Ansoft Designer with Nexxim. Statistical Eye Capabilities

Size: px
Start display at page:

Download "Ansoft Designer with Nexxim. Statistical Eye Capabilities"

Transcription

1 Ansoft Designer with Nexxim Statistical Eye Capabilities

2 Problem Statement Load Generic 0.25um M odels Buffer PCIE Connector BYPASS Planar EM S S S TRL TRL TRL TRL TRL TRL Programmable W-Element SI Wave + Port1 Port2 Complex system analysis Specification BER analysis Buffer design Integration of modeling types Equalization schemes Frequency & Time domain mapping 0 Low BER Necessitates simulation with LARGE bit bit count

3 Generic Solutions Multiple tools from different EDA vendors Spice 1. Many Spice solutions have difficulty handling frequency to time domain transforms Three-dimensional EM solutions 2. Most time domain simulation tools require s-parameter outputs (see issue 1) Statistical analysis 3. Most don t support mixed elements from within Spice (i.e. w- elements, s-parameters, transistor and behavioral buffers) Speed 4. Many EDA vendors only support transient analysis Capacity 5. Many solutions support up to a maximum of around ports usually requiring s-parameters (see issue 1) 6. Most only allow s-parameter referencing to 50 ohms. This is a problem for SSO/SSN simulations that need power planes referenced to lower impedances, ~1 ohm, for increased numerical accuracy (see issue 1) Interoperability of EDA tools!

4 Ansoft Designer with Nexxim Overview Multiple Analysis domains Time and Frequency consistency High speed & capacity Transistor-level accuracy Native support HSpice netlists & design kits Spectre/SpectreRF netlists & design kits IBIS v4.0 & Verilog-A Superior S-Parameter Handling State-Space and Convolution Benchmarked 660 ports! Mixed port impedances Flexibility in design flow and integration Ansoft Designer Co-simulation with Ansoft EM Cadence ADE Multiple output/viewing formats Applications in Signal Integrity, Mixed-Signal and Analog Design

5 Ansoft Designer with Nexxim Integrated Circuit Simulation EM Tools HFSS SIWave Q3D 2D Extr PlanarEM Time Freq Cadence ADE Ansoft Designer Nexxim System Mixed Signal 3 rd Party Tools SimuLink Matlab Analog Digital Hspice Spectre Verilog A

6 Latest Developments Nexxim circuit simulation enhancements Passivity and State-space Algorithms Speed and accuracy Design flow VerifEye TM QuickEye TM Post-processing

7 High Speed Channel Analysis Load Generic 0.25um Models Buffer PCIE Connector BYPASS Planar EM S S S TRL TRL TRL TRL TRL TRL Programmable W-Element SI Wave + Port1 Port2 0 Circuit simulation challenges: Reliable Bit Error Rate (BER) Prediction at FAST simulation speeds

8 Statistical Eye Overview Transient Eye requires 1/BER time 1x10 15 bits not uncommon Long transient simulations Approximations are needed Statistics VerifEye TM "Rise time" calculation for BER QuickEye TM Step" and ISI characteristic calculate BER

9 Statistical Eye Analysis (lower accuracy, highest speed) VerifEye TM Algorithm: Run transient Generates step response Detect the delay Impose the step response On UI grid Calculate probability of error (BER) For a single cell in the grid Based on statistical assumptions Generate Eye contour Assumes LTI

10 Advantages: SPEED! Mixed model channel W-elements S-parameters Spice Visualizes worst eye TX jitter TX DCD VerifEye TM

11 Algorithm: Run transient Generates step response Convolve QuickEye TM Bridge between Statistical Eye & transient (medium accuracy, medium speed) Input bit-stream with step response Allows for very long input bit patterns Provides fast time and eye plots Assumes LTI system V(Port1) [mv] XY Plot Time [ns] Curve Info Nexxim1 V(Port1) Transient

12 QuickEye TM Advantages: SPEED! View full transient output Detect Worst Case Packet Visualize eye mask violations Determine Jitter through Histogram of threshold crossings

13 View Eye Diagrams at Various Points SI Chane XY Plot SI Chane XY Plot 1 SI Chane XY Plot 1 Curve Info aeyeprobe856 QuickEyeAnalysis : QuickEyeAnalysis SI Chane XY Plot 1 Curve Info aeyeprobe862 QuickEyeAnalysis 1.50 Curve Info aeyeprobe859 QuickEyeAnalysis aeyeprobe859 [V] aeyeprobe862 [V] Curve Info aeyeprobe846 QuickEyeAnalysis aeyeprobe856 [V] aeyeprobe846 [V] aeyeprobe856 [V] Time [ps] Time [us] Time [ps] Time [us] Time [ps] - - SI Chane XY Plot 1 SI Chane XY Plot 1 Time [us] Time [us] aeyeprobe859 [V] Time [ps] Time [us] Curve Info aeyeprobe865 QuickEyeAnalysis SI Chane XY Plot Curve Info aeyeprobe849 QuickEyeAnalysis 40 Time [ps] Time [us] 70 - Curve Info aeyeprobe859 QuickEyeAnalysis North Bridge aeyeprobe859 [V] aeyeprobe849 [V] aeyeprobe849 [V] aeyeprobe846 [V] 40 Time [ps] aeyeprobe865 [V] 20 aeyeprobe865 [V] 10 aeyeprobe862 [V] 1.50 aeyeprobe859 [V] Time [ps] Time [us] Allcomponents components"active" "Active" All 80

14 Effect Of Connector XY Plot 1 SI Chane SI Chane Curve Info aeyeprobe859 QuickEyeAnalysis Time [ps] aeyeprobe859 [V] - 40 Time [ps] Time [us] ConnectorIn InCircuit Circuit Connector Time [us] 1 2 XY Plot 2 SI Chane Connector"Bypassed" "Bypassed" Connector Curve Info aeyeprobe859 QuickEyeAnalysis aeyeprobe859 [V] aeyeprobe859 [V] XY Plot 1 Curve Info aeyeprobe859 QuickEyeAnalysis aeyeprobe859 [V] aeyeprobe859 [V] Allother other components components"active" "Active" All Time [us]

15 High Speed Channel Example Simulation time Comparison Transient Transient QuickEye QuickEye VerifEye VerifEye

16 Transient Results Behavioral 4 Tap Tap CTLE Buffer 98,304 Bits 1, Seconds ~ minutes

17 QuickEye TM Without FFE Results Behavioral 4 Tap Tap CTLE Buffer 98,304 Bits Seconds 130x Faster!

18 QuickEye TM With 4 Tap FFE Results 98,304 Bits Seconds

19 VerifEye TM Results seconds,

20 VerifEye TM 3D plot

21 Equalization Effects DC=1 0 V425 fivetap_fir FILTER LEVEL_SHIFTER CTLE Vbias + CML - Differential_SL_100ohms_tand INVERTER PNUM=1 RZ=50ohm IZ=0ohm 0 0 PNUM=2 RZ=50ohm IZ=0ohm Comparison of of circuit circuit with with and and without without feed feed forward forward equalization for for VerifEye VerifEyeand and QuickEye

22 VerifEye TM No No equalization Equalization VerifEye_Contour PCIe3_NoFFE aeyeprobe45 00e e e e e e e e e e VerifEye_Contour PCIe3 aeyeprobe45 00e e e e e e e e e e Amplitude Amplitude UnitInterval UnitInterval

23 QuickEye TM No No equalization Equalization

24 VerifEye TM Bathtub No No equalization Equalization E+000 E-001 E-002 VerifEye_BER PCIe3_NoFFE Curve Inf o aeyeprobe458 VerifEyeAnalysis E+000 E-001 E-002 E-003 VerifEye_BER Curve Info aeyeprobe458 VerifEyeAnalysis PCIe3 E-003 E-004 E-004 E-005 E-005 E-006 aeyeprobe458 E-006 E-007 E-008 aeyeprobe458 E-007 E-008 E-009 E-009 E-010 E-010 E-011 E-011 E-012 E-012 E-013 E-013 E-014 E UnitInterval E-015 E UnitInterval

25 Back Up

26 S Parameter Modeling Methodologies State-space mapping with rational functions Strengths Guaranteed causality Optional passivity enforcement Very good interpolation & extrapolation over broad F range Efficient simulation in the time domain Model is saved within Nexxim, no need to resolve Limitations Not well suited to long transmission time delays Convolution Strengths Accurately models transmission time delay Multiple options for DC Extrapolation and Filtering Limitations Needs continuous f-domain data, from DC to highest freq. Simulation run-time grows quadratically with # of time steps

Response Surface Channel Modeling Designer SI & DesignXplorer

Response Surface Channel Modeling Designer SI & DesignXplorer Response Surface Channel Modeling Designer SI & DesignXplorer 1 ANSYS, Inc. September 14, Outline Product Introductions Designer SI DesignXplorer Intro to DOE & Response Surface Modeling Response Surfaces

More information

To learn statistical bit-error-rate (BER) simulation, BER link noise budgeting and using ADS to model high speed I/O link circuits

To learn statistical bit-error-rate (BER) simulation, BER link noise budgeting and using ADS to model high speed I/O link circuits 1 ECEN 720 High-Speed Links: Circuits and Systems Lab6 Link Modeling with ADS Objective To learn statistical bit-error-rate (BER) simulation, BER link noise budgeting and using ADS to model high speed

More information

ANSYS CPS SOLUTION FOR SIGNAL AND POWER INTEGRITY

ANSYS CPS SOLUTION FOR SIGNAL AND POWER INTEGRITY ANSYS CPS SOLUTION FOR SIGNAL AND POWER INTEGRITY Rémy FERNANDES Lead Application Engineer ANSYS 1 2018 ANSYS, Inc. February 2, 2018 ANSYS ANSYS - Engineering simulation software leader Our industry reach

More information

Comparison of Time Domain and Statistical IBIS-AMI Analyses Mike LaBonte SiSoft

Comparison of Time Domain and Statistical IBIS-AMI Analyses Mike LaBonte SiSoft Comparison of Time Domain and Statistical IBIS-AMI Analyses Mike LaBonte SiSoft Asian IBIS Summit 2017 Taipei, ROC November 15, 2017 9 Combinations of TX and RX Model Types AMI file has: GetWave_Exists

More information

Comparison of Time Domain and Statistical IBIS-AMI Analyses

Comparison of Time Domain and Statistical IBIS-AMI Analyses Comparison of Time Domain and Statistical IBIS-AMI Analyses Mike LaBonte SiSoft Asian IBIS Summit 2017 Shanghai, PRC November 13, 2017 9 Combinations of TX and RX Model Types AMI file has: GetWave_Exists

More information

Bridging the Measurement and Simulation Gap Sarah Boen Marketing Manager Tektronix

Bridging the Measurement and Simulation Gap Sarah Boen Marketing Manager Tektronix Bridging the Measurement and Simulation Gap Sarah Boen Marketing Manager Tektronix 1 Agenda Synergy between simulation and lab based measurements IBIS-AMI overview Simulation and measurement correlation

More information

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF

Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Ansys Designer RF Solutions for RF/Microwave Component and System Design 7. 0 Release Ansys Designer RF Training Lecture 3: Nexxim Circuit Analysis for RF Designer Overview Ansoft Designer Advanced Design

More information

Closing the loop part 1: Why use simulation tools for high speed signal channel design?

Closing the loop part 1: Why use simulation tools for high speed signal channel design? Closing the loop part 1: Why use simulation tools for high speed signal channel design? Riccardo Giacometti Application Engineer Agilent EEsof EDA Page 1 High Speed Digital Design Flow Pre-Layout w/channel

More information

To learn Statistical Bit-error-rate (BER) simulation, BERlink noise budgeting and usage of ADS to model high speed I/O link circuits.

To learn Statistical Bit-error-rate (BER) simulation, BERlink noise budgeting and usage of ADS to model high speed I/O link circuits. 1 ECEN 720 High-Speed Links Circuits and Systems Lab6 Link Modeling with ADS Objective To learn Statistical Bit-error-rate (BER) simulation, BERlink noise budgeting and usage of ADS to model high speed

More information

Ansoft Electronic Design Automation

Ansoft Electronic Design Automation Ansoft Electronic Design Automation Desmond Tan Technical Manager ANSOFT, LLC. 28 Ansoft, LLC All rights reserved. Ansoft, LLC Proprietary Ansoft Products And Technology Ansoft provides state-of-the-art

More information

T10/05-428r0. From: Yuriy M. Greshishchev, PMC-Sierra Inc. Date: 06 November 2005

T10/05-428r0. From: Yuriy M. Greshishchev, PMC-Sierra Inc. Date: 06 November 2005 T10/05-428r0 SAS-2 channels analyses and suggestion for physical link requirements To: T10 Technical Committee From: Yuriy M. Greshishchev, PMC-Sierra Inc. (yuriy_greshishchev@pmc-sierra.com) Date: 06

More information

Asian IBIS Summit, Tokyo, Japan

Asian IBIS Summit, Tokyo, Japan Asian IBIS Summit, Tokyo, Japan Satoshi Nakamizo / 中溝哲士 12 Nov. 2018 Keysight Technologies Japan K.K. T h e d a t a e y e i s c l o s i n g 1600 3200 6400 Memory channel BW limited Rj improving slowly

More information

Effect of Power Noise on Multi-Gigabit Serial Links

Effect of Power Noise on Multi-Gigabit Serial Links Effect of Power Noise on Multi-Gigabit Serial Links Ken Willis (kwillis@sigrity.com) Kumar Keshavan (ckumar@sigrity.com) Jack Lin (jackwclin@sigrity.com) Tariq Abou-Jeyab (tariqa@sigrity.com) Sigrity Inc.,

More information

Efficient End-to-end Simulations

Efficient End-to-end Simulations Efficient End-to-end Simulations of 25G Optical Links Sanjeev Gupta, Avago Technologies Fangyi Rao, Agilent Technologies Jing-tao Liu, Agilent Technologies Amolak Badesha, Avago Technologies DesignCon

More information

ULTRASCALE DDR4 DE-EMPHASIS AND CTLE FEATURE OPTIMIZATION WITH STATISTICAL ENGINE FOR BER SPECIFICATION

ULTRASCALE DDR4 DE-EMPHASIS AND CTLE FEATURE OPTIMIZATION WITH STATISTICAL ENGINE FOR BER SPECIFICATION ULTRASCALE DDR4 DE-EMPHASIS AND CTLE FEATURE OPTIMIZATION WITH STATISTICAL ENGINE FOR BER SPECIFICATION Penglin Niu, penglin@xilinx.com Fangyi Rao, fangyi_rao@keysight.com Juan Wang, juanw@xilinx.com Gary

More information

TITLE. Capturing (LP)DDR4 Interface PSIJ and RJ Performance. Image. Topic: Topic: John Ellis, Synopsys, Inc. Topic: malesuada blandit euismod.

TITLE. Capturing (LP)DDR4 Interface PSIJ and RJ Performance. Image. Topic: Topic: John Ellis, Synopsys, Inc. Topic: malesuada blandit euismod. TITLE Topic: o Nam elementum commodo mattis. Pellentesque Capturing (LP)DDR4 Interface PSIJ and RJ Performance malesuada blandit euismod. Topic: John Ellis, Synopsys, Inc. o o Nam elementum commodo mattis.

More information

Statistical Link Modeling

Statistical Link Modeling April 26, 2018 Wendem Beyene UIUC ECE 546 Statistical Link Modeling Review of Basic Techniques What is a High-Speed Link? 1011...001 TX Channel RX 1011...001 Clock Clock Three basic building blocks: Transmitter,

More information

DesignCon 2010 Predicting BER with IBIS-AMI: experiences correlating SerDes simulations and measurement

DesignCon 2010 Predicting BER with IBIS-AMI: experiences correlating SerDes simulations and measurement DesignCon 2010 Predicting BER with IBIS-AMI: experiences correlating SerDes simulations and measurement Todd Westerhoff, Signal Integrity Software, Inc. twesterh@sisoft.com Adge Hawes, IBM adge@uk.ibm.com

More information

Signal Integrity Modeling and Simulation for IC/Package Co-Design

Signal Integrity Modeling and Simulation for IC/Package Co-Design Signal Integrity Modeling and Simulation for IC/Package Co-Design Ching-Chao Huang Optimal Corp. October 24, 2004 Why IC and package co-design? The same IC in different packages may not work Package is

More information

06-011r0 Towards a SAS-2 Physical Layer Specification. Kevin Witt 11/30/2005

06-011r0 Towards a SAS-2 Physical Layer Specification. Kevin Witt 11/30/2005 06-011r0 Towards a SAS-2 Physical Layer Specification Kevin Witt 11/30/2005 Physical Layer Working Group Goal Draft a Specification which will: 1. Meet the System Designers application requirements, 2.

More information

TITLE. Image. Topic: Topic: Hee-Soo o LEE, Keysight Technologies Cindy Cui, Keysight Technologies

TITLE. Image. Topic: Topic: Hee-Soo o LEE, Keysight Technologies Cindy Cui, Keysight Technologies TITLE Topic: Accurate o Nam elementum Statistical-Based commodo mattis. Pellentesque DDR4 Margin Estimation using malesuada SSN blandit Induced euismod. Jitter Model Topic: Hee-Soo o LEE, Keysight Technologies

More information

Using Sonnet EM Analysis with Cadence Virtuoso in RFIC Design. Sonnet Application Note: SAN-201B July 2011

Using Sonnet EM Analysis with Cadence Virtuoso in RFIC Design. Sonnet Application Note: SAN-201B July 2011 Using Sonnet EM Analysis with Cadence Virtuoso in RFIC Design Sonnet Application Note: SAN-201B July 2011 Description of Sonnet Suites Professional Sonnet Suites Professional is an industry leading full-wave

More information

SV2C 28 Gbps, 8 Lane SerDes Tester

SV2C 28 Gbps, 8 Lane SerDes Tester SV2C 28 Gbps, 8 Lane SerDes Tester Data Sheet SV2C Personalized SerDes Tester Data Sheet Revision: 1.0 2015-03-19 Revision Revision History Date 1.0 Document release. March 19, 2015 The information in

More information

An Initial Case Study for BIRD95: Enhancing IBIS for SSO Power Integrity Simulation

An Initial Case Study for BIRD95: Enhancing IBIS for SSO Power Integrity Simulation An Initial Case Study for BIRD95: Enhancing IBIS for SSO Power Integrity Simulation Also presented at the January 31, 2005 IBIS Summit SIGRITY, INC. Sam Chitwood Raymond Y. Chen Jiayuan Fang March 2005

More information

IBIS-AMI Modeling Recommendations European IBIS Summit 2010

IBIS-AMI Modeling Recommendations European IBIS Summit 2010 IBIS-AMI Modeling Recommendations European IBIS Summit 2010 May 12, 2010 Hildesheim, Germany Kumar Keshavan Ken Willis Presented by Srdjan Djordjevic Agenda When is AMI required? IBIS-AMI key concepts

More information

A Significant Technology Advancement in High-Speed Link Modeling and Simulation

A Significant Technology Advancement in High-Speed Link Modeling and Simulation A Significant Technology Advancement in High-Speed Link Modeling and Simulation WP-01212-1.0 White Paper As high-speed I/O (HSIO) and serial link data rates keep increasing, the requirements for accuracy

More information

Lecture 5: Dynamic Link

Lecture 5: Dynamic Link Lecture 5: Dynamic Link 2015.0 Release ANSYS HFSS for Antenna Design 1 2015 ANSYS, Inc. Antenna System Co-Simulation Transmit/Receive (T/R) Module Block Diagram Antenna Element Replicate Times Power

More information

INTRODUCTION TO IBIS-AMI. Todd Westerhoff, SiSoft Mike LaBonte, SiSoft Walter Katz, SiSoft

INTRODUCTION TO IBIS-AMI. Todd Westerhoff, SiSoft Mike LaBonte, SiSoft Walter Katz, SiSoft INTRODUCTION TO IBIS-AMI Todd Westerhoff, SiSoft Mike LaBonte, SiSoft Walter Katz, SiSoft SPEAKERS Image Image Mike LaBonte Senior IBIS-AMI Specialist, SiSoft mlabonte@sisoft.com www.sisoft.com An EDA

More information

ECEN 720 High-Speed Links: Circuits and Systems

ECEN 720 High-Speed Links: Circuits and Systems 1 ECEN 720 High-Speed Links: Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by

More information

OIF CEI 6G LR OVERVIEW

OIF CEI 6G LR OVERVIEW OIF CEI 6G LR OVERVIEW Graeme Boyd, Yuriy Greshishchev T10 SAS-2 WG meeting, Houston, 25-26 May 2005 www.pmc-sierra.com 1 Outline! Why CEI-6G LR is of Interest to SAS-2?! CEI-6G- LR Specification Methodology!

More information

DesignCon IBIS-AMI Modeling and Simulation of 56G PAM4 Link Systems. Hongtao Zhang, Xilinx Inc.

DesignCon IBIS-AMI Modeling and Simulation of 56G PAM4 Link Systems. Hongtao Zhang, Xilinx Inc. DesignCon 2015 IBIS-AMI Modeling and Simulation of 56G PAM4 Link Systems Hongtao Zhang, Xilinx Inc. hongtao@xilinx.com Fangyi Rao, Keysight Technologies fangyi_rao@keysight.com Xiaoqing Dong, Huawei Technologies

More information

Multi-Gigabit Serial Link Simulation with Xilinx 7 Series FPGA GTX Transceiver IBIS-AMI Models

Multi-Gigabit Serial Link Simulation with Xilinx 7 Series FPGA GTX Transceiver IBIS-AMI Models White Paper: 7 Series FPGAs WP424 (v1.) September 28, 212 Multi-Gigabit Serial Link Simulation with Xilinx 7 Series FPGA GTX Transceiver IBIS-AMI Models By: Harry Fu, Romi Mayder, and Ian Zhuang The 7

More information

A Significant Technology Advancement in High-Speed Link Modeling and Simulation

A Significant Technology Advancement in High-Speed Link Modeling and Simulation white paper Intel FPGA A Significant Technology Advancement in High-Speed Link Modeling and Simulation Authors Mike Peng Li Fellow Intel Corporation Hsinho Wu Principal Engineer Intel Corporation Masashi

More information

Verilog-A Modeling of DFFsin CDRs

Verilog-A Modeling of DFFsin CDRs Verilog-A Modeling of DFFsin CDRs Denis Zelenin Dalius Baranauskas Pacific MicroCHIPCorp. June 2009 Goals 1. Create parameterized Verilog-A models of CML cells used in CDR detector: latch, and-gate, xor-gate.

More information

Nonlinear Effects in Active Phased Array System Performance

Nonlinear Effects in Active Phased Array System Performance Nonlinear Effects in Active Phased Array System Performance Larry Williams, PhD Director of Product Management ANSYS Inc. 1 Advanced Simulation Simulate the Complete Product Real-life behavior in real-world

More information

Evaluation of Package Properties for RF BJTs

Evaluation of Package Properties for RF BJTs Application Note Evaluation of Package Properties for RF BJTs Overview EDA simulation software streamlines the development of digital and analog circuits from definition of concept and estimation of required

More information

Validation Report Comparison of Eye Patterns Generated By Synopsys HSPICE and the Agilent PLTS

Validation Report Comparison of Eye Patterns Generated By Synopsys HSPICE and the Agilent PLTS Comparison of Eye Patterns Generated By Synopsys HSPICE and the Agilent PLTS Using: Final Inch Test/Eval Kit, Differential Pair - No Grounds Configuration, QTE-DP/QSE-DP, 5mm Stack Height (P/N FIK-QxE-04-01)

More information

Characterizing and Modeling of a Linear CTE. Skipper Liang Asian IBIS Summit Shanghai, PRC November 13, 2017

Characterizing and Modeling of a Linear CTE. Skipper Liang Asian IBIS Summit Shanghai, PRC November 13, 2017 Characterizing and Modeling of a Linear CTE Skipper Liang Asian IBIS Summit Shanghai, PRC November 13, 2017 To Divide a RX : For modeling a RX circuit, we usually need to separate the whole design into

More information

06-496r3 SAS-2 Electrical Specification Proposal. Kevin Witt SAS-2 Phy Working Group 1/16/07

06-496r3 SAS-2 Electrical Specification Proposal. Kevin Witt SAS-2 Phy Working Group 1/16/07 06-496r3 SAS-2 Electrical Specification Proposal Kevin Witt SAS-2 Phy Working Group 1/16/07 Overview Motivation Multiple SAS-2 Test Chips Have Been Built and Tested, SAS-2 Product Designs have Started

More information

DesignCon Design of Gb/s Interconnect for High-bandwidth FPGAs. Sherri Azgomi, Altera Corporation

DesignCon Design of Gb/s Interconnect for High-bandwidth FPGAs. Sherri Azgomi, Altera Corporation DesignCon 2004 Design of 3.125 Gb/s Interconnect for High-bandwidth FPGAs Sherri Azgomi, Altera Corporation sazgomi@altera.com Lawrence Williams, Ph.D., Ansoft Corporation williams@ansoft.com CF-031505-1.0

More information

EMI/EMC of Entire Automotive Vehicles and Critical PCB s. Makoto Suzuki Ansoft Corporation

EMI/EMC of Entire Automotive Vehicles and Critical PCB s. Makoto Suzuki Ansoft Corporation EMI/EMC of Entire Automotive Vehicles and Critical PCB s Makoto Suzuki Ansoft Corporation WT10_SI EMI/EMC of Entire Automotive Vehicles and Critical PCB s Akira Ohta, Toru Watanabe, Benson Wei Makoto Suzuki

More information

High Speed I/O 2-PAM Receiver Design. EE215E Project. Signaling and Synchronization. Submitted By

High Speed I/O 2-PAM Receiver Design. EE215E Project. Signaling and Synchronization. Submitted By High Speed I/O 2-PAM Receiver Design EE215E Project Signaling and Synchronization Submitted By Amrutha Iyer Kalpana Manickavasagam Pritika Dandriyal Joseph P Mathew Problem Statement To Design a high speed

More information

ECE 585 Microwave Engineering II Lecture 16 Supplemental Notes. Modeling the Response of a FET Amplifier Using Ansoft Designer K.

ECE 585 Microwave Engineering II Lecture 16 Supplemental Notes. Modeling the Response of a FET Amplifier Using Ansoft Designer K. C 585 Microwave ngineering II Lecture 16 Supplemental Notes Modeling the Response of a FT Amplifier Using Ansoft Designer K. Carver 4-13-04 Consider a simple FT microwave amplifier circuit shown below,

More information

Virtex-5 FPGA RocketIO GTX Transceiver IBIS-AMI Signal Integrity Simulation Kit User Guide

Virtex-5 FPGA RocketIO GTX Transceiver IBIS-AMI Signal Integrity Simulation Kit User Guide Virtex-5 FPGA RocketIO GTX Transceiver IBIS-AMI Signal Integrity Simulation Kit User Guide for SiSoft Quantum Channel Designer Notice of Disclaimer The information disclosed to you hereunder (the Materials

More information

Building IBIS-AMI Models From Datasheet Specifications

Building IBIS-AMI Models From Datasheet Specifications TITLE Building IBIS-AMI Models From Datasheet Specifications Eugene Lim, (Intel of Canada) Donald Telian, (SiGuys Consulting) Image SPEAKERS Eugene K Lim Hardware Design Engineer, Intel Corporation eugene.k.lim@intel.com

More information

Building IBIS-AMI Models from Datasheet Specifications

Building IBIS-AMI Models from Datasheet Specifications DesignCon 2016 Building IBIS-AMI Models from Datasheet Specifications Eugene Lim, Intel Corporation Donald Telian, SiGuys Abstract Some high-speed SerDes devices do not come with IBIS-AMI models. For situations

More information

SAS-2 6Gbps PHY Specification

SAS-2 6Gbps PHY Specification SAS-2 6 PHY Specification T10/07-063r5 Date: April 25, 2007 To: T10 Technical Committee From: Alvin Cox (alvin.cox@seagate.com) Subject: SAS-2 6 PHY Electrical Specification Abstract: The attached information

More information

IBIS-AMI Correlation and BIRD Update

IBIS-AMI Correlation and BIRD Update IBIS-AMI Correlation and BIRD Update SiSoft IBIS-ATM Working Group 4/1/08 Signal Integrity Software, Inc. Overview DesignCon IBIS Summit presentation demonstrated interoperability and performance SiSoft

More information

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits

FDTD SPICE Analysis of High-Speed Cells in Silicon Integrated Circuits FDTD Analysis of High-Speed Cells in Silicon Integrated Circuits Neven Orhanovic and Norio Matsui Applied Simulation Technology Gateway Place, Suite 8 San Jose, CA 9 {neven, matsui}@apsimtech.com Abstract

More information

Keysight Technologies Signal Integrity Tips and Techniques Using TDR, VNA and Modeling

Keysight Technologies Signal Integrity Tips and Techniques Using TDR, VNA and Modeling Keysight Technologies Signal Integrity Tips and Techniques Using, VNA and Modeling Article Reprint This article first appeared in the March 216 edition of Microwave Journal. Reprinted with kind permission

More information

yellow highlighted text indicates refinement is needed turquoise highlighted text indicates where the text was original pulled from

yellow highlighted text indicates refinement is needed turquoise highlighted text indicates where the text was original pulled from yellow highlighted text indicates refinement is needed turquoise highlighted text indicates where the text was original pulled from The text of this section was pulled from clause 72.7 128.7 2.5GBASE-KX

More information

ECEN 720 High-Speed Links Circuits and Systems

ECEN 720 High-Speed Links Circuits and Systems 1 ECEN 720 High-Speed Links Circuits and Systems Lab4 Receiver Circuits Objective To learn fundamentals of receiver circuits. Introduction Receivers are used to recover the data stream transmitted by transmitters.

More information

To learn fundamentals of high speed I/O link equalization techniques.

To learn fundamentals of high speed I/O link equalization techniques. 1 ECEN 720 High-Speed Links: Circuits and Systems Lab5 Equalization Circuits Objective To learn fundamentals of high speed I/O link equalization techniques. Introduction An ideal cable could propagate

More information

Virtex-5 FPGA RocketIO GTP Transceiver IBIS-AMI Signal Integrity Simulation Kit User Guide

Virtex-5 FPGA RocketIO GTP Transceiver IBIS-AMI Signal Integrity Simulation Kit User Guide Virtex-5 FPGA RocketIO GTP Transceiver IBIS-AMI Signal Integrity Simulation Kit User Guide for SiSoft Quantum Channel Designer Notice of Disclaimer The information disclosed to you hereunder (the Materials

More information

Practical Wired Digital Communications Link Analysis

Practical Wired Digital Communications Link Analysis Portland State University PDXScholar Dissertations and Theses Dissertations and Theses 8-10-2016 Practical Wired Digital Communications Link Analysis Raymond Matthew Schmelzer Portland State University

More information

Real Time Jitter Analysis

Real Time Jitter Analysis Real Time Jitter Analysis Agenda ı Background on jitter measurements Definition Measurement types: parametric, graphical ı Jitter noise floor ı Statistical analysis of jitter Jitter structure Jitter PDF

More information

Principles of Current Source Modeling

Principles of Current Source Modeling Principles of Current Source Modeling Dipl.-Ing. Christoph Knoth Outline Brief Introduction Evolution of Timing Models Current Source Models Basics Characterization Implementation Application Summary 2

More information

IBIS 5.0 AMI Basic Principles. Basis for existing models and existing flows

IBIS 5.0 AMI Basic Principles. Basis for existing models and existing flows IBIS 5.0 AMI Basic Principles Basis for existing models and existing flows Walter Katz IBIS AMI October 20, 2009 Signal Integrity Software, Inc. High Speed SerDes Challenges and Simplifications Simplifications

More information

Chip Package - PC Board Co-Design: Applying a Chip Power Model in System Power Integrity Analysis

Chip Package - PC Board Co-Design: Applying a Chip Power Model in System Power Integrity Analysis Chip Package - PC Board Co-Design: Applying a Chip Power Model in System Power Integrity Analysis Authors: Rick Brooks, Cisco, ricbrook@cisco.com Jane Lim, Cisco, honglim@cisco.com Udupi Harisharan, Cisco,

More information

The Next State-of-the-Art in Circuit Simulation

The Next State-of-the-Art in Circuit Simulation The Next State-of-the-Art in Circuit Simulation Samuel Mertens, Mary Tolikas Ansoft Corporation Requirements for the next state-of-the-art circuit simulator Consistency across analysis domains Model compatibility

More information

DesignCon 2017 Characterization of DDR4 Receiver Sensitivity Impact on Post-equalization Eye

DesignCon 2017 Characterization of DDR4 Receiver Sensitivity Impact on Post-equalization Eye DesignCon 2017 Characterization of DDR4 Receiver Sensitivity Impact on Post-equalization Eye Yong Wang, Xilinx Inc. Thomas To, Xilinx Inc. Penglin Niu, Xilinx Inc. Fangyi Rao, Keysight Technologies Juan

More information

A 10Gb/s 10mm On-Chip Serial Link in 65nm CMOS Featuring a Half-Rate Time-Based Decision Feedback Equalizer

A 10Gb/s 10mm On-Chip Serial Link in 65nm CMOS Featuring a Half-Rate Time-Based Decision Feedback Equalizer A 10Gb/s 10mm On-Chip Serial Link in 65nm CMOS Featuring a Half-Rate Time-Based Decision Feedback Equalizer Po-Wei Chiu, Somnath Kundu, Qianying Tang, and Chris H. Kim University of Minnesota, Minneapolis,

More information

3 Definitions, symbols, abbreviations, and conventions

3 Definitions, symbols, abbreviations, and conventions T10/02-358r2 1 Scope 2 Normative references 3 Definitions, symbols, abbreviations, and conventions 4 General 4.1 General overview 4.2 Cables, connectors, signals, transceivers 4.3 Physical architecture

More information

To learn S-parameters, eye diagram, ISI, modulation techniques and their simulations in MATLAB and Cadence.

To learn S-parameters, eye diagram, ISI, modulation techniques and their simulations in MATLAB and Cadence. 1 ECEN 720 High-Speed Links: Circuits and Systems Lab2- Channel Models Objective To learn S-parameters, eye diagram, ISI, modulation techniques and their simulations in MATLAB and Cadence. Introduction

More information

EDI CON USA Addressing DDR5 design challenges with IBIS-AMI modeling techniques. Todd Westerhoff, SiSoft Doug Burns, SiSoft Eric Brock, SiSoft

EDI CON USA Addressing DDR5 design challenges with IBIS-AMI modeling techniques. Todd Westerhoff, SiSoft Doug Burns, SiSoft Eric Brock, SiSoft EDI CON USA 2017 Addressing DDR5 design challenges with IBIS-AMI modeling techniques Todd Westerhoff, SiSoft Doug Burns, SiSoft Eric Brock, SiSoft This page intentionally blank to support double-sided

More information

AUTOMOTIVE ETHERNET CONSORTIUM

AUTOMOTIVE ETHERNET CONSORTIUM AUTOMOTIVE ETHERNET CONSORTIUM Clause 96 100BASE-T1 Physical Medium Attachment Test Suite Version 1.0 Technical Document Last Updated: March 9, 2016 Automotive Ethernet Consortium 21 Madbury Rd, Suite

More information

IBIS-AMI Terminology Overview

IBIS-AMI Terminology Overview IBIS-AMI Terminology Overview Walter Katz, SiSoft wkatz@sisoft.com Mike Steinberger, SiSoft msteinb@sisoft.com Todd Westerhoff, SiSoft twesterh@sisoft.com DAC 2009 IBIS Summit San Francisco, CA July 28,

More information

PCB Routing Guidelines for Signal Integrity and Power Integrity

PCB Routing Guidelines for Signal Integrity and Power Integrity PCB Routing Guidelines for Signal Integrity and Power Integrity Presentation by Chris Heard Orange County chapter meeting November 18, 2015 1 Agenda Insertion Loss 101 PCB Design Guidelines For SI Simulation

More information

ABSTRACT. As data frequency increases beyond several Gbps range, low power chip to chip

ABSTRACT. As data frequency increases beyond several Gbps range, low power chip to chip ABSTRACT SHAH, CHINTAN HEMENDRA. Inductively Coupled Interconnect for Chip to Chip Communication over Transmission Line. (Under the direction of Dr. Paul Franzon). As data frequency increases beyond several

More information

End-to-End System-Level Simulations with Repeaters for PCIe Gen4: A How-To Guide

End-to-End System-Level Simulations with Repeaters for PCIe Gen4: A How-To Guide DesignCon 2017 End-to-End System-Level Simulations with Repeaters for PCIe Gen4: A How-To Guide Yongyao Li, Huawei liyongyao@huawei.com Casey Morrison, Texas Instruments cmorrison@ti.com Fangyi Rao, Keysight

More information

Backchannel Modeling and Simulation Using Recent Enhancements to the IBIS Standard

Backchannel Modeling and Simulation Using Recent Enhancements to the IBIS Standard Backchannel Modeling and Simulation Using Recent Enhancements to the IBIS Standard By Ken Willis, Product Engineering Architect; Ambrish Varma, Senior Principal Software Engineer; Dr. Kumar Keshavan, Senior

More information

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA

Texas A&M University Electrical Engineering Department ECEN 665. Laboratory #3: Analysis and Simulation of a CMOS LNA Texas A&M University Electrical Engineering Department ECEN 665 Laboratory #3: Analysis and Simulation of a CMOS LNA Objectives: To learn the use of s-parameter and periodic steady state (pss) simulation

More information

Two for One: SerDes Flows for AMI Model Development

Two for One: SerDes Flows for AMI Model Development Two for One: SerDes Flows for AMI Model Development Corey Mathis, Ren Sang Nah (MathWorks) Richard Allred, Todd Westerhoff (SiSoft) DesignCon 2016 IBIS Summit Santa Clara, California January 22, 2016 *

More information

To learn S-parameter, eye diagram, ISI, modulation techniques and to simulate in Matlab and Cadence.

To learn S-parameter, eye diagram, ISI, modulation techniques and to simulate in Matlab and Cadence. 1 ECEN 689 High-Speed Links Circuits and Systems Lab2- Channel Models Objective To learn S-parameter, eye diagram, ISI, modulation techniques and to simulate in Matlab and Cadence. Introduction S-parameters

More information

Relationship Between Signal Integrity and EMC

Relationship Between Signal Integrity and EMC Relationship Between Signal Integrity and EMC Presented by Hasnain Syed Solectron USA, Inc. RTP, North Carolina Email: HasnainSyed@solectron.com 06/05/2007 Hasnain Syed 1 What is Signal Integrity (SI)?

More information

DesignCon Comparison of Two Statistical Methods for High Speed Serial Link Simulation

DesignCon Comparison of Two Statistical Methods for High Speed Serial Link Simulation DesignCon 2013 Comparison of Two Statistical Methods for High Speed Serial Link Simulation Masashi Shimanouchi, Altera Corporation mshimano@alatera.com Mike Peng Li, Altera Corporation mpli@altera.com

More information

Revving up VPX for 10Gbaud operation a case study for implementing IEEE 802.3ap 10GBASE-KR over a VPX backplane Bob Sullivan, Michael Rose, Jason Boh

Revving up VPX for 10Gbaud operation a case study for implementing IEEE 802.3ap 10GBASE-KR over a VPX backplane Bob Sullivan, Michael Rose, Jason Boh Introduction VPX has become the defacto standard for the current generation of military embedded computing platforms. These systems include high-speed serial fabrics such as Serial Rapid I/O, PCI Express,

More information

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE

THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE THE INTERNATIONAL JOURNAL OF SCIENCE & TECHNOLEDGE Topology Comparison and Design of Low Noise Amplifier for Enhanced Gain Arul Thilagavathi M. PG Student, Department of ECE, Dr. Sivanthi Aditanar College

More information

A SerDes Balancing Act: Co-Optimizing Tx and Rx Equalization Settings to Maximize Margin. Donald Telian, Owner SiGuys Todd Westerhoff, VP SiSoft

A SerDes Balancing Act: Co-Optimizing Tx and Rx Equalization Settings to Maximize Margin. Donald Telian, Owner SiGuys Todd Westerhoff, VP SiSoft A SerDes Balancing Act: Co-Optimizing Tx and Rx Equalization Settings to Maximize Margin Donald Telian, Owner SiGuys Todd Westerhoff, VP SiSoft AGENDA A SerDes Balancing Act Introduction Co-Optimization

More information

EQUALIZERS. HOW DO? BY: ANKIT JAIN

EQUALIZERS. HOW DO? BY: ANKIT JAIN EQUALIZERS. HOW DO? BY: ANKIT JAIN AGENDA DFE (Decision Feedback Equalizer) Basics FFE (Feed-Forward Equalizer) Basics CTLE (Continuous-Time Linear Equalizer) Basics More Complex Equalization UNDERSTANDING

More information

INF3430 Clock and Synchronization

INF3430 Clock and Synchronization INF3430 Clock and Synchronization P.P.Chu Using VHDL Chapter 16.1-6 INF 3430 - H12 : Chapter 16.1-6 1 Outline 1. Why synchronous? 2. Clock distribution network and skew 3. Multiple-clock system 4. Meta-stability

More information

Frequency Multiplier Development at e2v Technologies

Frequency Multiplier Development at e2v Technologies Frequency Multiplier Development at e2v Technologies Novak Farrington UK Millimetre-Wave User Group Meeting National Physical Laboratory 05-10-09 Outline Sources available Brief overview of doubler operation

More information

The Practical Limitations of S Parameter Measurements and the Impact on Time- Domain Simulations of High Speed Interconnects

The Practical Limitations of S Parameter Measurements and the Impact on Time- Domain Simulations of High Speed Interconnects The Practical Limitations of S Parameter Measurements and the Impact on Time- Domain Simulations of High Speed Interconnects Dennis Poulin Anritsu Company Slide 1 Outline PSU Signal Integrity Symposium

More information

IBIS in the Frequency Domain. Michael Mirmak Intel Corporation DAC IBIS Summit 2006 July 25, 2006

IBIS in the Frequency Domain. Michael Mirmak Intel Corporation DAC IBIS Summit 2006 July 25, 2006 IBIS in the Frequency Domain Michael Mirmak Intel Corporation DAC IBIS Summit 2006 July 25, 2006 Agenda Frequency Domain and Related Aspects Area 1: Maximum Switching Frequency Area 2: C_comp Stability

More information

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram

A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram LETTER IEICE Electronics Express, Vol.10, No.4, 1 8 A10-Gb/slow-power adaptive continuous-time linear equalizer using asynchronous under-sampling histogram Wang-Soo Kim and Woo-Young Choi a) Department

More information

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c,

A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a, Wang Zhengchen b, Gui Xiaoyan c, 4th International Conference on Computer, Mechatronics, Control and Electronic Engineering (ICCMCEE 2015) A 5-Gb/s 156-mW Transceiver with FFE/Analog Equalizer in 90-nm CMOS Technology Wang Xinghua a,

More information

Low power SERDES transceiver for supply-induced jitter sensitivity methodology analysis

Low power SERDES transceiver for supply-induced jitter sensitivity methodology analysis Low power SERDES transceiver for supply-induced jitter sensitivity methodology analysis Micro Chang htc Michael_Chang@hTC.com Jan 9, 2019 X 1 Agenda Jitter-aware target impedance of power delivery network

More information

Keysight Technologies IBIS-AMI Modeling of Asynchronous High Speed Link Systems

Keysight Technologies IBIS-AMI Modeling of Asynchronous High Speed Link Systems Keysight Technologies IBIS-AMI Modeling of Asynchronous High Speed Link Systems by Hongtao Zhang, Xilinx Inc. Fangyi Rao, Keysight Technologies Daniel (Zhaoyin) Wu, Xilinx Inc. Geoff Zhang, Xilinx Inc.

More information

Appendix. RF Transient Simulator. Page 1

Appendix. RF Transient Simulator. Page 1 Appendix RF Transient Simulator Page 1 RF Transient/Convolution Simulation This simulator can be used to solve problems associated with circuit simulation, when the signal and waveforms involved are modulated

More information

High Speed Characterization Report

High Speed Characterization Report PCIEC-XXX-XXXX-EC-EM-P Mated with: PCIE-XXX-02-X-D-TH Description: 1.00 mm PCI Express Internal Cable Assembly, 30 AWG Twinax Ribbon Cable Samtec, Inc. 2005 All Rights Reserved Table of Contents Cable

More information

Extending IBIS-AMI to Support Back-Channel Communications DesignCon IBIS Summit February 3, 2011 Santa Clara, CA

Extending IBIS-AMI to Support Back-Channel Communications DesignCon IBIS Summit February 3, 2011 Santa Clara, CA Extending IBIS-AMI to Support Back-Channel Communications DesignCon IBIS Summit February 3, 2011 Santa Clara, CA Kumar Keshavan - Sigrity Marcus Van Ierssel Snowbush IP (Gennum) Ken Willis - Sigrity Agenda

More information

Generating Jitter for Fibre Channel Compliance Testing

Generating Jitter for Fibre Channel Compliance Testing Application Note: HFAN-4.5.2 Rev 0; 12/00 Generating Jitter for Fibre Channel Compliance Testing MAXIM High-Frequency/Fiber Communications Group 4hfan452.doc 01/02/01 Generating Jitter for Fibre Channel

More information

Studies on FIR Filter Pre-Emphasis for High-Speed Backplane Data Transmission

Studies on FIR Filter Pre-Emphasis for High-Speed Backplane Data Transmission Studies on FIR Filter Pre-Emphasis for High-Speed Backplane Data Transmission Miao Li Department of Electronics Carleton University Ottawa, ON. K1S5B6, Canada Tel: 613 525754 Email:mili@doe.carleton.ca

More information

Signal Integrity Tips and Techniques Using TDR, VNA and Modeling. Russ Kramer O.J. Danzy

Signal Integrity Tips and Techniques Using TDR, VNA and Modeling. Russ Kramer O.J. Danzy Signal Integrity Tips and Techniques Using TDR, VNA and Modeling Russ Kramer O.J. Danzy Simulation What is the Signal Integrity Challenge? Tx Rx Channel Asfiakhan Dreamstime.com - 3d People Communication

More information

TITLE. Novel Methodology of IBIS-AMI Hardware Correlation using Trend and Distribution Analysis for high-speed SerDes System

TITLE. Novel Methodology of IBIS-AMI Hardware Correlation using Trend and Distribution Analysis for high-speed SerDes System TITLE Novel Methodology of IBIS-AMI Hardware Correlation using Trend and Distribution Analysis for high-speed SerDes System Hong Ahn, (Xilinx) Brian Baek, (Cisco) Ivan Madrigal (Xilinx) Image Hongtao Zhang

More information

PDS Impact for DDR Low Cost Design

PDS Impact for DDR Low Cost Design PDS Impact for DDR3-1600 Low Cost Design Jack W.C. Lin Sr. AE Manager jackl@cadence.com Aug. g 13 2013 Cadence, OrCAD, Allegro, Sigrity and the Cadence logo are trademarks of Cadence Design Systems, Inc.

More information

EECE 488: Short HSPICE Tutorial. Last updated by: Mohammad Beikahmadi January 2013

EECE 488: Short HSPICE Tutorial. Last updated by: Mohammad Beikahmadi January 2013 EECE 488: Short HSPICE Tutorial Last updated by: Mohammad Beikahmadi January 2013 SPICE? Simulation Program with Integrated Circuit Emphasis An open source analog circuit simulator Predicts circuit behavior,

More information

Signal Technologies 1

Signal Technologies 1 Signal Technologies 1 Gunning Transceiver Logic (GTL) - evolution Evolved from BTL, the backplane transceiver logic, which in turn evolved from ECL (emitter-coupled logic) Setup of an open collector bus

More information

Design and Optimization of a Novel 2.4 mm Coaxial Field Replaceable Connector Suitable for 25 Gbps System and Material Characterization up to 50 GHz

Design and Optimization of a Novel 2.4 mm Coaxial Field Replaceable Connector Suitable for 25 Gbps System and Material Characterization up to 50 GHz Design and Optimization of a Novel 2.4 mm Coaxial Field Replaceable Connector Suitable for 25 Gbps System and Material Characterization up to 50 GHz Course Number: 13-WA4 David Dunham, Molex Inc. David.Dunham@molex.com

More information

Faculty of Engineering 4 th Year, Fall 2010

Faculty of Engineering 4 th Year, Fall 2010 4. Inverter Schematic a) After you open the previously created Inverter schematic, an empty window appears where you should place your components. To place an NMOS, select Add- >Instance or use shortcut

More information