTIAL & INDUSTRIAL ELECTRICITY NAME: DATE: DATE DUE: Schuylkill Technology Center- South Campus 15 Maple Avenue Marlin, Pennsylvania 17951 (570) 544-4748 COURSE TITLE: DUTY TITLE: Basic Residential

More information

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The 1 Lab 1a Input and Output Impedance Fig. 1: (a) Complicated circuit. (b) Its Thévenin equivalent Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The circuit

More information

ELEXBO. Electrical - Experimentation Box

ELEXBO. Electrical - Experimentation Box ELEXBO Electrical - Experimentation Box 1 Table of contents 2 Introduction...3 Basics...3 The current......4 The voltage...6 The resistance....9 Measuring resistance...10 Summary of the electrical values...11

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

DVM1190 DIGITAL MULTIMETER

DVM1190 DIGITAL MULTIMETER DIGITAL MULTIMETER 1. Introduction Thank you for buying the. This digital multimeter has a large LCD, a data-hold function and a backlight. The device uses a very practical safety mechanism that keeps

More information

EK307 Introduction to the Lab

EK307 Introduction to the Lab EK307 Introduction to the Lab Learning to Use the Test Equipment Laboratory Goal: Become familiar with the test equipment in the electronics laboratory (PHO105). Learning Objectives: Voltage source and

More information

How To Use A Multimeter

How To Use A Multimeter How To Use A Multimeter Learn to use a multimeter to test voltage, resistance, and continuity. Written By: Jeff Suovanen ifixit CC BY-NC-SA www.ifixit.com Page 1 of 17 INTRODUCTION Every fixer should know

More information

Electronic Simulation Software for Teaching and Learning

Electronic Simulation Software for Teaching and Learning Electronic Simulation Software for Teaching and Learning Electronic Simulation Software: 1. Ohms Law (a) Example 1 Zoom 200% (i) Run the simulation to verify the calculations provided. (ii) Stop the simulation

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

INSTRUCTION MANUAL MODEL 21 MULTI-TESTER

INSTRUCTION MANUAL MODEL 21 MULTI-TESTER INSTRUCTION MANUAL MODEL 21 MULTI-TESTER 5 IN 1 SOUND LEVEL LIGHT HUMIDITY TEMPERATURE MULTIMETER .TABLET OF CONTENTS TITLE 1. INTRODUCTION 2 2. INFORMATION FOR SAFETY 2 3. FEATURES 4 4. SPECIFICATIONS

More information

Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms

Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms Physics 4B, Lab # 2 Circuit Tools and Voltage Waveforms OBJECTIVES 1. Become familiar with a DC power supply and setting the output voltage. 2. Learn how to measure voltages & currents using a Digital

More information

8.0 Ω 12.0 Ω. When the switch S is open, show that the potential difference between the points X and Y is 7.2 V.

8.0 Ω 12.0 Ω. When the switch S is open, show that the potential difference between the points X and Y is 7.2 V. 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible internal resistance. 8.0

More information

Theme 5: Electricity in the Home

Theme 5: Electricity in the Home Theme 5: Electricity in the Home!!" # # $%& $'&( ) * +,, ( * $ & $ & #.! $ & /+ $ & / " /+ 0 ' / / / / # 1 /$ %% # & ' # $ 2 $& $ 3 2 & #( ' ) & & * '% & '' + + $ % *'% & # + $ + $%' # *,, $%& $'& $, 4

More information

Electrical Measurements

Electrical Measurements Electrical Measurements INTRODUCTION In this section, electrical measurements will be discussed. This will be done by using simple experiments that introduce a DC power supply, a multimeter, and a simplified

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 1 REPORT MEASUREMENT DEVICES Group # 1. 2. 3. 4. Student Name ID EXPERIMENT 1 MEASUREMENT

More information

CD770 DIGITAL MULTIMETER INSTRUCTION MANUAL

CD770 DIGITAL MULTIMETER INSTRUCTION MANUAL CD770 DIGITAL MULTIMETER INSTRUCTION MANUAL Table of Contents 1 SAFETY PRECAUTIONS Before use, read the following safety precautions.- 1-1 Explanation of Warning Symbols 001 1-2 Warning Messages for Safe

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Multimeter operating guidelines

Multimeter operating guidelines A multimeter, also called a volt-ohm meter or VOM, is a device that measures resistance, voltage and current in electronic circuits. Some also test diodes and continuity. Multimeters are small, lightweight

More information

MS2030 CAT III 600 V A V AUTO RS232

MS2030 CAT III 600 V A V AUTO RS232 MS2030 AC Digital Clamp Meter User s Manual CAT III 600 V AUTO RS232 A V CONTENTS 1.Introduction...1 2.Safety Information...1 2.1 Precautions...1 2.2 Safety Symbols...3 3. Description...4 3.1 Front Panel...4

More information

+ A Supply B. C Load D

+ A Supply B. C Load D 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Exercise 3: Voltage in a Series Resistive Circuit

Exercise 3: Voltage in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 3: Voltage in a Series Resistive Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the voltage in a series

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Resistance. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013

Resistance. Department of Physics & Astronomy Texas Christian University, Fort Worth, TX. April 23, 2013 Resistance Department of Physics & Astronomy Texas Christian University, Fort Worth, TX April 23, 2013 1 Introduction Electrical resistance is a measure of how much an object opposes (or resists) the flow

More information

2. Meter Measurements and Loading Effects in Resistance Circuits

2. Meter Measurements and Loading Effects in Resistance Circuits 2. Meter Measurements and Loading Effects in Resistance Circuits 2.1. Purpose 1. To measure and predict the affects of multimeter(s) on a circuit when measuring electrical quantities. 2. To make use of

More information

Episode 108: Resistance

Episode 108: Resistance Episode 108: Resistance The idea of resistance should be familiar (although perhaps not secure) from pre-16 science course, so there is no point pretending that this is an entirely new concept. A better

More information

Learning Objectives:

Learning Objectives: Topic 5.4 Instrumentation Systems Learning Objectives: At the end of this topic you will be able to; describe the use of the following analogue sensors: thermistors and strain gauges; describe the use

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

Model ST Instruction Manual. True RMS Autoranging Digital Multimeter. reedinstruments. www. com

Model ST Instruction Manual. True RMS Autoranging Digital Multimeter. reedinstruments. www. com Model ST-9933 True RMS Autoranging Digital Multimeter Instruction Manual reedinstruments com Table of Contents Safety... 3 Features... 4 Specifications...4-8 Technical...4-5 Accuracy...5-8 Display Description...

More information

ExamLearn.ie. Current Electricity

ExamLearn.ie. Current Electricity ExamLearn.ie Current Electricity Current Electricity An electric current is a flow of electric charge. If a battery is connected to each end of a conductor, the positive terminal will attract the free

More information

Electricity. Mark Scheme. Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at

Electricity. Mark Scheme. Save My Exams! The Home of Revision For more awesome GCSE and A level resources, visit us at Electricity Mark Scheme Level Subject Exam Board Topic Booklet Pre U Physics Cambridge International Examinations Electricity Mark Scheme Time llowed: 56 minutes Score: /46 Percentage: /100 Grade Boundaries:

More information

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1 Digital Multimeters ON / OFF power switch Continuity / Diode Test Function Resistance Function Ranges from 200Ω to 200MΩ Transistor Test Function DC Current Function Ranges from 2mA to 20A. AC Current

More information

DIGITAL MULTIMETER INSTRUCTION MANUAL

DIGITAL MULTIMETER INSTRUCTION MANUAL DIGITAL MULTIMETER INSTRUCTION MANUAL 1 CONTENTS CONTENTS 1. SAFETY INFORMATION 1 1.1 PRELIMINARY 1 1.2 DURING USE 2 1.3 SYMBOLS 3 1.4 MAINTENANCE 4 2. DESCRIPTION 5 2.1 NAMES OF COMPONENTS 5 2.2 SWITCH,

More information

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two.

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two. Lab #1 Help Document This help document will be structured as a walk-through of the lab. We will include instructions about how to write the report throughout this help document. This lab will be completed

More information

AVM360 Analog multimeter OPERATION MANUAL GEBRUIKERSHANDLEIDING MANUEL D UTILISATEUR

AVM360 Analog multimeter OPERATION MANUAL GEBRUIKERSHANDLEIDING MANUEL D UTILISATEUR Analog multimeter OPERATION MANUAL GEBRUIKERSHANDLEIDING MANUEL D UTILISATEUR Analogue Multimeter 1. Description Your is a professional analogue multimeter. It is ideally suited for field, lab, shop, and

More information

DC Circuits, Ohm's Law and Multimeters Physics 246

DC Circuits, Ohm's Law and Multimeters Physics 246 DC Circuits, Ohm's Law and Multimeters Physics 246 Theory: In this lab we will learn the use of multimeters, verify Ohm s law, and study series and parallel combinations of resistors and capacitors. For

More information

ASE 6 - Electrical Electronic Systems. Module 4 Digital Multi-Meter

ASE 6 - Electrical Electronic Systems. Module 4 Digital Multi-Meter Electronic Systems Module 4 Digital Acknowledgements General Motors, the IAGMASEP Association Board of Directors, and Raytheon Professional Services, GM's training partner for GM's Service Technical College

More information

DIGIT & POINTER MULTIMETER

DIGIT & POINTER MULTIMETER CONTENTS DIGIT & POINTER MULTIMETER OPERATOR S MANUAL 1. SAFETY INFORMATION 1 1.1 PRELIMINARY 1 1.2 DURING USE 2 1.3 SYMBOLS 3 1.4 MAINTENANCE 3 2. DESCRIPTION 4 2.1 NAMES OF COMPONENTS 4 2.2 FUNCTION

More information

SCHEMATIC OF GRAYMARK 808 POWERED BREADBOARD

SCHEMATIC OF GRAYMARK 808 POWERED BREADBOARD SCHEMATIC OF GRAYMARK 808 POWERED BREADBOARD 1a white SW1 white 2a TP1 blue TP2 black blue TP3 TP4 yellow TP5 yellow TP6 4 3 8 7 + D1 D2 D5 D6 C1 R1 TP8 Q1 R3 TP12 2 TP18 U2-0-15V C8 9 C2 + TP15 C5 R12

More information

HANDS-ON LAB INSTRUCTION SHEETS MODULE

HANDS-ON LAB INSTRUCTION SHEETS MODULE HANDS-ON LAB INSTRUCTION SHEETS MODULE 1 MEASURING RESISTANCE AND VOLTAGE NOTES: 1) Each student will be assigned to a unique Lab Equipment number MS01-MS30 which will match to a Tool Kit and a Radio Shack

More information

AMM-1022 Digital Multimeter USER`S MANUAL

AMM-1022 Digital Multimeter USER`S MANUAL Digital Multimeter USER`S MANUAL www.tmatlantic.com CONTENTS 1. SAFETY INFORMATION.3 2. DESCRIPTION..6 3. SPECIFICATIONS.8 4. OPERATING INSTRUCTION..11 4.1 Voltage measurement...11 4.2 Current measurement

More information

Configurations of Resistors

Configurations of Resistors Configurations of Resistors Safety and Equipment Multimeter with probes or banana leads. Two of 50Ω and one of 100Ω resistors 5 connecting wires with double alligator clips Introduction There are two basic

More information

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS

AME140 Lab #2 INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS INTRODUCTION TO ELECTRONIC TEST EQUIPMENT AND BASIC ELECTRONICS MEASUREMENTS The purpose of this document is to guide students through a few simple activities to increase familiarity with basic electronics

More information

A.C voltmeters using rectifier

A.C voltmeters using rectifier Lecture 5 A.C voltmeters using rectifier The PMMC movement used in d.c. voltmeters can be effectively used in a.c. voltmeters. The rectifier is used to convert a.c. voltage to be measured, to d.c. This

More information

OPERATOR S INSTRUCTION MANUAL M-2625 AUTO RANGING DIGITAL MULTIMETER

OPERATOR S INSTRUCTION MANUAL M-2625 AUTO RANGING DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL M-2625 AUTO RANGING DIGITAL MULTIMETER with Temperature Probe Copyright 2007 Elenco Electronics, Inc. Contents 1. Safety Information 3,4 2. Safety Symbols 5 3. Front Plate

More information

Home Map Projects Construction Soldering Study Components 555 Symbols FAQ Links

Home Map Projects Construction Soldering Study Components 555 Symbols FAQ Links Home Map Projects Construction Soldering Study Components 555 Symbols FAQ Links Circuit Symbols Wires Supplies Output devices Switches Resistors Capacitors Diodes Transistors Audio & Radio Meters Sensors

More information

Experiment #3: Experimenting with Resistor Circuits

Experiment #3: Experimenting with Resistor Circuits Name/NetID: Experiment #3: Experimenting with Resistor Circuits Laboratory Outline During the semester, the lecture will provide some of the mathematical underpinnings of circuit theory. The laboratory

More information

kg per litre

kg per litre AS Physics - Experiment Questions for Unit 2 1. Explain what is meant by the term polarisation when referring to light............. Sugar is produced from plants such as sugar cane. The stems are crushed

More information

DMM8900 SERIES USERS MANUAL

DMM8900 SERIES USERS MANUAL DMM8900 SERIES USERS MANUAL WARRANTY This instrument is warranted to be free from defects in material and workmanship for a period of one year. Any instrument found defective within one year from the delivery

More information

Self-assessment practice test questions Block 4

Self-assessment practice test questions Block 4 elf-assessment practice test questions Block 4 1 A student uses a bar magnet to magnetise an iron wire, as shown in the diagram. he strokes the N pole of the magnet along the length of the wire, and repeats

More information

AX-C Introduction. 2. Safety Information

AX-C Introduction. 2. Safety Information AX-C708 1. Introduction Read Safety Information before using the meter. ProcessMeter ( referred to as the meter )is a handheld, battery-operated tool for measuring electrical parameters. It has all the

More information

Lab 3: Kirchhoff's Laws and Basic Instrumentation

Lab 3: Kirchhoff's Laws and Basic Instrumentation Lab 3: Kirchhoff's Laws and Basic Instrumentation By: Gary A. Ybarra Christopher E. Cramer Duke Universty Department of Electrical and Computer Engineering Durham, NC 1. Purpose The purpose of this exercise

More information

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction.

The sum of the currents entering a circuit junction is equal to the sum of the currents leaving the junction. By substituting the definition for resistance into the formula for conductance, the reciprocal formula for resistance in parallel circuits is obtained: In parallel circuits, there are junctions where two

More information

Lab 2: Introduction to NI ELVIS, Multisim, and LabVIEW

Lab 2: Introduction to NI ELVIS, Multisim, and LabVIEW Page 1 of 19 Lab 2: Introduction to NI ELVIS, Multisim, and LabVIEW Laboratory Goals Familiarize students with the National Instruments hardware ELVIS Learn about the LabVIEW programming environment Demonstrate

More information

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator

Syllabus OP49 Test electrical conduction in a variety of materials, and classify each material as a conductor or insulator Physics: 14. Current Electricity Please remember to photocopy 4 pages onto one sheet by going A3 A4 and using back to back on the photocopier Syllabus OP49 Test electrical conduction in a variety of materials,

More information

WATER SENSOR Experiment UCSD NanoLab

WATER SENSOR Experiment UCSD NanoLab WATER SENSOR Experiment UCSD NanoLab Professor Michael J. Sailor University of California, San Diego La Jolla, CA 92093-0358 Parts List* 9 V Battery Battery clip 100 kω resistor (2) 330 Ω resistor (1)

More information

Ohm's Law and the Measurement of Resistance

Ohm's Law and the Measurement of Resistance Ohm's Law and the Measurement of Resistance I. INTRODUCTION An electric current flows through a conductor when a potential difference is placed across its ends. The potential difference is generally in

More information

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor.

DISCUSSION The best way to test a transistor is to connect it in a circuit that uses the transistor. Exercise 1: EXERCISE OBJECTIVE When you have completed this exercise, you will be able to test a transistor by forward biasing and reverse biasing the junctions. You will verify your results with an ohmmeter.

More information

GCSE Electronics. Scheme of Work

GCSE Electronics. Scheme of Work GCSE Electronics Scheme of Work Week Topic Detail Notes 1 Practical skills assemble a circuit using a diagram recognize a component from its physical appearance (This is a confidence building/motivating

More information

Series Circuits. Chapter

Series Circuits. Chapter Chapter 4 Series Circuits Topics Covered in Chapter 4 4-1: Why I Is the Same in All Parts of a Series Circuit 4-2: Total R Equals the Sum of All Series Resistances 4-3: Series IR Voltage Drops 4-4: Kirchhoff

More information

Series and Parallel Resistors

Series and Parallel Resistors Series and Parallel Resistors Today you will investigate how connecting resistors in series and in parallel affects the properties of a circuit. You will assemble several circuits and measure the voltage

More information

ExamLearn.ie. Electricity in the Home & Electronics

ExamLearn.ie. Electricity in the Home & Electronics ExamLearn.ie Electricity in the Home & Electronics Electricity in the Home & Electronics Mains supply and safety The mains supply to the sockets in your house or school is at 230 V a.c. This voltage could

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To correctly operate the

More information

MM V 10A ENGLISH. INSTRUCTION MANUAL Auto-Ranging DATA HOLD AUDIBLE CONTINUITY MIN / MAX TEMPERATURE DIODE TEST CAPACITANCE

MM V 10A ENGLISH. INSTRUCTION MANUAL Auto-Ranging DATA HOLD AUDIBLE CONTINUITY MIN / MAX TEMPERATURE DIODE TEST CAPACITANCE INSTRUCTION MANUAL Auto-Ranging Digital Multimeter MM400 DATA HOLD AUDIBLE CONTINUITY MIN / MAX TEMPERATURE DIODE TEST CAPACITANCE 600V 10A 40MΩ 2 GENERAL SPECIFICATIONS Klein Tools MM400 is an auto-ranging

More information

BME 3511 Laboratory 2 Digital Multimeter (DMM)

BME 3511 Laboratory 2 Digital Multimeter (DMM) BME 3511 Laboratory 2 Digital Multimeter (DMM) Objective: The objective of this exercise is to further explore the usage of digital multimeters (DMM). Upon the completion of this lab, the student will:

More information

High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment

High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment Mark High School Physics Laboratory UNB Electrical & Computer Engineering Circuits Experiment Name: Purpose: To investigate circuits connected in series and parallel. pparatus: 2V Power Supply 5 x Digital

More information

OPERATOR S INSTRUCTION MANUAL DIGITAL MULTIMETER

OPERATOR S INSTRUCTION MANUAL DIGITAL MULTIMETER OPERATOR S INSTRUCTION MANUAL DIGITAL MULTIMETER SAFETY INFORMATION This multimeter has been designed according to IEC 1010 concerning electronic measuring instruments with an overvoltage category (CATⅡ)

More information

EM420A/420B DIGITAL MULTIMETER OWNERS MANUAL Read this owners manual thoroughly before use

EM420A/420B DIGITAL MULTIMETER OWNERS MANUAL Read this owners manual thoroughly before use http://www.all-sun.com EM420A/420B DIGITAL MULTIMETER OWNERS MANUAL V Read this owners manual thoroughly before use WARRANTY This instrument is warranted to be free from defects in material and workmanship

More information

AC/DC ELECTRONICS LABORATORY

AC/DC ELECTRONICS LABORATORY Includes Teacher's Notes and Typical Experiment Results Instruction Manual and Experiment Guide for the PASCO scientific Model EM-8656 012-05892A 1/96 AC/DC ELECTRONICS LABORATORY 1995 PASCO scientific

More information

MM700. True RMS ENGLISH. INSTRUCTION MANUAL Auto-Ranging. Measurement Technology

MM700. True RMS ENGLISH. INSTRUCTION MANUAL Auto-Ranging. Measurement Technology INSTRUCTION MANUAL Auto-Ranging Digital Multimeter er True RMS Measurement Technology MM700 DATA & RANGE HOLD LOW IMPEDANCE AUDIBLE CONTINUITY MIN / MAX / RELATIVE TEMPERATURE DIODE TEST CAPACITANCE &

More information

4.5 Auto Power Off During use Preparation For Measurement Symbols...3

4.5 Auto Power Off During use Preparation For Measurement Symbols...3 MS8211 DIGITAL MULTIMETER INSTRUCTION MANUAL Ω CONTENTS CONTENTS 1. SAFETY INFORM...1 4.4 Range Transform...10 1.1 Preliminary...1 4.5 Auto Power Off...10 1.2 During use...2 4.6 Preparation For Measurement...11

More information

DIGITAL MULTIMETER OPERATING INSTRUCTIONS MODEL CDM-35. Part No

DIGITAL MULTIMETER OPERATING INSTRUCTIONS MODEL CDM-35. Part No DIGITAL MULTIMETER MODEL CDM-35 Part No.4500055 OPERATING INSTRUCTIONS 0304 The Meter may be hung on a wall, or supported as shown, depending upon which support is used. The probes may be located as shown,

More information

Electrolyte Challenge: Orange Juice Vs. Sports Drink

Electrolyte Challenge: Orange Juice Vs. Sports Drink Electrolyte Challenge: Orange Juice Vs. Sports Drink https://www.sciencebuddies.org/science-fair-projects/project-ideas/chem_p053/chemistry/electrolyte-challenge-orange-juice-vs-sports-drink (http://www.sciencebuddies.org/science-fair-projects/project-ideas/chem_p053/chemistry/electrolyte-challenge-orange-juice-vs-sports-drink)

More information

DIGITAL MULTIMETER CONTENTS DIGITAL MULTIMETER CONTENTS

DIGITAL MULTIMETER CONTENTS DIGITAL MULTIMETER CONTENTS CONTENTS CONTENTS CONTENTS 1. SAFETY INFORMATION...1 1.1 Preliminary...1 1.2 Dos and don ts...2 1.3 Symbols...3 1.4 Precautions...4 2. DESCRIPTION...5 2.1 Names of parts...6 2.2 Switches, buttons and input

More information

1.General instructions Specifications Description...7

1.General instructions Specifications Description...7 USER S Manual CONTENTS 1.General instructions...1 1.1 Precautions safety measures...1 1.1.1 Preliminary...1 1.1.2 During use...2 1.1.3 Symbols...4 1.1.4 Instructions...5 1.2 Protection mechanisms...6 2.

More information