A Low Power High Speed Class-B Buffer Amplifier for Flat Panel Display Application

Size: px
Start display at page:

Download "A Low Power High Speed Class-B Buffer Amplifier for Flat Panel Display Application"

Transcription

1 A ow ower igh Speed Class-B Buffer Amplifier for Flat anel Display Application Chih-Wen u Department of lectrical ngeerg, National Chi Nan University cwlu@ncnu.edu.tw Chung en ee Department of lectronics ngeerg, National Chiao Tung University cllee@cc.nctu.edu.tw Abstract A low power, high speed, but with a large put dynamic range and output swg class-b output buffer circuit which is suitable for the flat-panel display application is proposed. The buffer draws little current durg static but has a large drivg capability durg transients. t has been demonstrated with the TSMC.6µm CMOS technology. 1. ntroduction With the evolution of compact, light-weighted, low power and high quality display, there is a big demand of developg the low power consumg, high efficiency, and high-speed buffer circuit. The circuit should occupy a small die area, consume mimal power, have a settlg time smaller than the horizontal time, and a capability of offerg high current resolution which can accommodate up to 56 gray levels. For a V of full scale, each gray level corresponds to 16 mv [1-]. Some output buffers were proposed and demonstrated recent years. For examples, Yu et al [5] proposed a class-b output buffer for flat-panel-display column driver, for which a comparator was used the negative feedback path to elimate the quiescent current the output stage; ee et al [6] proposed a dynamic bias technique, to crease the bias current of the differential put stage of a two-stage amplifier when the put voltage difference is large; and Khorramabadi [7] also proposed a class-b amplifier which had a better power efficiency but with a large output transistor. n this work, a class-b CMOS output buffer circuit is proposed. The circuit achieves the large drivg capability by employg a simple but elegant comparator circuit to sense the transients of the put to turn on push-pull transistors, which are statically off when no put is applied. This creases the speed of the circuit without creasg too much static power consumption. The circuit also features a wide put voltage range, a large output swg.. The roposed Class-B Buffer Fig. 1 shows the proposed class-b buffer circuit. As a buffer, the output is connected to the vertg put (-) and the put signal is applied to the non-vertg termal (+). This buffer consists of a differential stage (M-M8), two comparators (M9-M1) and a rail-to-rail push-pull output stage (M13-M1). The differential pair M5-M6, which is biased by the constant current source M1-M, is loaded by the diode-connected transistors M7 and M8. The comparators are used to sense and amplify the voltage difference of two puts. Then the output of the comparators turn on/off the push-pull transistors. The aspect ratios of M9 and M11 are chosen to be the same as those of M7 and M8. owever, the W/ of M1 is chosen to be a little bit larger than half of M but M1 a little bit smaller than half of M, i.e., M1 M M3 + 1 W = 1 1 W = 1 M5 M7 M8 M W + W M6 M9 M1 M11 M1 V DD =5V V SS Fig. 1 The proposed class-b buffer amplifier. R1 R C1 C (1) () M13 output M1 roceedgs of the First nternational Workshop on lectronic Design, Test and Applications (DTA ) / $17.

2 n the stable state with no put, the output voltage equals to the put voltage. The currents flowg M5, M6, M7, M8, M9 and M11 are all /. Then, the currents flowg M1 and M1 are also /. owever, sce the aspect ratio of M1 is designed to be greater than half of M, this will make M1 go out of the saturation region and be the triode region. As a result, the gate voltage of M1 will be forced to be close to the value of V SS. M1 will then stay at off. For the comparator M11-M1, similarly, M11 will be the triode region. The gate voltage of M13 will be forced to be close to the value of V DD. M13 will also stay at off. That is: when no put is applied, M13 and M1 are cut off from the output. When there is an put, i.e., the put voltage of the non-vertg termal is raised, say, by a step voltage V 1, the current M5 will be creased to + V1 but the current M6 will be decreased to V1, where g m is the transconductance of M5 and M6. That is: id5 = + V1 (3) id6 = V1 () where g m = µ ncox (5) 5 µ n and C ox are the electron mobility the n channel and the gate oxide capacitance per unit area respectively. The current M6 is mirrored by M8, M9 and M11 to the two comparators M9-M1. Sce i D6 is decreased, M1 will still stay the triode region. M1 will than still stay at off. owever, if i D6 is smaller than, ie.: V1 > g m (6) where 1 W = µ ncox ( VGS Vtn ), (7) transistor M11 will go to the saturation region and its dra voltage, i.e., the gate voltage of M13 will decrease to turn on M13. M13 starts to the output node. The larger V 1 is, the more M13 is turned on. Sce the gate voltage of M13 can be decreased to a really low and M13 can be turned to fully on to the output by a maximal speed. ence, the output transistors M13-M1 can be designed to be of smaller sizes than the conventional buffer. When the output voltage reaches the level that the voltage difference between the put and output is less than / g m, VSG13 will be reduced and M13 begs to stop chargg the output node. The smaller voltage difference is, the more M13 is turned off. Similarly, when the put voltage of the non-vertertg termal is reduced by a step voltage V 1 from the stable state, M13 will still stay at off. f V 1 is greater than / g m, M1 will go to the saturation region and M1 starts to dis the output node. Also, when the output voltage reaches the level that the voltage difference between the put and output is less than / g m, M1 begs to stop dischargg output node. ence, with the consideration of the offset voltage, the operation of this buffer can be summarized as follows: 1. When V + Vout VOS, M13 will the output node.. When V + Vout VOS, M1 will dis the output node. 3. When V + V out VOS, both output transistors stay at off. where V OS is the put offset voltage of the buffer. Sce M13 and M1 are off at the stable state, they draws no static current, thus does not consume static power. ence, this circuit is low power while still can mata a relatively high-speed. 3. valuation of ower Consumption There are two components the power dissipated the amplifier. They are: the static dissipation, which is due to the dc bias current from the power supply and the dynamic dissipation due to the chargg and dischargg of the load capacitance [8]. For this circuit, the static energy dissipation durg a period can be expressed as V bias DD static = (8) f where bias is the total dc bias currents for the whole circuit and f is the frequency. The amplifier always consumes this static dissipation. For the dynamic dissipation, durg transitions, as the load capacitance is d, s are transferred from V DD through the output MOS transistor M13 to the load. ower dissipation this MOS transistor is given by roceedgs of the First nternational Workshop on lectronic Design, Test and Applications (DTA ) / $17.

3 ch arg e = ) i DD dv (9) = ( VDD V ) C The energy dissipated this MOS device as the output s from V to V is = V V = C V DD 1 ) C ) (1) As the output diss to a lower value, the power is dissipated the output NMOS transistor M1. This power dissipation is disch arg e = V i = V C dv (11) The energy dissipated as the output diss from V to V is given by dis = V V 1 = C dis ) (1) µa. The maximum dynamic power consumption is 18 mw while the static power is only 35 µw. The dynamic power consumption depends on the value of the output voltage swg. The maximum value occurs when the image on a column of the display is alternatg black-and-white and pixel by pixel. owever, when the image on a column is at a constant gray level, the dynamic power is zero. The horizontal frequency ranges from 31.5 to 97.8 Kz [3]. The power dissipation of the buffer can be estimated from equations (13), (1) and (15) for a period. Fig. 3 shows the maximum power consumption versus the frequency with a V output voltage swg (.8 ~.8 V) for the chargg and dischargg steps, respectively for the circuit. t can be seen that the power consumptions of the proposed buffer amplifier depend on the frequency. owever, they are only.833 and.997 mw for chargg and dischargg respectively durg one period even for the frequency up to 1 Kz. Fig shows the power consumption versus the output voltage swg for a 97.8 Kz frequency for the proposed buffer. The solid le is the power dissipation as the output voltage is d from.8 V while the dash le is the one disd to.8 V. t can be seen that the power dissipation depends on the output voltage swg. The total energy dissipated the amplifier as the output s from V to V durg one period is therefore = V + C V 1 ) C ( V ) V bias DD tot, charg e DD f (13) When the output diss, the total dissipated energy durg one period is tot, discharg e ( V V biasvdd 1 = + C ) (1) f The total average power dissipated one buffer amplifier durg one period is = f (15) tot tot Fig. shows the simulated results of the power supply currents for this buffer, which is loaded with a large size capacitor of 68 pf with a step-wise put of.8 V ~.8 V. Curve (a) is the current supplied from V DD and curve (b) is the current drawn from V SS. The maximum transient current is 3.6 ma. owever, the static current is only 7 Fig. The simulated results of power supply currents for the proposed buffer amplifier. Curve (a) is the current supplied from V DD and curve (b) is the current drawn from V SS.. xperimental Results The proposed output buffer amplifier was fabricated usg the TSMC.6-µm CMOS technology. The die photograph of the output buffer is shown Fig 5. Fig. 6 shows the measured results of the output with the put of a large dynamic range (.8 ~.8 V) of a 1 Kz triangular wave of the buffer amplifier loaded with a 5 V supply and a large size capacitor of 68pF (not cludg parasitic capacitances of the pad and the test circuit). The roceedgs of the First nternational Workshop on lectronic Design, Test and Applications (DTA ) / $17.

4 lower trace is the put waveform and the upper one is the measured output waveform. t can be seen that the output basically follows the put. The step response of the buffer with a 1 Kz square wave is shown Fig. 7, where the lower trace is the put waveform and the upper one is the measured output waveform. The put voltage range is.8~.8 V. The settlg times for the outputs to settle to with.% of the fal voltage are 1.8 and 1. µs for the risg and fallg edges, respectively. These values are low as compared with those of [3]. n order to show the small signal performance of the amplifier, Fig. 8 is the small signal step response of a mv step waveform of the circuit. The lower trace is the put waveform and the upper one is the measured output waveform. The output waveform follows exactly the same as the put waveform with a small offset voltage of 5 mv. The total static current is 7 µa. Maximum ower Dissipation (mw) dis Scanng Frequency (Kz) Fig. 3 The maximum power consumption versus the frequencies for a V output voltage swg (.8 ~.8 V) for the chargg and dischargg steps of the proposed buffer. proposed class-b buffer amplifier, which is loaded with a large size capacitor of 68 pf with the put of a step-wise (.8 ~.8 V) durg one period for a 97.8 Kz frequency, are only.833 and.997 mw for chargg and dischargg respectively. xperimental prototype output buffer implemented the TSMC.6-µm CMOS technology had demonstrated that the circuit draws only 7 µa static current, and exhibited settlg times of 1.8 µs and 1. µs for rise and fall edges under a 68 pf capacitance load. The put swg is V. The measured data do show that the proposed output buffer circuit is very suitable for the application the flat panel as the display driver. ower Dissipation (mw) dis. 1 3 Output Voltage Swg (V) Fig. The power consumption versus the output voltage swg for a 97.8 Kz frequency for the proposed buffer. The solid le is the power dissipation as the output voltage is d from.8 V while the dash le is the one disd to.8 V. 5. Conclusion n this paper, we have proposed and demonstrated a low power consumption, high speed, large output swg, and wide put voltage range class-b output buffer circuit which is very suitable for the flat-panel display application for drivg the large column le capacitance. The drivg capabilities of the circuit are achieved by addg comparators which sense the risg and/or fallg edges of the put waveform to turn on a push/pull transistor to /dis the output load. The push-pull transistors stay at off when there is no put applied, thus drawg no static power. The theoretical power dissipations of the Fig. 5 The die photograph of the proposed output buffer. roceedgs of the First nternational Workshop on lectronic Design, Test and Applications (DTA ) / $17.

5 Output Voltage (V/div) Output Voltage (mv/div) Time (µs/div) Fig. 6 The measured result of the proposed output buffer under a 1 Kz triangular put waveform of an amplitude of.8 V to.8 V under a 68 pf capacitance load. The lower trace is the put waveform. Time (µs/div) Fig. 8 The small signal step response of the proposed output buffer. The amplitude of the step put is mv. The lower trace is the put waveform. 6. References Output Voltage (V/div) Time (µs/div) Fig. 7 The output step response of the proposed output buffer with a 1 Kz square wave put under a 68 pf capacitance load. The lower trace is the put waveform and the upper one is the measured output waveform. [1] Y. Takahashi et al., Multimedia projector usg 7 8 pixel a-si TFT-CD s and a high-speed analogue driver S, Displays: Technology & Application, Vol. 13, No. 1, pp. 5-3, Jan., 199. [] C.-C. Wang, J.-C. Wu and C.-M. uang, Data le driver design for a color FD, roc. 9 th nt. Vacuum Microelectronics Conf., St. etersburg, F, July pp , [3] Fan You, S..K. mbabi and dgar Sanchez-Sencio, A 1.5 V Class AB Output Buffer Digest of Technical papers, SD, Monterey, CA, USA, pp , []. arzhuber and W. Stehagen, An adaptive biasg one-stage CMOS operational amplifier for drivg high capacitive loads, Journal of Solid-State Circuit, Vol. 6, pp , 1991 [5] ang-cheng Yu and Ji-Chuan Wu, A Class-B Output Buffer for Flat-anel-Display Column Driver, Journal of Solid-State Circuits, Vol. 3, No.1, Jan. pp , [6] B. W. ee and B. J. Sheu, A high-speed CMOS amplifier with dynamic frequency compensation, roc. CCC 199, New York, May 199, pp [7]. Khorramabadi, A CMOS le driver with 8 db learity for SDN application, 1991 Symp. VS Circuits Dig. Tech. apers, June pp , [8] Donald A. Neamen, lectronic Circuit Analysis and Design, Second dition, ublished by McGraw-ill, pp , 1. roceedgs of the First nternational Workshop on lectronic Design, Test and Applications (DTA ) / $17.

A High-Driving Class-AB Buffer Amplifier with a New Pseudo Source Follower

A High-Driving Class-AB Buffer Amplifier with a New Pseudo Source Follower A High-Driving Class-AB Buffer Amplifier with a New Pseudo Source Follower Chih-Wen Lu, Yen-Chih Shen and Meng-Lieh Sheu Abstract A high-driving class-ab buffer amplifier, which consists of a high-gain

More information

PAPER A Large-Swing High-Driving Low-Power Class-AB Buffer Amplifier with Low Variation of Quiescent Current

PAPER A Large-Swing High-Driving Low-Power Class-AB Buffer Amplifier with Low Variation of Quiescent Current 1730 IEICE TRANS. EECTRON., VO.E87 C, NO.10 OCTOBER 2004 PAPER A arge-swing High-Driving ow-power Class-AB Buffer Amplifier with ow Variation of Quiescent Current Chih-en U a, Nonmember SUMMARY A large-swing,

More information

Study of High Speed Buffer Amplifier using Microwind

Study of High Speed Buffer Amplifier using Microwind Study of High Speed Buffer Amplifier using Microwind Amrita Shukla M Tech Scholar NIIST Bhopal, India Puran Gaur HOD, NIIST Bhopal India Braj Bihari Soni Asst. Prof. NIIST Bhopal India ABSTRACT This paper

More information

An 11-bit Two-Stage Hybrid-DAC for TFT LCD Column Drivers

An 11-bit Two-Stage Hybrid-DAC for TFT LCD Column Drivers 013 4th International Conference on Intelligent Systems, Modelling and Simulation An 11-bit Two-Stage Hybrid-DAC for TFT CD Column Drivers Ping-Yeh Yin Department of Electrical Engineering National Chi

More information

Design of High-Speed Op-Amps for Signal Processing

Design of High-Speed Op-Amps for Signal Processing Design of High-Speed Op-Amps for Signal Processing R. Jacob (Jake) Baker, PhD, PE Professor and Chair Boise State University 1910 University Dr. Boise, ID 83725-2075 jbaker@ieee.org Abstract - As CMOS

More information

IN RECENT years, low-dropout linear regulators (LDOs) are

IN RECENT years, low-dropout linear regulators (LDOs) are IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 52, NO. 9, SEPTEMBER 2005 563 Design of Low-Power Analog Drivers Based on Slew-Rate Enhancement Circuits for CMOS Low-Dropout Regulators

More information

WITH the rapid evolution of liquid crystal display (LCD)

WITH the rapid evolution of liquid crystal display (LCD) IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 2, FEBRUARY 2008 371 A 10-Bit LCD Column Driver With Piecewise Linear Digital-to-Analog Converters Chih-Wen Lu, Member, IEEE, and Lung-Chien Huang Abstract

More information

On the design of low- voltage, low- power CMOS analog multipliers for RF applications

On the design of low- voltage, low- power CMOS analog multipliers for RF applications C.J. Debono, F. Maloberti, J. Micallef: "On the design of low-voltage, low-power CMOS analog multipliers for RF applications"; IEEE Transactions on Very Large Scale Integration (VLSI) Systems, Vol. 10,

More information

Operational Amplifiers

Operational Amplifiers CHAPTER 9 Operational Amplifiers Analog IC Analysis and Design 9- Chih-Cheng Hsieh Outline. General Consideration. One-Stage Op Amps / Two-Stage Op Amps 3. Gain Boosting 4. Common-Mode Feedback 5. Input

More information

Atypical op amp consists of a differential input stage,

Atypical op amp consists of a differential input stage, IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 33, NO. 6, JUNE 1998 915 Low-Voltage Class Buffers with Quiescent Current Control Fan You, S. H. K. Embabi, and Edgar Sánchez-Sinencio Abstract This paper presents

More information

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application

CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application CMOS Instrumentation Amplifier with Offset Cancellation Circuitry for Biomedical Application Author Mohd-Yasin, Faisal, Yap, M., I Reaz, M. Published 2006 Conference Title 5th WSEAS Int. Conference on

More information

Microelectronics Circuit Analysis and Design

Microelectronics Circuit Analysis and Design Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor Neamen Microelectronics, 4e Chapter 3-1 In this chapter, we will: Study and understand the operation

More information

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN

D n ox GS THN DS GS THN DS GS THN. D n ox GS THN DS GS THN DS GS THN Name: EXAM #3 Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit. Data: Use the following data in all

More information

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad

EE 42/100 Lecture 23: CMOS Transistors and Logic Gates. Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 23 p. 1/16 EE 42/100 Lecture 23: CMOS Transistors and Logic Gates ELECTRONICS Rev A 4/15/2012 (10:39 AM) Prof. Ali M. Niknejad University

More information

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers

ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers ECEN 474/704 Lab 5: Frequency Response of Inverting Amplifiers Objective Design, simulate and layout various inverting amplifiers. Introduction Inverting amplifiers are fundamental building blocks of electronic

More information

Design and Layout of Two Stage High Bandwidth Operational Amplifier

Design and Layout of Two Stage High Bandwidth Operational Amplifier Design and Layout of Two Stage High Bandwidth Operational Amplifier Yasir Mahmood Qureshi Abstract This paper presents the design and layout of a two stage, high speed operational amplifiers using standard

More information

Experiment 1: Amplifier Characterization Spring 2019

Experiment 1: Amplifier Characterization Spring 2019 Experiment 1: Amplifier Characterization Spring 2019 Objective: The objective of this experiment is to develop methods for characterizing key properties of operational amplifiers Note: We will be using

More information

SOLIMAN A. MAHMOUD Department of Electrical Engineering, Faculty of Engineering, Cairo University, Fayoum, Egypt

SOLIMAN A. MAHMOUD Department of Electrical Engineering, Faculty of Engineering, Cairo University, Fayoum, Egypt Journal of Circuits, Systems, and Computers Vol. 14, No. 4 (2005) 667 684 c World Scientific Publishing Company DIGITALLY CONTROLLED CMOS BALANCED OUTPUT TRANSCONDUCTOR AND APPLICATION TO VARIABLE GAIN

More information

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER

DUAL ULTRA MICROPOWER RAIL-TO-RAIL CMOS OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD276A/ALD276B ALD276 DUAL ULTRA MICROPOWER RAILTORAIL CMOS OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD276 is a dual monolithic CMOS micropower high slewrate operational

More information

DYNAMIC FLOATING OUTPUT STAGE FOR LOW POWER BUFFER AMPLIFIER FOR LCD APPLICATION

DYNAMIC FLOATING OUTPUT STAGE FOR LOW POWER BUFFER AMPLIFIER FOR LCD APPLICATION DYNAMIC FLOATING OUTPUT STAGE FOR LOW POWER BUFFER AMPLIFIER FOR LCD APPLICATION ABSTRACT Hari shanker srivastava and Dr.R.K Baghel Department of Electronics and Communication MANIT Bhopal This topic proposes

More information

VOUT. A: n subthreshold region V SS V TN V IN V DD +V TP

VOUT. A: n subthreshold region V SS V TN V IN V DD +V TP Chapter 3: The CMOS verter This chapter is devoted to analyzg the static (DC) and dynamic (transient) behavior of the CMOS verter. The ma purpose of this analysis is to lay a theoretical ground for a dynamic

More information

Design of Low Power and High Speed CMOS Buffer Amplifier with Enhanced Deriving Capability

Design of Low Power and High Speed CMOS Buffer Amplifier with Enhanced Deriving Capability IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 2, Issue 1 (Mar. Apr. 2013), PP 45-50 e-issn: 2319 4200, p-issn No. : 2319 4197 Design of Low Power and High Speed CMOS Buffer Amplifier with

More information

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption

A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption A 16Ω Audio Amplifier with 93.8 mw Peak loadpower and 1.43 quiscent power consumption IEEE Transactions on circuits and systems- Vol 59 No:3 March 2012 Abstract A class AB audio amplifier is used to drive

More information

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications

1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications 1P6M 0.18-µm Low Power CMOS Ring Oscillator for Radio Frequency Applications Ashish Raman and R. K. Sarin Abstract The monograph analysis a low power voltage controlled ring oscillator, implement using

More information

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier

Chapter 5. Operational Amplifiers and Source Followers. 5.1 Operational Amplifier Chapter 5 Operational Amplifiers and Source Followers 5.1 Operational Amplifier In single ended operation the output is measured with respect to a fixed potential, usually ground, whereas in double-ended

More information

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B

Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Preliminary Exam, Fall 2013 Department of Electrical and Computer Engineering University of California, Irvine EECS 170B Problem 1. Consider the following circuit, where a saw-tooth voltage is applied

More information

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER

A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER A PSEUDO-CLASS-AB TELESCOPIC-CASCODE OPERATIONAL AMPLIFIER M. Taherzadeh-Sani, R. Lotfi, and O. Shoaei ABSTRACT A novel class-ab architecture for single-stage operational amplifiers is presented. The structure

More information

TWO AND ONE STAGES OTA

TWO AND ONE STAGES OTA TWO AND ONE STAGES OTA F. Maloberti Department of Electronics Integrated Microsystem Group University of Pavia, 7100 Pavia, Italy franco@ele.unipv.it tel. +39-38-50505; fax. +39-038-505677 474 EE Department

More information

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient

A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier. Strong inversion operation stops a proposed compact 3V power-efficient A Compact 2.4V Power-efficient Rail-to-rail Operational Amplifier Abstract Strong inversion operation stops a proposed compact 3V power-efficient rail-to-rail Op-Amp from a lower total supply voltage.

More information

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013

Microelectronics Circuit Analysis and Design. MOS Capacitor Under Bias: Electric Field and Charge. Basic Structure of MOS Capacitor 9/25/2013 Microelectronics Circuit Analysis and Design Donald A. Neamen Chapter 3 The Field Effect Transistor In this chapter, we will: Study and understand the operation and characteristics of the various types

More information

A Micro-Power Mixed Signal IC for Battery-Operated Burglar Alarm Systems

A Micro-Power Mixed Signal IC for Battery-Operated Burglar Alarm Systems A Micro-Power Mixed Signal IC for Battery-Operated Burglar Alarm Systems Silvio Bolliri Microelectronic Laboratory, Department of Electrical and Electronic Engineering University of Cagliari bolliri@diee.unica.it

More information

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V

EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter PART V IN 3V TO 28V 19-1462; Rev ; 6/99 EVALUATION KIT AVAILABLE 28V, PWM, Step-Up DC-DC Converter General Description The CMOS, PWM, step-up DC-DC converter generates output voltages up to 28V and accepts inputs from +3V

More information

Advanced Operational Amplifiers

Advanced Operational Amplifiers IsLab Analog Integrated Circuit Design OPA2-47 Advanced Operational Amplifiers כ Kyungpook National University IsLab Analog Integrated Circuit Design OPA2-1 Advanced Current Mirrors and Opamps Two-stage

More information

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET

Depletion-mode operation ( 공핍형 ): Using an input gate voltage to effectively decrease the channel size of an FET Ch. 13 MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor : I D D-mode E-mode V g The gate oxide is made of dielectric SiO 2 with e = 3.9 Depletion-mode operation ( 공핍형 ): Using an input gate voltage

More information

Study of Differential Amplifier using CMOS

Study of Differential Amplifier using CMOS Study of Differential Amplifier using CMOS Mr. Bhushan Bangadkar PG Scholar Mr. Amit Lamba Assistant Professor Mr. Vipin Bhure Assistant Professor Electronics and Communication Electronics and Communication

More information

A Single-supply True Voltage Level Shifter

A Single-supply True Voltage Level Shifter A Sgle-supply True Voltage evel Shifter Rajesh Garg Gagandeep Mallarapu Sunil P Khatri (rajeshgarg at tamu.edu) (gagandeepm at tamu.edu) (sunilkhatri at tamu.edu) Department of Electrical & Computer Engeerg,

More information

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER

QUAD 5V RAIL-TO-RAIL PRECISION OPERATIONAL AMPLIFIER ADVANCED LINEAR DEVICES, INC. ALD472A/ALD472B ALD472 QUAD 5V RAILTORAIL PRECISION OPERATIONAL AMPLIFIER GENERAL DESCRIPTION The ALD472 is a quad monolithic precision CMOS railtorail operational amplifier

More information

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR

A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset and over-120db CMRR ROMANIAN JOURNAL OF INFORMATION SCIENCE AND TECHNOLOGY Volume 20, Number 4, 2017, 301 312 A 24 V Chopper Offset-Stabilized Operational Amplifier with Symmetrical RC Notch Filters having sub-10 µv offset

More information

ECEN 474/704 Lab 6: Differential Pairs

ECEN 474/704 Lab 6: Differential Pairs ECEN 474/704 Lab 6: Differential Pairs Objective Design, simulate and layout various differential pairs used in different types of differential amplifiers such as operational transconductance amplifiers

More information

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits

Microelectronic Circuits II. Ch 10 : Operational-Amplifier Circuits Microelectronic Circuits II Ch 0 : Operational-Amplifier Circuits 0. The Two-stage CMOS Op Amp 0.2 The Folded-Cascode CMOS Op Amp CNU EE 0.- Operational-Amplifier Introduction - Analog ICs : operational

More information

Tunable Gm-C Floating Capacitance Multiplier

Tunable Gm-C Floating Capacitance Multiplier Tunable Gm-C Floating Capacitance Multiplier Wipavan arksarp Yongyuth aras Department of Electrical Engineering, Faculty of Engineering, Siam University, Siam U Bangkok, Thail E-mail: wipavan.nar@siam.edu,yongyuth.nar@siam.edu

More information

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits

Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Module 4 : Propagation Delays in MOS Lecture 19 : Analyzing Delay for various Logic Circuits Objectives In this lecture you will learn the following Ratioed Logic Pass Transistor Logic Dynamic Logic Circuits

More information

A new class AB folded-cascode operational amplifier

A new class AB folded-cascode operational amplifier A new class AB folded-cascode operational amplifier Mohammad Yavari a) Integrated Circuits Design Laboratory, Department of Electrical Engineering, Amirkabir University of Technology, Tehran, Iran a) myavari@aut.ac.ir

More information

This paper is part of the following report: UNCLASSIFIED

This paper is part of the following report: UNCLASSIFIED UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADPO 11304 TITLE: VGS Compensation Source Follower for the LTPS TFT LCD Data Driver Output Buffer DISTRIBUTION: Approved for public

More information

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE105 Fall 2015 Microelectronic Devices and Circuits: MOSFET Prof. Ming C. Wu wu@eecs.berkeley.edu 511 Sutardja Dai Hall (SDH) 7-1 Simplest Model of MOSFET (from EE16B) 7-2 CMOS Inverter 7-3 CMOS NAND

More information

ABSTRACT 1. INTRODUCTION

ABSTRACT 1. INTRODUCTION A new share-buffered direct-injection readout structure for infrared detector *Chung.yu Wu, Chih-Cheng Hsieh * *FarWen Jih, Tai-Ping Sun and Sheng-Jenn Yang *Integrated Circuits & Systems Laboratory Department

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 11: Voltage and Current Sources Administrativia Lab 3 this week Please make sure to work through the pre-lab

More information

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs

Integrated Circuit Amplifiers. Comparison of MOSFETs and BJTs Integrated Circuit Amplifiers Comparison of MOSFETs and BJTs 17 Typical CMOS Device Parameters 0.8 µm 0.25 µm 0.13 µm Parameter NMOS PMOS NMOS PMOS NMOS PMOS t ox (nm) 15 15 6 6 2.7 2.7 C ox (ff/µm 2 )

More information

d. Can you find intrinsic gain more easily by examining the equation for current? Explain.

d. Can you find intrinsic gain more easily by examining the equation for current? Explain. EECS140 Final Spring 2017 Name SID 1. [8] In a vacuum tube, the plate (or anode) current is a function of the plate voltage (output) and the grid voltage (input). I P = k(v P + µv G ) 3/2 where µ is a

More information

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs

An Improved Bandgap Reference (BGR) Circuit with Constant Voltage and Current Outputs International Journal of Research in Engineering and Innovation Vol-1, Issue-6 (2017), 60-64 International Journal of Research in Engineering and Innovation (IJREI) journal home page: http://www.ijrei.com

More information

A CMOS Low-Voltage, High-Gain Op-Amp

A CMOS Low-Voltage, High-Gain Op-Amp A CMOS Low-Voltage, High-Gain Op-Amp G N Lu and G Sou LEAM, Université Pierre et Marie Curie Case 203, 4 place Jussieu, 75252 Paris Cedex 05, France Telephone: (33 1) 44 27 75 11 Fax: (33 1) 44 27 48 37

More information

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1

A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power and Low Phase Noise Current Starved VCO Gaurav Sharma 1 IJSRD - International Journal for Scientific Research & Development Vol. 2, Issue 01, 2014 ISSN (online): 2321-0613 A Multiobjective Optimization based Fast and Robust Design Methodology for Low Power

More information

LOW VOLTAGE ANALOG IC DESIGN PROJECT 1. CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN. Prof. Dr. Ali ZEKĐ. Umut YILMAZER

LOW VOLTAGE ANALOG IC DESIGN PROJECT 1. CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN. Prof. Dr. Ali ZEKĐ. Umut YILMAZER LOW VOLTAGE ANALOG IC DESIGN PROJECT 1 CONSTANT Gm RAIL TO RAIL INPUT STAGE DESIGN Prof. Dr. Ali ZEKĐ Umut YILMAZER 1 1. Introduction In this project, two constant Gm input stages are designed. First circuit

More information

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005

Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages. November 17, 2005 6.012 Microelectronic Devices and Circuits Fall 2005 Lecture 20 1 Lecture 20 Transistor Amplifiers (II) Other Amplifier Stages November 17, 2005 Contents: 1. Common source amplifier (cont.) 2. Common drain

More information

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB

What is the typical voltage gain of the basic two stage CMOS opamp we studied? (i) 20dB (ii) 40dB (iii) 80dB (iv) 100dB Department of Electronic ELEC 5808 (ELG 6388) Signal Processing Electronics Final Examination Dec 14th, 2010 5:30PM - 7:30PM R. Mason answer all questions one 8.5 x 11 crib sheets allowed 1. (5 points)

More information

Class-AB Low-Voltage CMOS Unity-Gain Buffers

Class-AB Low-Voltage CMOS Unity-Gain Buffers Class-AB Low-Voltage CMOS Unity-Gain Buffers Mariano Jimenez, Antonio Torralba, Ramón G. Carvajal and J. Ramírez-Angulo Abstract Class-AB circuits, which are able to deal with currents several orders of

More information

C H A P T E R 5. Amplifier Design

C H A P T E R 5. Amplifier Design C H A P T E 5 Amplifier Design The Common-Source Amplifier v 0 = r ( g mvgs )( D 0 ) A v0 = g m r ( D 0 ) Performing the analysis directly on the circuit diagram with the MOSFET model used implicitly.

More information

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage

Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Design Analysis and Performance Comparison of Low Power High Gain 2nd Stage Differential Amplifier Along with 1st Stage Sadeque Reza Khan Department of Electronic and Communication Engineering, National

More information

IN the design of the fine comparator for a CMOS two-step flash A/D converter, the main design issues are offset cancelation

IN the design of the fine comparator for a CMOS two-step flash A/D converter, the main design issues are offset cancelation JOURNAL OF STELLAR EE315 CIRCUITS 1 A 60-MHz 150-µV Fully-Differential Comparator Erik P. Anderson and Jonathan S. Daniels (Invited Paper) Abstract The overall performance of two-step flash A/D converters

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 OTA-output buffer 1 According to the types of loads, the driving capability of the output stages differs. For switched capacitor circuits which have high impedance capacitive loads, class A output stage

More information

A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness

A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness Graduate Theses and Dissertations Graduate College 2009 A low voltage rail-to-rail operational amplifier with constant operation and improved process robustness Rien Lerone Beal Iowa State University Follow

More information

POWER-MANAGEMENT circuits are becoming more important

POWER-MANAGEMENT circuits are becoming more important 174 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: EXPRESS BRIEFS, VOL. 58, NO. 3, MARCH 2011 Dynamic Bias-Current Boosting Technique for Ultralow-Power Low-Dropout Regulator in Biomedical Applications

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 19-295; Rev ; 8/1 High-Current VCOM Drive Buffer General Description The is a high-current operational transconductance amplifier. The is ideal for driving the backplane of an active matrix, dot inversion

More information

IOWA STATE UNIVERSITY. EE501 Project. Fully Differential Multi-Stage Op-Amp Design. Ryan Boesch 11/12/2008

IOWA STATE UNIVERSITY. EE501 Project. Fully Differential Multi-Stage Op-Amp Design. Ryan Boesch 11/12/2008 IOWA STATE UNIVERSITY EE501 Project Fully Differential Multi-Stage Op-Amp Design Ryan Boesch 11/12/2008 This report documents the design, simulation, layout, and post-layout simulation of a fully differential

More information

LECTURE 19 DIFFERENTIAL AMPLIFIER

LECTURE 19 DIFFERENTIAL AMPLIFIER Lecture 19 Differential Amplifier (6/4/14) Page 191 LECTURE 19 DIFFERENTIAL AMPLIFIER LECTURE ORGANIZATION Outline Characterization of a differential amplifier Differential amplifier with a current mirror

More information

Noise and Error Analysis and Optimization of a CMOS Latched Comparator

Noise and Error Analysis and Optimization of a CMOS Latched Comparator Available onle at www.sciencedirect.com Procedia Engeerg 30 (2012) 210 217 International Conference on Communication Technology and System Design 2011 Noise and Error Analysis and Optimization of a CMOS

More information

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model

Week 9a OUTLINE. MOSFET I D vs. V GS characteristic Circuit models for the MOSFET. Reading. resistive switch model small-signal model Week 9a OUTLINE MOSFET I vs. V GS characteristic Circuit models for the MOSFET resistive switch model small-signal model Reading Rabaey et al.: Chapter 3.3.2 Hambley: Chapter 12 (through 12.5); Section

More information

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA)

A New Design Technique of CMOS Current Feed Back Operational Amplifier (CFOA) Circuits and Systems, 2013, 4, 11-15 http://dx.doi.org/10.4236/cs.2013.41003 Published Online January 2013 (http://www.scirp.org/journal/cs) A New Design Technique of CMOS Current Feed Back Operational

More information

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver

TFT-LCD DC/DC Converter with Integrated Backlight LED Driver TFT-LCD DC/DC Converter with Integrated Backlight LED Driver Description The is a step-up current mode PWM DC/DC converter (Ch-1) built in an internal 1.6A, 0.25Ω power N-channel MOSFET and integrated

More information

A LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS

A LOW DROPOUT VOLTAGE REGULATOR WITH ENHANCED TRANSCONDUCTANCE ERROR AMPLIFIER AND SMALL OUTPUT VOLTAGE VARIATIONS ISSN 1313-7069 (print) ISSN 1313-3551 (online) Trakia Journal of Sciences, No 4, pp 441-448, 2014 Copyright 2014 Trakia University Available online at: http://www.uni-sz.bg doi:10.15547/tjs.2014.04.015

More information

PART MAX1658C/D MAX1659C/D TOP VIEW

PART MAX1658C/D MAX1659C/D TOP VIEW 19-1263; Rev 0; 7/97 350mA, 16.5V Input, General Description The linear regulators maximize battery life by combining ultra-low supply currents and low dropout voltages. They feature Dual Mode operation,

More information

PROJECT ON MIXED SIGNAL VLSI

PROJECT ON MIXED SIGNAL VLSI PROJECT ON MXED SGNAL VLS Submitted by Vipul Patel TOPC: A GLBERT CELL MXER N CMOS AND BJT TECHNOLOGY 1 A Gilbert Cell Mixer in CMOS and BJT technology Vipul Patel Abstract This paper describes a doubly

More information

e t Rail-To-Rail Low Power Buffer Amplifier LCD International Journal on Emerging Technologies 7(1): 18-24(2016)

e t Rail-To-Rail Low Power Buffer Amplifier LCD International Journal on Emerging Technologies 7(1): 18-24(2016) e t International Journal on Emerging Technologies 7(1): 18-24(2016) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Rail-To-Rail Low Power Buffer Amplifier LCD Depak Mishra * and Dr. Archana

More information

LOW-VOLTAGE, CLASS AB AND HIGH SLEW-RATE TWO STAGE OPERATIONAL AMPLIFIERS. CARLOS FERNANDO NIEVA-LOZANO, B.Sc.E.E

LOW-VOLTAGE, CLASS AB AND HIGH SLEW-RATE TWO STAGE OPERATIONAL AMPLIFIERS. CARLOS FERNANDO NIEVA-LOZANO, B.Sc.E.E LOW-VOLTAGE, CLASS AB AND HIGH SLEW-RATE TWO STAGE OPERATIONAL AMPLIFIERS BY CARLOS FERNANDO NIEVA-LOZANO, B.Sc.E.E A thesis submitted to the Graduate School in partial fulfillment of the requirements

More information

You will be asked to make the following statement and provide your signature on the top of your solutions.

You will be asked to make the following statement and provide your signature on the top of your solutions. 1 EE 435 Name Exam 1 Spring 216 Instructions: The points allocated to each problem are as indicated. Note that the first and last problem are weighted more heavily than the rest of the problems. On those

More information

id id mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator Features General Description Applications

id id mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator Features General Description Applications 500mA, Low Dropout, Low Noise Ultra-Fast With Soft Start CMOS LDO Regulator General Description The is a 500mA, low dropout and low noise linear regulator with high ripple rejection ratio. It has fixed

More information

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook.

PURPOSE: NOTE: Be sure to record ALL results in your laboratory notebook. EE4902 Lab 9 CMOS OP-AMP PURPOSE: The purpose of this lab is to measure the closed-loop performance of an op-amp designed from individual MOSFETs. This op-amp, shown in Fig. 9-1, combines all of the major

More information

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER

DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER DESIGN OF A FULLY DIFFERENTIAL HIGH-SPEED HIGH-PRECISION AMPLIFIER Mayank Gupta mayank@ee.ucla.edu N. V. Girish envy@ee.ucla.edu Design I. Design II. University of California, Los Angeles EE215A Term Project

More information

Lecture 10: Accelerometers (Part I)

Lecture 10: Accelerometers (Part I) Lecture 0: Accelerometers (Part I) ADXL 50 (Formerly the original ADXL 50) ENE 5400, Spring 2004 Outline Performance analysis Capacitive sensing Circuit architectures Circuit techniques for non-ideality

More information

IR2110 HIGH AND LOW SIDE DRIVER. Features. Product Summary. Packages. Description. Typical Connection. 500V max. V OFFSET 10-20V VOUT.

IR2110 HIGH AND LOW SIDE DRIVER. Features. Product Summary. Packages. Description. Typical Connection. 500V max. V OFFSET 10-20V VOUT. Features n Floating channel designed for bootstrap operation Fully operational to +5V Tolerant to negative transient voltage dv/dt immune n Gate drive supply range from 1 to 2V n Undervoltage lockout for

More information

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005 Data Sheet FN6118.0 Multi-Channel Buffers Plus V COM Driver The integrates eighteen gamma buffers and a single V COM buffer for use in large panel LCD displays of 10 and greater. Half of the gamma channels

More information

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth

A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth LETTER IEICE Electronics Express, Vol.11, No.2, 1 9 A 42 fj 8-bit 1.0-GS/s folding and interpolating ADC with 1 GHz signal bandwidth Mingshuo Wang a), Fan Ye, Wei Li, and Junyan Ren b) State Key Laboratory

More information

Gechstudentszone.wordpress.com

Gechstudentszone.wordpress.com UNIT 4: Small Signal Analysis of Amplifiers 4.1 Basic FET Amplifiers In the last chapter, we described the operation of the FET, in particular the MOSFET, and analyzed and designed the dc response of circuits

More information

Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.

Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M. Design and Implementation of less quiescent current, less dropout LDO Regulator in 90nm Technology Madhukumar A S #1, M.Nagabhushan #2 #1 M.Tech student, Dept. of ECE. M.S.R.I.T, Bangalore, INDIA #2 Asst.

More information

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers

6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers 6.976 High Speed Communication Circuits and Systems Lecture 5 High Speed, Broadband Amplifiers Michael Perrott Massachusetts Institute of Technology Copyright 2003 by Michael H. Perrott Broadband Communication

More information

55:041 Electronic Circuits

55:041 Electronic Circuits 55:041 Electronic Circuits MOSFETs Sections of Chapter 3 &4 A. Kruger MOSFETs, Page-1 Basic Structure of MOS Capacitor Sect. 3.1 Width = 1 10-6 m or less Thickness = 50 10-9 m or less ` MOS Metal-Oxide-Semiconductor

More information

NOWADAYS, multistage amplifiers are growing in demand

NOWADAYS, multistage amplifiers are growing in demand 1690 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 9, SEPTEMBER 2004 Advances in Active-Feedback Frequency Compensation With Power Optimization and Transient Improvement Hoi

More information

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS

A Unity Gain Fully-Differential 10bit and 40MSps Sample-And-Hold Amplifier in 0.18μm CMOS A Unity Gain Fully-Differential 0bit and 40MSps Sample-And-Hold Amplifier in 0.8μm CMOS Sanaz Haddadian, and Rahele Hedayati Abstract A 0bit, 40 MSps, sample and hold, implemented in 0.8-μm CMOS technology

More information

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation

Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Low Power Op-Amp Based on Weak Inversion with Miller-Cascoded Frequency Compensation Maryam Borhani, Farhad Razaghian Abstract A design for a rail-to-rail input and output operational amplifier is introduced.

More information

Chapter 4 Single-stage MOS amplifiers

Chapter 4 Single-stage MOS amplifiers Chapter 4 Single-stage MOS amplifiers ELEC-H402/CH4: Single-stage MOS amplifiers 1 Single-stage MOS amplifiers NMOS as an amplifier: example of common-source circuit NMOS amplifier example Introduction

More information

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell

Lecture 3 Switched-Capacitor Circuits Trevor Caldwell Advanced Analog Circuits Lecture 3 Switched-Capacitor Circuits Trevor Caldwell trevor.caldwell@analog.com Lecture Plan Date Lecture (Wednesday 2-4pm) Reference Homework 2017-01-11 1 MOD1 & MOD2 ST 2, 3,

More information

MICROELECTRONIC CIRCUIT DESIGN Third Edition

MICROELECTRONIC CIRCUIT DESIGN Third Edition MICROELECTRONIC CIRCUIT DESIGN Third Edition Richard C. Jaeger and Travis N. Blalock Answers to Selected Problems Updated 1/25/08 Chapter 1 1.3 1.52 years, 5.06 years 1.5 1.95 years, 6.46 years 1.8 113

More information

Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor)

Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Microelectronic Circuits Introduction to MOSFET MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 1 MOSFET Construction MOSFET (Metal Oxide Semiconductor Field Effect Transistor) Slide 2

More information

Radivoje Đurić, 2015, Analogna Integrisana Kola 1

Radivoje Đurić, 2015, Analogna Integrisana Kola 1 Low power OTA 1 Two-Stage, Miller Op Amp Operating in Weak Inversion Low frequency response: gm1 gm6 Av 0 g g g g A v 0 ds2 ds4 ds6 ds7 I D m, ds D nvt g g I n GB and SR: GB 1 1 n 1 2 4 6 6 7 g 2 2 m1

More information

Data Converters. Circuits for Data Converters. Overview. Sample-and-Hold. Diode bridge S&H

Data Converters. Circuits for Data Converters. Overview. Sample-and-Hold. Diode bridge S&H Data Converters Overview Circuits for Data Converters Pietro Andreani Dept. of Electrical and Information Technology Lund University, weden ample-and-hold (&H) Diode bridge &H witched emitter follower

More information

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible

Due to the absence of internal nodes, inverter-based Gm-C filters [1,2] allow achieving bandwidths beyond what is possible A Forward-Body-Bias Tuned 450MHz Gm-C 3 rd -Order Low-Pass Filter in 28nm UTBB FD-SOI with >1dBVp IIP3 over a 0.7-to-1V Supply Joeri Lechevallier 1,2, Remko Struiksma 1, Hani Sherry 2, Andreia Cathelin

More information

Design and Simulation of Low Voltage Operational Amplifier

Design and Simulation of Low Voltage Operational Amplifier Design and Simulation of Low Voltage Operational Amplifier Zach Nelson Department of Electrical Engineering, University of Nevada, Las Vegas 4505 S Maryland Pkwy, Las Vegas, NV 89154 United States of America

More information

CHAPTER 4 CARBON NANOTUBE TRASISTOR BASED LOW POWER ANALOG ELECTRONIC CIRCUITS REALIZATION

CHAPTER 4 CARBON NANOTUBE TRASISTOR BASED LOW POWER ANALOG ELECTRONIC CIRCUITS REALIZATION 123 CHAPTER 4 CARBON NANOTUBE TRASISTOR BASED LOW POWER ANALOG ELECTRONIC CIRCUITS REALIZATION 4.1 INTRODUCTION Operational amplifiers (usually referred to as OPAMPs) are key elements of the analog and

More information

Lecture 34: Designing amplifiers, biasing, frequency response. Context

Lecture 34: Designing amplifiers, biasing, frequency response. Context Lecture 34: Designing amplifiers, biasing, frequency response Prof J. S. Smith Context We will figure out more of the design parameters for the amplifier we looked at in the last lecture, and then we will

More information

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005 Data Sheet May 3, 25 FN743. Multi-Channel Buffers The EL529 and EL5329 integrate multiple gamma buffers and a single V COM buffer for use in large panel LCD displays of and greater. The EL529 integrates

More information