Series and Parallel Resistors

Size: px
Start display at page:

Download "Series and Parallel Resistors"

Transcription

1 Series and Parallel Resistors Today you will investigate how connecting resistors in series and in parallel affects the properties of a circuit. You will assemble several circuits and measure the voltage and current across each element. Equipment: You ll need the following equipment for this lab: A battery eliminator, a digital multimeter (to measure current and voltage), a student breadboard, some resistors, and wire connectors. 1. Before you begin analyzing either of the two circuits A and B you will construct, you need to know the emf of your battery eliminator. Assuming that the internal resistance of the battery eliminator is negligible, you can measure its emf E by measuring the voltage between the terminals. Use the digital multimeter set to V DC to measure the voltage between the terminals. This is the battery eliminator s emf. It should be close to 3V. Record this value above each data table on the line provided. 2. You also need to know the resistance for each resistor you will be using. Using the digital multimeter set to Ω to measure the resistance of each of the resistors you will be using. You may want to label your resistors #1, #2, and #3 or something similar to keep track of them throughout the experiment. Record the measured values on the data sheets for circuit A and circuit B For each of the two circuits, do the following: - Calculate the effective resistance of the circuit and the net current. Neatly show all your steps and calculations in the space provided. Record these values in the data table in the Predicted column - Calculate what the current and potential difference across each resistor should be. You ll need to use Kirchhoff s rules and Ohm s law. Record these values in the table in the Predicted column - Assemble the circuit and measure the current and voltage across each resistor. Remember that an ammeter is connected in series and a voltmeter is connected in parallel. Record your measured values in the table - Measure the net current out of the battery and effective resistance of the circuit. Record your measured values in the table - Calculate the percent difference between your measured and predicted values. 3. Finally, answer the questions on the last sheet using the space provided and turn in with your results on the two circuits. 1

2 Important notes on setting up your circuit and measuring voltage and current: 1. On the breadboards, each column of 5 holes is connected. Consecutive holes along the same row are not connected. Therefore, to set up two resistors in parallel, they should both start on the same column and end on the same column. For example, if you had a resistor with one end in hole E1 and the other end in hole E5, you could connect another resistor between holes D1 and D5, and the two would be in parallel. An example of two resistors in series would be one connected to holes E1 and E5, and the other connected to holes D5 and D9. 2. Remember, in order to measure voltage, you connect the multimeter in parallel with the circuit element you are measuring. To measure current, you must break the circuit and connect the multimeter in series with the circuit element you are measuring. Also, note that you have to plug the probes into different input jacks for measuring current than you do when measuring voltage or resistance. Circuit A Circuit B 2

3 Series and Parallel Resistors Name: Date: TA: Group Members: Circuit A R 1 = Ω R 2 = Ω R 3 = Ω Show your calculations for the net current and effective resistance in the space below. E = I net R eff ΔV 1 ΔV 2 ΔV 3 I 1 I 2 I 3 Predicted Measured % diff. 3

4 Circuit B R 1 = Ω R 2 = Ω R 3 = Ω Show your calculations for the net current and effective resistance in the space below. E = I net R eff ΔV 1 ΔV 2 ΔV 3 I 1 I 2 I 3 Predicted Measured % diff. 4

5 Questions (use the back of this sheet if necessary) 1. Do your calculated values for current and potential difference in each circuit agree with your measurements? Explain why there is not perfect agreement. 2. Is the resistance of an ammeter high or low? Explain. 3. Is the resistance of a voltmeter high or low? Explain. 4. A series string of Christmas lights, each with a resistance of 20 Ω, is connected to a 120 V source. If the current through the circuit is 0.6 A, how many lights are there? What is the potential difference across each light? 5. (a) Two resistors are connected in series across a battery. Is the power delivered to each resistor (i) the same, or (ii) not necessarily the same? Explain. (b) Two resistors are connected in parallel across a battery. Is the power delivered to each resistor (i) the same or (ii) not necessarily the same? Explain. 6. Connecting batteries in series increases the emf applied to a circuit. What advantage might there be to connecting them in parallel? 5

DC CIRCUITS AND OHM'S LAW

DC CIRCUITS AND OHM'S LAW July 15, 2008 DC Circuits and Ohm s Law 1 Name Date Partners DC CIRCUITS AND OHM'S LAW AMPS - VOLTS OBJECTIVES OVERVIEW To learn to apply the concept of potential difference (voltage) to explain the action

More information

Fig [5]

Fig [5] 1 (a) Fig. 4.1 shows the I-V characteristic of a light-emitting diode (LED). 40 I / 10 3 A 30 20 10 0 1.0 1.5 2.0 V / V Fig. 4.1 (i) In Describe the significant features of the graph in terms of current,

More information

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS

VISUAL PHYSICS ONLINE. Experiment PA41A ELECTRIC CIRCUITS VISUAL PHYSICS ONLINE Experiment PA41A ELECTRIC CIRCUITS Equipment (see Appendices) 12V DC power supply (battery): multimeter (and/or milliammeter and voltmeter); electrical leads; alligator clips; fixed

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

Oregon State University Lab Session #1 (Week 3)

Oregon State University Lab Session #1 (Week 3) Oregon State University Lab Session #1 (Week 3) ENGR 201 Electrical Fundamentals I Equipment and Resistance Winter 2016 EXPERIMENTAL LAB #1 INTRO TO EQUIPMENT & OHM S LAW This set of laboratory experiments

More information

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES

Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES 57 Name Date Partners Lab 4 OHM S LAW AND KIRCHHOFF S CIRCUIT RULES AMPS - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit.

More information

The Art of Electrical Measurements

The Art of Electrical Measurements The Art of Electrical Measurements Purpose: Introduce fundamental electrical test and measurement tools and the art of making electrical measurements. Equipment Required Prelab 1 Digital Multimeter 1 -

More information

Lab 3: Digital Multimeter and Voltage Generator

Lab 3: Digital Multimeter and Voltage Generator Lab 3: Digital Multimeter and Voltage Generator Lab Goals: Learn how to use your mydaq as a Digital Multimeter (DMM) Learn how to output a signal to a specified output port on the mydaq and verify its

More information

Configurations of Resistors

Configurations of Resistors Configurations of Resistors Safety and Equipment Multimeter with probes or banana leads. Two of 50Ω and one of 100Ω resistors 5 connecting wires with double alligator clips Introduction There are two basic

More information

Ohm s Law and Electrical Circuits

Ohm s Law and Electrical Circuits Ohm s Law and Electrical Circuits INTRODUCTION In this experiment, you will measure the current-voltage characteristics of a resistor and check to see if the resistor satisfies Ohm s law. In the process

More information

Resistance and Ohm s Law

Resistance and Ohm s Law esistance and Ohm s Law Name D TA Partners Date Section Please be careful about the modes of the multimeter. When you measure a voltage, you are not allowed to use current mode (A), and vice versa. Otherwise,

More information

Lab 3 DC CIRCUITS AND OHM'S LAW

Lab 3 DC CIRCUITS AND OHM'S LAW 43 Name Date Partners Lab 3 DC CIRCUITS AND OHM'S LAW AMPS + - VOLTS OBJECTIVES To learn to apply the concept of potential difference (voltage) to explain the action of a battery in a circuit. To understand

More information

Resistance Measurements (Measure all of your resistors, since even those that are labeled the same can be at least a little different)

Resistance Measurements (Measure all of your resistors, since even those that are labeled the same can be at least a little different) Resistors We begin by learning how to read the values of resistors and to measure the values using a digital multimeter (DMM). Resistors are the most common and simplest electrical component. In an electrical

More information

Name: Period: Date: 2. In the circuit below, n charge carriers pass the point P in a time t. Each charge carrier has charge q.

Name: Period: Date: 2. In the circuit below, n charge carriers pass the point P in a time t. Each charge carrier has charge q. Name: Period: Date: IB-1 Practice Electrical Currents, Resistance, and Circuits Multiple Choice Questions 1. In the circuit below, which meter is not correctly connected? A 1 3 A 2 4 A. 1 B. 2 C. 3 D.

More information

EECS40 Lab Introduction to Lab: Guide

EECS40 Lab Introduction to Lab: Guide Aschenbach, Konrad Muthuswamy, Bharathwaj EECS40 Lab Introduction to Lab: Guide Objective The student will use the following circuit elements and laboratory equipment to make basic circuit measurements:

More information

Laboratory Project 1a: Power-Indicator LED's

Laboratory Project 1a: Power-Indicator LED's 2240 Laboratory Project 1a: Power-Indicator LED's Abstract-You will construct and test two LED power-indicator circuits for your breadboard in preparation for building the Electromyogram circuit in Lab

More information

Exercise 3: Voltage in a Series Resistive Circuit

Exercise 3: Voltage in a Series Resistive Circuit DC Fundamentals Series Resistive Circuits Exercise 3: Voltage in a Series Resistive Circuit EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the voltage in a series

More information

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT

THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT THE BREADBOARD; DC POWER SUPPLY; RESISTANCE OF METERS; NODE VOLTAGES AND EQUIVALENT RESISTANCE; THÉVENIN EQUIVALENT CIRCUIT YOUR NAME GTA S SIGNATURE LAB MEETING TIME Objectives: To correctly operate the

More information

Experiment #5 Series and Parallel Resistor Circuits

Experiment #5 Series and Parallel Resistor Circuits Experiment #5 Series and Parallel Resistor Circuits Objective: You will become familiar with the MB Board and learn how to build simple DC circuits. This will introduce you to series and parallel circuits

More information

Lab 2.4 Arduinos, Resistors, and Circuits

Lab 2.4 Arduinos, Resistors, and Circuits Lab 2.4 Arduinos, Resistors, and Circuits Objectives: Investigate resistors in series and parallel and Kirchoff s Law through hands-on learning Get experience using an Arduino hat you need: Arduino Kit:

More information

Circuits: Light-Up Creatures Student Advanced version

Circuits: Light-Up Creatures Student Advanced version Circuits: Light-Up Creatures Student Advanced version In this lab you will explore current, voltage and resistance and their relationships as given by the Ohm s law. You will also explore of how resistance

More information

Series and Parallel Resistors

Series and Parallel Resistors Lab 8. Series and Parallel Resistors Goals To understand the fundamental difference between resistors connected in series and in parallel. To calculate the voltages and currents in simple circuits involving

More information

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two.

Lab #1 Help Document. This lab will be completed in room 335 CTB. You will need to partner up for this lab in groups of two. Lab #1 Help Document This help document will be structured as a walk-through of the lab. We will include instructions about how to write the report throughout this help document. This lab will be completed

More information

Electric Circuit Experiments

Electric Circuit Experiments Electric Circuit Experiments 1. Using the resistor on the 5-resistor block, vary the potential difference across it in approximately equal increments for eight different values (i.e. use one to eight D-

More information

PH213 Chapter 26 solutions

PH213 Chapter 26 solutions PH213 Chapter 26 solutions 26.6. IDENTIFY: The potential drop is the same across the resistors in parallel, and the current into the parallel combination is the same as the current through the 45.0-Ω resistor.

More information

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm

Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm Sept 13 Pre-lab due Sept 12; Lab memo due Sept 19 at the START of lab time, 1:10pm EGR 220: Engineering Circuit Theory Lab 1: Introduction to Laboratory Equipment Pre-lab Read through the entire lab handout

More information

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics

Circuitry II. Name: Date: Section C D F. Mr. Alex Rawson Physics Name: Date: Section C D F Circuitry II Mr. Alex Rawson Physics 1. Three resistors of 100, 140, and 80 are placed in a series circuit. a. Find the equivalent resistance. (Your answer should be between 0

More information

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS

HANDS-ON ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND WIRING DIRECTIONS ACTIVITY 4 BUILDING SERIES AND PARALLEL CIRCUITS BACKGROUND Make sure you read the background in Activity 3 before doing this activity. WIRING DIRECTIONS Materials per group of two: one or two D-cells

More information

DC Circuits. (a) You drag an element by clicking on the body of the element and dragging it.

DC Circuits. (a) You drag an element by clicking on the body of the element and dragging it. DC Circuits KET Virtual Physics Labs Worksheet Lab 12-1 As you work through the steps in the lab procedure, record your experimental values and the results on this worksheet. Use the exact values you record

More information

Pre-Lab for Batteries and Bulbs

Pre-Lab for Batteries and Bulbs Pre-Lab for Batteries and Bulbs Complex circuits composed of resistors can be simplified by using the concept of equivalent resistors. For example if resistors R 1, R 2, and R 3 are connected in series,

More information

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1

Chapter 23 Circuits. Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Circuits Chapter Goal: To understand the fundamental physical principles that govern electric circuits. Slide 23-1 Chapter 23 Preview Looking Ahead: Analyzing Circuits Practical circuits consist

More information

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1.

These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1. Contents These are samples of learning materials and may not necessarily be exactly the same as those in the actual course. Contents 1 Introduction 2 Ohm s law relationships 3 The Ohm s law equation 4

More information

Lab 3: Kirchhoff's Laws and Basic Instrumentation

Lab 3: Kirchhoff's Laws and Basic Instrumentation Lab 3: Kirchhoff's Laws and Basic Instrumentation By: Gary A. Ybarra Christopher E. Cramer Duke Universty Department of Electrical and Computer Engineering Durham, NC 1. Purpose The purpose of this exercise

More information

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V

1-1. Kirchoff s Laws A. Construct the circuit shown below. R 1 =1 kω. = 2.7 kω R 3 R 2 5 V Physics 310 Lab 1: DC Circuits Equipment: Digital Multimeter, 5V Supply, Breadboard, two 1 kω, 2.7 kω, 5.1 kω, 10 kω, two, Decade Resistor Box, potentiometer, 10 kω Thermistor, Multimeter Owner s Manual

More information

PHY 112L Activity 2 Electronics Primer

PHY 112L Activity 2 Electronics Primer PHY 112L Activity 2 Electronics Primer Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the power supply and multimeter commonly used to analyze electric circuits 2. Understand

More information

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab

University of Jordan School of Engineering Electrical Engineering Department. EE 219 Electrical Circuits Lab University of Jordan School of Engineering Electrical Engineering Department EE 219 Electrical Circuits Lab EXPERIMENT 1 REPORT MEASUREMENT DEVICES Group # 1. 2. 3. 4. Student Name ID EXPERIMENT 1 MEASUREMENT

More information

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1

EXAMPLE. Use this jack for the red test lead when measuring. current from 0 to 200mA. Figure P-1 Digital Multimeters ON / OFF power switch Continuity / Diode Test Function Resistance Function Ranges from 200Ω to 200MΩ Transistor Test Function DC Current Function Ranges from 2mA to 20A. AC Current

More information

II. Experimental Procedure

II. Experimental Procedure Ph 122 July 27, 2006 Ohm's Law http://www.physics.sfsu.edu/~manuals/ph122/ I. Theory In this lab we will make detailed measurements on one resistor to see if it obeys Ohm's law. We will also verify the

More information

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 2. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 2 Ohm s Law 2.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Direct Current Circuits

Direct Current Circuits PC1143 Physics III Direct Current Circuits 1 Objectives Apply Kirchhoff s rules to several circuits, solve for the currents in the circuits and compare the theoretical values predicted by Kirchhoff s rule

More information

DC Electric Circuits: Resistance and Ohm s Law

DC Electric Circuits: Resistance and Ohm s Law DC Electric Circuits: Resistance and Ohm s Law Goals and Introduction Our society is very reliant on electric phenomena, perhaps most so on the utilization of electric circuits. For much of our world to

More information

PHYS 1112L - Introductory Physics Laboratory II

PHYS 1112L - Introductory Physics Laboratory II PHYS 1112L - Introductory Physics Laboratory II Laboratory Advanced Sheet dc Circuits 1. Objectives. The objectives of this laboratory are a. to be able to construct dc circuits given a circuit diagram

More information

The following symbols are used in electric circuits:

The following symbols are used in electric circuits: Circuit Electricity The following symbols are used in electric circuits: Four devices are commonly used in the laboratory to study Ohm s law: the battery, the voltmeter, the ammeter and a resistance. The

More information

EET 1150 Lab 6 Ohm s Law

EET 1150 Lab 6 Ohm s Law Name EQUIPMENT and COMPONENTS Digital Multimeter Trainer with Breadboard Resistors: 220, 1 k, 1.2 k, 2.2 k, 3.3 k, 4.7 k, 6.8 k Red light-emitting diode (LED) EET 1150 Lab 6 Ohm s Law In this lab you ll

More information

Draw, in the space below, a circuit diagram of this circuit. Use the correct symbols for each part of the circuit.

Draw, in the space below, a circuit diagram of this circuit. Use the correct symbols for each part of the circuit. Q1. The drawing shows the circuit used to investigate how the current through a 5 ohm (Ω) resistor changes as the potential difference (voltage) across the resistor changes. (a) Draw, in the space below,

More information

Source Transformations

Source Transformations Source Transformations Introduction The circuits in this set of problems consist of independent sources, resistors and a meter. In particular, these circuits do not contain dependent sources. Each of these

More information

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS

MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS MEASUREMENTS & INSTRUMENTATION ANALOG AND DIGITAL METERS ANALOG Metering devices Provides monotonous (continuous) movement. ELECTRICAL MEASURING INSTRUMENTS ANALOG METERS A d Arsonval galvanometer (Moving

More information

PHYS 1402 General Physics II Experiment 5: Ohm s Law

PHYS 1402 General Physics II Experiment 5: Ohm s Law PHYS 1402 General Physics II Experiment 5: Ohm s Law Student Name Objective: To investigate the relationship between current and resistance for ordinary conductors known as ohmic conductors. Theory: For

More information

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: Jan 29, E Main Suite D Pullman, WA (509) Voice and Fax Revision: Jan 29, 2011 215 E Main Suite D Pullman, WA 99163 (509) 334 6306 Voice and Fax Overview The purpose of this lab assignment is to provide users with an introduction to some of the equipment which

More information

ECE 53A: Fundamentals of Electrical Engineering I

ECE 53A: Fundamentals of Electrical Engineering I ECE 53A: Fundamentals of Electrical Engineering I Laboratory Assignment #1: Instrument Operation, Basic Resistor Measurements and Kirchhoff s Laws Fall 2007 General Guidelines: - Record data and observations

More information

2. Meter Measurements and Loading Effects in Resistance Circuits

2. Meter Measurements and Loading Effects in Resistance Circuits 2. Meter Measurements and Loading Effects in Resistance Circuits 2.1. Purpose 1. To measure and predict the affects of multimeter(s) on a circuit when measuring electrical quantities. 2. To make use of

More information

PhysicsAndMathsTutor.com 1

PhysicsAndMathsTutor.com 1 PhysicsAndMathsTutor.com 1 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible

More information

Lab #1: Electrical Measurements I Resistance

Lab #1: Electrical Measurements I Resistance Lab #: Electrical Measurements I esistance Goal: Learn to measure basic electrical quantities; study the effect of measurement apparatus on the quantities being measured by investigating the internal resistances

More information

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 8 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 08-1 Name Date Partners ab 8 - INTRODUCTION TO AC CURRENTS AND VOTAGES OBJECTIVES To understand the meanings of amplitude, frequency, phase, reactance, and impedance in AC circuits. To observe the behavior

More information

Simple Circuits Experiment

Simple Circuits Experiment Physics 8.02T 1 Fall 2001 Simple Circuits Experiment Introduction Our world is filled with devices that contain electrical circuits in which various voltage sources cause currents to flow. We use radios,

More information

8.0 Ω 12.0 Ω. When the switch S is open, show that the potential difference between the points X and Y is 7.2 V.

8.0 Ω 12.0 Ω. When the switch S is open, show that the potential difference between the points X and Y is 7.2 V. 1. The figure below shows a circuit containing a battery of e.m.f. 12 V, two resistors, a light-dependent resistor (LDR), an ammeter and a switch S. The battery has negligible internal resistance. 8.0

More information

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES

Lab 9 - INTRODUCTION TO AC CURRENTS AND VOLTAGES 145 Name Date Partners Lab 9 INTRODUCTION TO AC CURRENTS AND VOLTAGES V(volts) t(s) OBJECTIVES To learn the meanings of peak voltage and frequency for AC signals. To observe the behavior of resistors in

More information

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M

Group: Names: Resistor Band Colors Measured Value ( ) R 1 : 1k R 2 : 1k R 3 : 2k R 4 : 1M R 5 : 1M 2.4 Laboratory Procedure / Summary Sheet Group: Names: (1) Select five separate resistors whose nominal values are listed below. Record the band colors for each resistor in the table below. Then connect

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

Lab. I Electrical Measurements, Serial and Parallel Circuits

Lab. I Electrical Measurements, Serial and Parallel Circuits Name (last, first) ECE 2100 ID Lab. I Electrical Measurements, Serial and Parallel Circuits Pre-Lab Important note: this is the pre-lab of Lab I. You can type in the answers, or print out and write in

More information

DC Circuits and Ohm s Law

DC Circuits and Ohm s Law DC Circuits and Ohm s Law INTRODUCTION During the nineteenth century so many advances were made in understanding the electrical nature of matter that it has been called the age of electricity. One such

More information

Lab 5: Real DC Circuits

Lab 5: Real DC Circuits Physics 2020, Fall 2010 Lab 5 page 1 of 7 Circle your lab day and time. Your name: Mon Tue Wed Thu Fri TA name: 8-10 10-12 12-2 2-4 4-6 INTRODUCTION Lab 5: Real DC Circuits The field of electronics has

More information

Electric Current & DC Circuits

Electric Current & DC Circuits Electric Current & DC Circuits PSI AP Physics B Name Multiple-Choice 1. The length of an aluminum wire is quadrupled and the radius is doubled. By which factor does the resistance change? (A) 2 (B) 4 (C)

More information

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014

ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 ELECTRIC CIRCUIT PROBLEMS 12 AUGUST 2014 In this lesson we: Lesson Description Discuss the application of Ohm s Law Explain the series and parallel connection of resistors Discuss the effect of internal

More information

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current.

Experiment 3. Ohm s Law. Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Experiment 3 Ohm s Law 3.1 Objectives Become familiar with the use of a digital voltmeter and a digital ammeter to measure DC voltage and current. Construct a circuit using resistors, wires and a breadboard

More information

Lab 11: Circuits. Figure 1: A hydroelectric dam system.

Lab 11: Circuits. Figure 1: A hydroelectric dam system. Description Lab 11: Circuits In this lab, you will study voltage, current, and resistance. You will learn the basics of designing circuits and you will explore how to find the total resistance of a circuit

More information

OHM'S LAW AND RESISTANCE NETWORKS OBJECT

OHM'S LAW AND RESISTANCE NETWORKS OBJECT 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information

Experiment 1: Breadboard Basics

Experiment 1: Breadboard Basics Experiment 1: Breadboard Basics Developers Objectives Estimated Time for Completion KM Lai, JB Webb, and RW Hendricks The objective of this experiment is to measure and to draw the electrical connections

More information

Lightbulbs and Dimmer Switches: DC Circuits

Lightbulbs and Dimmer Switches: DC Circuits Introduction It is truly amazing how much we rely on electricity, and especially on devices operated off of DC current. Your PDA, cell phone, laptop computer and calculator are all examples of DC electronics.

More information

D V (Total 1 mark)

D V (Total 1 mark) 1. One electronvolt is equal to A. 1.6 10 19 C. B. 1.6 10 19 J. C. 1.6 10 19 V. D. 1.6 10 19 W. 2. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5

More information

Engineering Laboratory Exercises (Electric Circuits Module) Prepared by

Engineering Laboratory Exercises (Electric Circuits Module) Prepared by Engineering 1040 Laboratory Exercises (Electric Circuits Module) Prepared by Eric W. Gill FALL 2008 2 EXP 1040-EL1 VOLTAGE, CURRENT, RESISTANCE AND POWER PURPOSE To (i) investigate the relationship between

More information

EE EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION. Figure 1: Internal resistance of a non-ideal ammeter.

EE EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION. Figure 1: Internal resistance of a non-ideal ammeter. Consider the two circuits shown in Figure 1 below. EE 2101 - EXPERIMENT 2 ANALOG AND DIGITAL MULTIMETERS INTRODUCTION Figure 1: Internal resistance of a non-ideal ammeter. The circuit on the left contains

More information

Lab #1 Lab Introduction

Lab #1 Lab Introduction Cir cuit s 212 Lab Lab #1 Lab Introduction Special Information for this Lab s Report Because this is a one-week lab, please hand in your lab report for this lab at the beginning of next week s lab. The

More information

EECS 100/43 Lab 1 Sources and Resistive Circuits

EECS 100/43 Lab 1 Sources and Resistive Circuits 1. Objective EECS 100/43 Lab 1 Sources and Resistive Circuits In this lab, you learn how to use the basic equipment on your workbench: the breadboard, power supply and multimeter. You use the breadboard

More information

Electrical Circuits Question Paper 6

Electrical Circuits Question Paper 6 Electrical Circuits Question Paper 6 Level IGCSE Subject Physics Exam Board CIE Topic Electricity and Magnetism Sub-Topic Electrical Circuits Paper Type lternative to Practical Booklet Question Paper 6

More information

Industrial Electricity

Industrial Electricity Industrial Electricity Name DUE //7 or //7 (Your next lab day) Prelab: efer to the tables on Page 5. Show work neatly and completely on separate paper for any entry labeled calculated. You do not need

More information

CK-12 Physics Concepts - Intermediate Answer Key

CK-12 Physics Concepts - Intermediate Answer Key Chapter 19: Electrical Circuits 19.1 Series Circuits CK-12 Physics Concepts - Intermediate Answer Key 1. There are three 20.0 Ohm resistors connected in series across a 120 V generator. a. What is the

More information

EE 448 Fall Lab Experiment No. 3 04/04/2008. Transformer Experiment

EE 448 Fall Lab Experiment No. 3 04/04/2008. Transformer Experiment EE 8 Laboratory Experiment 3 EE 8 Fall 2008 Lab Experiment No. 3 0/0/2008 1 I. INTRODUCTION OBJECTIVES: EE 8 Laboratory Experiment 3 1. To learn how real world transformers operate under ideal conditions.

More information

Introduction to the Laboratory

Introduction to the Laboratory Memorial University of Newfoundland Department of Physics and Physical Oceanography Physics 2055 Laboratory Introduction to the Laboratory The purpose of this lab is to introduce you to some of the equipment

More information

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The

Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The 1 Lab 1a Input and Output Impedance Fig. 1: (a) Complicated circuit. (b) Its Thévenin equivalent Figure 1(a) shows a complicated circuit with five batteries and ten resistors all in a box. The circuit

More information

Experiment 2 Electric Circuit Fundamentals

Experiment 2 Electric Circuit Fundamentals Experiment 2 Electric Circuit Fundamentals Introduction This experiment has two parts. Each part will have to be carried out using the Multisim Electronics Workbench software. The experiment will then

More information

1 A 60-W light bulb operating on a 120-volt household circuit has a resistance closest to

1 A 60-W light bulb operating on a 120-volt household circuit has a resistance closest to Slide 1 / 31 1 A 60-W light bulb operating on a 120-volt household circuit has a resistance closest to A 60 Ω B 120 Ω C 240 Ω D 180 Ω E 360 Ω Slide 2 / 31 2 Which of the following is equivalent to the

More information

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT

CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT CHAPTER 3: ELECTRIC CURRENT AND DIRECT CURRENT CIRCUIT PSPM II 2005/2006 NO. 3 3. (a) Write Kirchhoff s law for the conservation of energy. FIGURE 2 (b) A circuit of two batteries and two resistors is

More information

HANDS-ON LAB INSTRUCTION SHEETS MODULE

HANDS-ON LAB INSTRUCTION SHEETS MODULE HANDS-ON LAB INSTRUCTION SHEETS MODULE 1 MEASURING RESISTANCE AND VOLTAGE NOTES: 1) Each student will be assigned to a unique Lab Equipment number MS01-MS30 which will match to a Tool Kit and a Radio Shack

More information

... (1) A battery of emf ε and negligible internal resistance is connected in series to two resistors. The current in the circuit is I.

... (1) A battery of emf ε and negligible internal resistance is connected in series to two resistors. The current in the circuit is I. 1. This question is about electric circuits. (a) Define (i) electromotive force (emf ) of a battery. (ii) electrical resistance of a conductor. (b) A battery of emf ε and negligible internal resistance

More information

Physics 201 Laboratory: Analog and Digital Electronics. I-0. Introductory Notes

Physics 201 Laboratory: Analog and Digital Electronics. I-0. Introductory Notes Physics 201 Laboratory: Analog and Digital Electronics -0. ntroductory Notes Definitions of circuit and current. Current is the flow of charge. We may think of electrons flowing through a wire as a current

More information

Series and parallel resistances

Series and parallel resistances Series and parallel resistances Objectives Calculate the equivalent resistance for resistors connected in both series and parallel combinations. Construct series and parallel circuits of lamps (resistors).

More information

State an equation giving the total power delivered by the battery.

State an equation giving the total power delivered by the battery. Electricity Paper2 (set 1) 1. This question is about electric circuits. (a) Define (i) electromotive force (emf ) of a battery. (1) (ii) electrical resistance of a conductor. (1) (b) A battery of emf ε

More information

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. D. 24.

1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. D. 24. 1. A battery of internal resistance 2 Ω is connected to an external resistance of 10 Ω. The current is 0.5 A. What is the emf of the battery? A. 1.0 V B. 5.0 V C. 6.0 V D. 24.0 V (Total 1 mark) IB Questionbank

More information

Current, resistance, and Ohm s law

Current, resistance, and Ohm s law Current, resistance, and Ohm s law Apparatus DC voltage source set of alligator clips 2 pairs of red and black banana clips 3 round bulb 2 bulb sockets 2 battery holders or 1 two-battery holder 2 1.5V

More information

Electric Circuits Notes 1 Circuits

Electric Circuits Notes 1 Circuits Electric Circuits Notes 1 Circuits In the last chapter we examined how static electric charges interact with one another. These fixed electrical charges are not the same as the electricity that we use

More information

ELECTRIC Circuits Test

ELECTRIC Circuits Test ELECTRIC Circuits Test Name: /50 Multiple Choice (1 mark each) ( 13 marks) 1. Circle the best answer for each of the multiple choice questions below: Quantity measured Units used 1 -- potential difference

More information

Electric Circuit I Lab Manual Session # 2

Electric Circuit I Lab Manual Session # 2 Electric Circuit I Lab Manual Session # 2 Name: ----------- Group: -------------- 1 Breadboard and Wiring Objective: The objective of this experiment is to be familiar with breadboard and connection made

More information

Experiment A3 Electronics I Procedure

Experiment A3 Electronics I Procedure Experiment A3 Electronics I Procedure Deliverables: Checked lab notebook, Brief technical memo Overview Most of the transducers used in modern engineering applications are electronic, meaning they convert

More information

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE

AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE July 22, 2008 AC Currents, Voltages, Filters, Resonance 1 Name Date Partners AC CURRENTS, VOLTAGES, FILTERS, and RESONANCE V(volts) t(s) OBJECTIVES To understand the meanings of amplitude, frequency, phase,

More information

UNIT-2 CURRENT ELECTRICITY

UNIT-2 CURRENT ELECTRICITY UNIT-2 CURRENT ELECTRICITY 1 Marks Question 1. A wire of resistance R is cut into n equal parts.these parts are then connected in parallel with each other. The equivalent resistance of the combination

More information

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit.

V (in volts) = voltage applied to the circuit, I (in amperes) = current flowing in the circuit, R (in ohms) = resistance of the circuit. OHM S LW OBJECTIES: PRT : 1) Become familiar with the use of ammeters and voltmeters to measure DC voltage and current. 2) Learn to use wires and a breadboard to build circuits from a circuit diagram.

More information

Resistance and Ohm s law

Resistance and Ohm s law Resistance and Ohm s law Objectives Characterize materials as conductors or insulators based on their electrical properties. State and apply Ohm s law to calculate current, voltage or resistance in an

More information

EE 210: CIRCUITS AND DEVICES

EE 210: CIRCUITS AND DEVICES EE 210: CIRCUITS AND DEVICES LAB #3: VOLTAGE AND CURRENT MEASUREMENTS This lab features a tutorial on the instrumentation that you will be using throughout the semester. More specifically, you will see

More information

+ A Supply B. C Load D

+ A Supply B. C Load D 17 E7 E7.1 OHM'S LAW AND RESISTANCE NETWORKS OBJECT The objects of this experiment are to determine the voltage-current relationship for a resistor and to verify the series and parallel resistance formulae.

More information