NTU CSIE. Advisor: Wu Ja Ling, Ph.D.

Size: px
Start display at page:

Download "NTU CSIE. Advisor: Wu Ja Ling, Ph.D."

Transcription

1 An Interactive Background Blurring Mechanism and Its Applications NTU CSIE Yan Chih Yu Advisor: Wu Ja Ling, Ph.D. 1

2 2

3 Outline Introduction Related Work Method Object Segmentation Depth Map Generation Image Defocus Experimental Result Applications Conclusion and Futurework 3

4 Introduction Introduction y Depth of field Circle of confusion Photo plane Real world 4

5 Introduction Depth of field Circle of confusion Photo plane Out of focus Real light Circle of Confusion 5

6 Introduction Depth of field Focus plane Photo plane Out of focus blur range Real light Depth of field Circle of Confusion Readability range 6

7 Introduction Depth of field Object distance, focal length, aperture size Focus plane Photo plane Out of focus blur range Real light Depth of field Circle of Confusion Readability range 7

8 Introduction Introduction y Shallow focus Photo plane Real world 8

9 Introduction Shallow focus Highlight the subject by softening background diffusion Deep focus by DC NIKON E4300 (2003) Shallow focus by DSLR NIKON D90(2008) 9

10 Related work Optics camera & Digital camera Depth Blur information effect Depth Blur information effect Special Effect (3D reconstruct) Other Applications 10

11 Related work Active Refocusing of Images and Videos [siggraph07] 11

12 Related work Image and Depth from a Conventional Camera with a Coded Aperture [siggraph07] 12

13 Related Work Single Image Dehazing [siggraph08] 13

14 Method Object Segmentation Lazy Snapping Alpha Matting Face Detection Depth thmap Generation Perspective Box Pop up Card Image Defocus Camera Settings Applications Privacy Preserving Photo Browser Defocus Blur 14

15 Method Segment Lazy snapping Mean shift Alpha matting Face detection User Stroke Resize to 20% Mean shift Do hard graph cut by lazy snapping Segmentation tri Map Segmentation alpha Map Lazy Snapping. ACM Trans. On Graphics Mean Shift: A Robust Approach Toward Feature Space Analysis. PAMI A Bayesian Approach to Digital Matting. CVPR

16 Method Depth map Perspective Box Vanish point Rear wall Perspective Box Pop up card Normal vector Depth Map Tour Into the Picture: Using a spidery mesh user interface to make animation from a single image. SIGGRAPH

17 Method Depth map Perspective Box Vanish point Rear wall Perspective Box Pop up card Normal vector Depth Map Tour Into the Picture: Using a spidery mesh user interface to make animation from a single image. SIGGRAPH

18 Method Depth map Perspective Box Vanish point Rear wall Perspective Box Pop up card Normal vector Depth Map Tour Into the Picture: Using a spidery mesh user interface to make animation from a single image. SIGGRAPH

19 Method Depth map Pop up card Perspective Box Pop up card Normal vector Depth Map 19

20 Method Depth map Normal vector Perspective Box Pop up card Normal vector Depth Map 20

21 Method Image defocus Blur circle diameter Depth Map Segment Map Camera setting Aperture size Focal length of the lens Distance of focus u b v b u b v b b d b d u v u v (a) (b) Blur circle diameter 21

22 Method Defocus blur bokeh I(x 1,y 1 ) I(x 2,y 2 ) I(x 3,y 3 ) E 1 (i,j) E 2 (i,j) E 3 (i,j) E n+2 (i,j) E n (i,j) E n+1 (i,j) I(x n,y n ) I(x n+1,y n+1 ) I(x n+2,y n+2 ),,,,,, x,, 1,,, 1,,,,,,,,,, 0,, 22

23 Method Defocus blur I(x 1,y 1 ) I(x 2,y 2 ) I(x 3,y 3 ) E 1 (i,j) E 2 (i,j) E 3 (i,j) E n+2 (i,j) E n (i,j) E n+1 (i,j) I(x n,y n ) I(x n+1,y n+1 ) I(x n+2,y n+2 ) 23

24 Method Near by object case Focus on the Focus on the flower flower 24

25 Method Blur circle diameter Objects in front of Objects behind h f Near by object case the focus the focus 25

26 Method Blur circle diameter Objects in front of Objects behind h f Near by object case the focus the focus Blur shape as alpha map Defocus Blur 26

27 Method Blur circle diameter Objects in front of Objects behind h f Near by object case the focus the focus Blur shape as alpha map Defocus Blur 27

28 Method Blur circle diameter Objects in front of Objects behind h f Near by object case the focus the focus Blur shape as alpha map Texture synthesis inpainting Defocus Blur Defocus Blur 28

29 Method Blur circle diameter Objects in front of Objects behind h f Near by object case the focus the focus Blur shape as alpha map Texture synthesis inpainting Defocus Blur Defocus Blur 29

30 Method Blur circle diameter Objects in front of Objects behind h f Near by object case the focus the focus Blur shape as alpha map Texture synthesis inpainting Defocus Blur Defocus Blur Interpolation by alpha map Shallow focus image 30

31 Experimental Result 1 Defocus blur method proposed in the system comparing with other blur filter results Deep focus Shallow focus 31

32 Experimental Result 1 Defocus blur method proposed in the system comparing with other blur filter results Gaussian blur Defocus blur Defocus blur + Bokeh 32

33 Experimental Result 1 Deep focus Shallow focus 33

34 Experimental Result 1 Original photograph Defocus blur method proposed in the system comparing with other blur filter results Gaussian blur Defocus blur Defocus blur + Bokeh 34

35 Experimental Result 2 with / without depth variation in the background Real photograph taken by DSLR 35

36 Experimental Result 2 with / without depth variation in the background Depth variation Original photograph Depth fixed Result after post processing 36

37 Experimental Result 3 Near by object case Focus on the Focus on the flower flower 37

38 Experimental Result 3 Near by object case Interpolation result Without inpainting 38

39 Experimental Result 4 Comparing with Photoshop Original image Photoshop (1 Hour) Our system (3~5min) 39

40 Applications Privacy Preserving 40

41 Applications Partial Viewing 41

42 Applications Partial Viewing 42

43 Applications Partial Viewing Applications Partial Viewing Applications 43

44 Applications Image Transition at Photo Browser 44

45 Applications Image Transition at Photo Browser 45

46 Applications Image Transition at Photo Browser Movie with defocus blur effect 46

47 Applications Image Transition at Photo Browser Concatenate two unrelated images 47

48 Conclusion and Future work We proposed an interactive refocusing tool for background blurring Simple user hint Defocus blur kernel Concatenate two related picture Future work concatenate two or more unrelated pictures Color based image retrieval technique 48

49 END THANK YOU 49

Nikon D750 ISO 200 1/60 sec. f/ mm lens

Nikon D750 ISO 200 1/60 sec. f/ mm lens Nikon D750 ISO 200 1/60 sec. f/16 20 35mm lens 10 Creative Focus Sometimes tack-sharp focus isn t what you want for an image or for an entire image to tell the story you envision. What you focus on and

More information

Defocus Map Estimation from a Single Image

Defocus Map Estimation from a Single Image Defocus Map Estimation from a Single Image Shaojie Zhuo Terence Sim School of Computing, National University of Singapore, Computing 1, 13 Computing Drive, Singapore 117417, SINGAPOUR Abstract In this

More information

Computational Photography

Computational Photography Computational photography Computational Photography Digital Visual Effects Yung-Yu Chuang wikipedia: Computational photography h refers broadly to computational imaging techniques that enhance or extend

More information

Simulated Programmable Apertures with Lytro

Simulated Programmable Apertures with Lytro Simulated Programmable Apertures with Lytro Yangyang Yu Stanford University yyu10@stanford.edu Abstract This paper presents a simulation method using the commercial light field camera Lytro, which allows

More information

Coded Computational Photography!

Coded Computational Photography! Coded Computational Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 9! Gordon Wetzstein! Stanford University! Coded Computational Photography - Overview!!

More information

Topic 6 - Optics Depth of Field and Circle Of Confusion

Topic 6 - Optics Depth of Field and Circle Of Confusion Topic 6 - Optics Depth of Field and Circle Of Confusion Learning Outcomes In this lesson, we will learn all about depth of field and a concept known as the Circle of Confusion. By the end of this lesson,

More information

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 14 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 2 due May 19 Any last minute issues or questions? Next two lectures: Imaging,

More information

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Ashok Veeraraghavan, Ramesh Raskar, Ankit Mohan & Jack Tumblin Amit Agrawal, Mitsubishi Electric Research

More information

On the Recovery of Depth from a Single Defocused Image

On the Recovery of Depth from a Single Defocused Image On the Recovery of Depth from a Single Defocused Image Shaojie Zhuo and Terence Sim School of Computing National University of Singapore Singapore,747 Abstract. In this paper we address the challenging

More information

Changyin Zhou. Ph.D, Computer Science, Columbia University Oct 2012

Changyin Zhou. Ph.D, Computer Science, Columbia University Oct 2012 Changyin Zhou Software Engineer at Google X Google Inc. 1600 Amphitheater Parkway, Mountain View, CA 94043 E-mail: changyin@google.com URL: http://www.changyin.org Office: (917) 209-9110 Mobile: (646)

More information

Modeling and Synthesis of Aperture Effects in Cameras

Modeling and Synthesis of Aperture Effects in Cameras Modeling and Synthesis of Aperture Effects in Cameras Douglas Lanman, Ramesh Raskar, and Gabriel Taubin Computational Aesthetics 2008 20 June, 2008 1 Outline Introduction and Related Work Modeling Vignetting

More information

6.A44 Computational Photography

6.A44 Computational Photography Add date: Friday 6.A44 Computational Photography Depth of Field Frédo Durand We allow for some tolerance What happens when we close the aperture by two stop? Aperture diameter is divided by two is doubled

More information

Pattern Recognition 44 (2011) Contents lists available at ScienceDirect. Pattern Recognition. journal homepage:

Pattern Recognition 44 (2011) Contents lists available at ScienceDirect. Pattern Recognition. journal homepage: Pattern Recognition 44 () 85 858 Contents lists available at ScienceDirect Pattern Recognition journal homepage: www.elsevier.com/locate/pr Defocus map estimation from a single image Shaojie Zhuo, Terence

More information

Toward Non-stationary Blind Image Deblurring: Models and Techniques

Toward Non-stationary Blind Image Deblurring: Models and Techniques Toward Non-stationary Blind Image Deblurring: Models and Techniques Ji, Hui Department of Mathematics National University of Singapore NUS, 30-May-2017 Outline of the talk Non-stationary Image blurring

More information

A Mathematical model for the determination of distance of an object in a 2D image

A Mathematical model for the determination of distance of an object in a 2D image A Mathematical model for the determination of distance of an object in a 2D image Deepu R 1, Murali S 2,Vikram Raju 3 Maharaja Institute of Technology Mysore, Karnataka, India rdeepusingh@mitmysore.in

More information

Deconvolution , , Computational Photography Fall 2017, Lecture 17

Deconvolution , , Computational Photography Fall 2017, Lecture 17 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 17 Course announcements Homework 4 is out. - Due October 26 th. - There was another

More information

Coded Aperture for Projector and Camera for Robust 3D measurement

Coded Aperture for Projector and Camera for Robust 3D measurement Coded Aperture for Projector and Camera for Robust 3D measurement Yuuki Horita Yuuki Matugano Hiroki Morinaga Hiroshi Kawasaki Satoshi Ono Makoto Kimura Yasuo Takane Abstract General active 3D measurement

More information

Computational Cameras. Rahul Raguram COMP

Computational Cameras. Rahul Raguram COMP Computational Cameras Rahul Raguram COMP 790-090 What is a computational camera? Camera optics Camera sensor 3D scene Traditional camera Final image Modified optics Camera sensor Image Compute 3D scene

More information

DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS. Yatong Xu, Xin Jin and Qionghai Dai

DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS. Yatong Xu, Xin Jin and Qionghai Dai DEPTH FUSED FROM INTENSITY RANGE AND BLUR ESTIMATION FOR LIGHT-FIELD CAMERAS Yatong Xu, Xin Jin and Qionghai Dai Shenhen Key Lab of Broadband Network and Multimedia, Graduate School at Shenhen, Tsinghua

More information

Lenses, exposure, and (de)focus

Lenses, exposure, and (de)focus Lenses, exposure, and (de)focus http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 15 Course announcements Homework 4 is out. - Due October 26

More information

Privacy Preserving Optics for Miniature Vision Sensors

Privacy Preserving Optics for Miniature Vision Sensors Privacy Preserving Optics for Miniature Vision Sensors Francesco Pittaluga and Sanjeev J. Koppal University of Florida Electrical and Computer Engineering Shoham et al. 07, Wood 08, Enikov et al. 09, Agrihouse

More information

Introduction. Related Work

Introduction. Related Work Introduction Depth of field is a natural phenomenon when it comes to both sight and photography. The basic ray tracing camera model is insufficient at representing this essential visual element and will

More information

A Review over Different Blur Detection Techniques in Image Processing

A Review over Different Blur Detection Techniques in Image Processing A Review over Different Blur Detection Techniques in Image Processing 1 Anupama Sharma, 2 Devarshi Shukla 1 E.C.E student, 2 H.O.D, Department of electronics communication engineering, LR College of engineering

More information

Project 4 Results http://www.cs.brown.edu/courses/cs129/results/proj4/jcmace/ http://www.cs.brown.edu/courses/cs129/results/proj4/damoreno/ http://www.cs.brown.edu/courses/csci1290/results/proj4/huag/

More information

Midterm Examination CS 534: Computational Photography

Midterm Examination CS 534: Computational Photography Midterm Examination CS 534: Computational Photography November 3, 2015 NAME: SOLUTIONS Problem Score Max Score 1 8 2 8 3 9 4 4 5 3 6 4 7 6 8 13 9 7 10 4 11 7 12 10 13 9 14 8 Total 100 1 1. [8] What are

More information

Parameter descriptions:

Parameter descriptions: BCC Lens Blur The BCC Lens Blur filter emulates a lens blur defocus/rackfocus effect where out of focus highlights of an image clip take on the shape of the lens diaphragm. When a lens is used at it s

More information

CONTENTS 16 SERIES 04 PORTRAIT 08 MOTION 18 LANDSCAPE 10 MACRO 20 ARTIST 14 FINE ART PERSPECTIVE

CONTENTS 16 SERIES 04 PORTRAIT 08 MOTION 18 LANDSCAPE 10 MACRO 20 ARTIST 14 FINE ART PERSPECTIVE SEATTLE BENSON CONTENTS 02 DEPTH 14 FINE ART 04 PORTRAIT 08 MOTION 16 SERIES 18 LANDSCAPE PERSPECTIVE 10 MACRO 20 ARTIST DEPTH Creating a shallow and deep depth of field can be achieved by changing the

More information

Learning Adobe Photoshop CS6

Learning Adobe Photoshop CS6 Module 1 Contents Chapter 1: Introduction to Photoshop Loading Photoshop...1-1 The Tools Panel...1-2 Using the Tools...1-3 The Panel Group...1-5 Layers...1-6 Loading a Sample File...1-6 Looking at the

More information

Depth from Diffusion

Depth from Diffusion Depth from Diffusion Changyin Zhou Oliver Cossairt Shree Nayar Columbia University Supported by ONR Optical Diffuser Optical Diffuser ~ 10 micron Micrograph of a Holographic Diffuser (RPC Photonics) [Gray,

More information

Single-view Metrology and Cameras

Single-view Metrology and Cameras Single-view Metrology and Cameras 10/10/17 Computational Photography Derek Hoiem, University of Illinois Project 2 Results Incomplete list of great project pages Haohang Huang: Best presented project;

More information

Single Digital Image Multi-focusing Using Point to Point Blur Model Based Depth Estimation

Single Digital Image Multi-focusing Using Point to Point Blur Model Based Depth Estimation Single Digital mage Multi-focusing Using Point to Point Blur Model Based Depth Estimation Praveen S S, Aparna P R Abstract The proposed paper focuses on Multi-focusing, a technique that restores all-focused

More information

Making the right lens choice All images Paul Hazell

Making the right lens choice All images Paul Hazell Making the right lens choice All images Paul Hazell Aperture and focal length The two terms to make sure you understand when choosing a photographic lens for an SLR are the maximum aperture and the focal

More information

Faking It: Simulating Background Blur in Portrait Photography using a Coarse Depth Map Estimation from a Single Image

Faking It: Simulating Background Blur in Portrait Photography using a Coarse Depth Map Estimation from a Single Image Faking It: Simulating Background Blur in Portrait Photography using a Coarse Depth Map Estimation from a Single Image Nadine Friedrich Oleg Lobachev Michael Guthe University Bayreuth, AI5: Visual Computing,

More information

Accelerating defocus blur magnification

Accelerating defocus blur magnification Accelerating defocus blur magnification Florian Kriener, Thomas Binder and Manuel Wille Google Inc. (a) Input image I (b) Sparse blur map β (c) Full blur map α (d) Output image J Figure 1: Real world example

More information

Deconvolution , , Computational Photography Fall 2018, Lecture 12

Deconvolution , , Computational Photography Fall 2018, Lecture 12 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 12 Course announcements Homework 3 is out. - Due October 12 th. - Any questions?

More information

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017

Lecture 22: Cameras & Lenses III. Computer Graphics and Imaging UC Berkeley CS184/284A, Spring 2017 Lecture 22: Cameras & Lenses III Computer Graphics and Imaging UC Berkeley, Spring 2017 F-Number For Lens vs. Photo A lens s F-Number is the maximum for that lens E.g. 50 mm F/1.4 is a high-quality telephoto

More information

Computational Photography and Video. Prof. Marc Pollefeys

Computational Photography and Video. Prof. Marc Pollefeys Computational Photography and Video Prof. Marc Pollefeys Today s schedule Introduction of Computational Photography Course facts Syllabus Digital Photography What is computational photography Convergence

More information

Understanding Focal Length

Understanding Focal Length JANUARY 19, 2018 BEGINNER Understanding Focal Length Featuring DIANE BERKENFELD, DAVE BLACK, MIKE CORRADO & LINDSAY SILVERMAN Focal length, usually represented in millimeters (mm), is the basic description

More information

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction

Image formation - Cameras. Grading & Project. About the course. Tentative Schedule. Course Content. Students introduction About the course Instructors: Haibin Ling (hbling@temple, Wachman 35) Hours Lecture: Tuesda 5:3-8:pm, TTLMAN 43B Office hour: Tuesda 3: - 5:pm, or b appointment Textbook Computer Vision: Models, Learning,

More information

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017

Cameras. Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Cameras Steve Rotenberg CSE168: Rendering Algorithms UCSD, Spring 2017 Camera Focus Camera Focus So far, we have been simulating pinhole cameras with perfect focus Often times, we want to simulate more

More information

Transfer Efficiency and Depth Invariance in Computational Cameras

Transfer Efficiency and Depth Invariance in Computational Cameras Transfer Efficiency and Depth Invariance in Computational Cameras Jongmin Baek Stanford University IEEE International Conference on Computational Photography 2010 Jongmin Baek (Stanford University) Transfer

More information

Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography , , Computational Photography Fall 2018, Lecture 14 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

More information

Supplementary Material of

Supplementary Material of Supplementary Material of Efficient and Robust Color Consistency for Community Photo Collections Jaesik Park Intel Labs Yu-Wing Tai SenseTime Sudipta N. Sinha Microsoft Research In So Kweon KAIST In the

More information

CATARACT SURGERY AND DEPTH OF FIELD (D.O.F.)

CATARACT SURGERY AND DEPTH OF FIELD (D.O.F.) Prof.Paolo Vinciguerra, M.D. 1, 2 Antonio Calossi 4 Riccardo Vinciguerra, M.D. 1-3 1 Humanitas University 1 Humanitas Clinical and Research Center IRCS 2 Columbus, Ohio State University 3 University of

More information

Computational Photography Introduction

Computational Photography Introduction Computational Photography Introduction Jongmin Baek CS 478 Lecture Jan 9, 2012 Background Sales of digital cameras surpassed sales of film cameras in 2004. Digital cameras are cool Free film Instant display

More information

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Ashill Chiranjan and Bernardt Duvenhage Defence, Peace, Safety and Security Council for Scientific

More information

Name: Date: Math in Special Effects: Try Other Challenges. Student Handout

Name: Date: Math in Special Effects: Try Other Challenges. Student Handout Name: Date: Math in Special Effects: Try Other Challenges When filming special effects, a high-speed photographer needs to control the duration and impact of light by adjusting a number of settings, including

More information

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho)

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho) Recent Advances in Image Deblurring Seungyong Lee (Collaboration w/ Sunghyun Cho) Disclaimer Many images and figures in this course note have been copied from the papers and presentation materials of previous

More information

Basic Camera Concepts. How to properly utilize your camera

Basic Camera Concepts. How to properly utilize your camera Basic Camera Concepts How to properly utilize your camera Basic Concepts Shutter speed One stop Aperture, f/stop Depth of field and focal length / focus distance Shutter Speed When the shutter is closed

More information

Coding and Modulation in Cameras

Coding and Modulation in Cameras Coding and Modulation in Cameras Amit Agrawal June 2010 Mitsubishi Electric Research Labs (MERL) Cambridge, MA, USA Coded Computational Imaging Agrawal, Veeraraghavan, Narasimhan & Mohan Schedule Introduction

More information

Moving Beyond Automatic Mode

Moving Beyond Automatic Mode Moving Beyond Automatic Mode When most people start digital photography, they almost always leave the camera on Automatic Mode This makes all the decisions for them and they believe this will give the

More information

TOPAZ LENS EFFECTS QUICK START GUIDE

TOPAZ LENS EFFECTS QUICK START GUIDE TOPAZ LENS EFFECTS QUICK START GUIDE Introduction Topaz Lens Effects is designed to give you the power to direct and focus your viewer s eyes where you want them. With Lens Effects, you get advanced technology

More information

SOURCE CAMERA IDENTIFICATION BASED ON SENSOR DUST CHARACTERISTICS

SOURCE CAMERA IDENTIFICATION BASED ON SENSOR DUST CHARACTERISTICS SOURCE CAMERA IDENTIFICATION BASED ON SENSOR DUST CHARACTERISTICS A. Emir Dirik Polytechnic University Department of Electrical and Computer Engineering Brooklyn, NY, US Husrev T. Sencar, Nasir Memon Polytechnic

More information

Coded photography , , Computational Photography Fall 2017, Lecture 18

Coded photography , , Computational Photography Fall 2017, Lecture 18 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 18 Course announcements Homework 5 delayed for Tuesday. - You will need cameras

More information

Selection of Temporally Dithered Codes for Increasing Virtual Depth of Field in Structured Light Systems

Selection of Temporally Dithered Codes for Increasing Virtual Depth of Field in Structured Light Systems Selection of Temporally Dithered Codes for Increasing Virtual Depth of Field in Structured Light Systems Abstract Temporally dithered codes have recently been used for depth reconstruction of fast dynamic

More information

Single-Image Shape from Defocus

Single-Image Shape from Defocus Single-Image Shape from Defocus José R.A. Torreão and João L. Fernandes Instituto de Computação Universidade Federal Fluminense 24210-240 Niterói RJ, BRAZIL Abstract The limited depth of field causes scene

More information

Adobe Photoshop The program: The Menus: Computer Graphics I- Final Review

Adobe Photoshop The program: The Menus: Computer Graphics I- Final Review Computer Graphics I- Final Review The written portion of your final exam will be 25 multiple choice questions and one free response. Some parts of the exam will be related to examples, images and pictures.

More information

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object.

Cameras. Shrinking the aperture. Camera trial #1. Pinhole camera. Digital Visual Effects Yung-Yu Chuang. Put a piece of film in front of an object. Camera trial #1 Cameras Digital Visual Effects Yung-Yu Chuang scene film with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Put a piece of film in front of an object. Pinhole camera

More information

Super resolution with Epitomes

Super resolution with Epitomes Super resolution with Epitomes Aaron Brown University of Wisconsin Madison, WI Abstract Techniques exist for aligning and stitching photos of a scene and for interpolating image data to generate higher

More information

La photographie numérique. Frank NIELSEN Lundi 7 Juin 2010

La photographie numérique. Frank NIELSEN Lundi 7 Juin 2010 La photographie numérique Frank NIELSEN Lundi 7 Juin 2010 1 Le Monde digital Key benefits of the analog2digital paradigm shift? Dissociate contents from support : binarize Universal player (CPU, Turing

More information

Ultra-shallow DoF imaging using faced paraboloidal mirrors

Ultra-shallow DoF imaging using faced paraboloidal mirrors Ultra-shallow DoF imaging using faced paraboloidal mirrors Ryoichiro Nishi, Takahito Aoto, Norihiko Kawai, Tomokazu Sato, Yasuhiro Mukaigawa, Naokazu Yokoya Graduate School of Information Science, Nara

More information

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013 Lecture 18: Light field cameras (plenoptic cameras) Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today:

More information

A collection of example photos SB-900

A collection of example photos SB-900 A collection of example photos SB-900 This booklet introduces techniques, example photos and an overview of flash shooting capabilities possible when shooting with an SB-900. En Selecting suitable illumination

More information

Spline wavelet based blind image recovery

Spline wavelet based blind image recovery Spline wavelet based blind image recovery Ji, Hui ( 纪辉 ) National University of Singapore Workshop on Spline Approximation and its Applications on Carl de Boor's 80 th Birthday, NUS, 06-Nov-2017 Spline

More information

DSLR Cameras have a wide variety of lenses that can be used.

DSLR Cameras have a wide variety of lenses that can be used. Chapter 8-Lenses DSLR Cameras have a wide variety of lenses that can be used. The camera lens is very important in making great photographs. It controls what the sensor sees, how much of the scene is included,

More information

All About Aperture by Barry Baker

All About Aperture by Barry Baker All About Aperture by Barry Baker Aperture Selection and Creative Control There is a pleasing and more creative alternative to taking your photographs in the automatic or program mode, and that is to use

More information

Final Report on aligo Particle Imaging Using a Nikon D7100 Camera and MATLAB

Final Report on aligo Particle Imaging Using a Nikon D7100 Camera and MATLAB Final Report on aligo Particle Imaging Using a Nikon D7100 Camera and MATLAB Sabrina Waller 1 Purpose Need to be able to efficiently and accurately identify the contamination level of the optics within

More information

Chapter 7- Lighting & Cameras

Chapter 7- Lighting & Cameras Chapter 7- Lighting & Cameras Cameras: By default, your scene already has one camera and that is usually all you need, but on occasion you may wish to add more cameras. You add more cameras by hitting

More information

Dynamically Reparameterized Light Fields & Fourier Slice Photography. Oliver Barth, 2009 Max Planck Institute Saarbrücken

Dynamically Reparameterized Light Fields & Fourier Slice Photography. Oliver Barth, 2009 Max Planck Institute Saarbrücken Dynamically Reparameterized Light Fields & Fourier Slice Photography Oliver Barth, 2009 Max Planck Institute Saarbrücken Background What we are talking about? 2 / 83 Background What we are talking about?

More information

Analysis and Transfer of Photographic Viewpoint and Appearance. Soonmin Bae

Analysis and Transfer of Photographic Viewpoint and Appearance. Soonmin Bae Analysis and Transfer of Photographic Viewpoint and Appearance by Soonmin Bae B.S., Korea Advanced Institute of Science and Technology (2003) M.S., Massachusetts Institute of Technology (2005) Submitted

More information

Realistic rendering of bokeh effect based on optical aberrations

Realistic rendering of bokeh effect based on optical aberrations Vis Comput (2010) 26: 555 563 DOI 10.1007/s00371-010-0459-5 ORIGINAL ARTICLE Realistic rendering of bokeh effect based on optical aberrations Jiaze Wu Changwen Zheng Xiaohui Hu Yang Wang Liqiang Zhang

More information

Topic 6 - Lens Filters: A Detailed Look

Topic 6 - Lens Filters: A Detailed Look Getting more from your Camera Topic 6 - Lens Filters: A Detailed Look Learning Outcomes In this lesson, we will take a detailed look at lens filters and study the effects of a variety of types of filter

More information

Adding Realistic Camera Effects to the Computer Graphics Camera Model

Adding Realistic Camera Effects to the Computer Graphics Camera Model Adding Realistic Camera Effects to the Computer Graphics Camera Model Ryan Baltazar May 4, 2012 1 Introduction The camera model traditionally used in computer graphics is based on the camera obscura or

More information

Macro and Close-up Photography

Macro and Close-up Photography Photo by Daniel Schwen Macro and Close-up Photography Digital Photography DeCal 2010 Nathan Yan Kellen Freeman Some slides adapted from Zexi Eric Yan What Is Macro Photography? Macro commonly refers to

More information

Computational Camera & Photography: Coded Imaging

Computational Camera & Photography: Coded Imaging Computational Camera & Photography: Coded Imaging Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Image removed due to copyright restrictions. See Fig. 1, Eight major types

More information

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image

Overview. Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Camera & Color Overview Pinhole camera model Projective geometry Vanishing points and lines Projection matrix Cameras with Lenses Color Digital image Book: Hartley 6.1, Szeliski 2.1.5, 2.2, 2.3 The trip

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

Miscellaneous Topics Part 1

Miscellaneous Topics Part 1 Computational Photography: Miscellaneous Topics Part 1 Brown 1 This lecture s topic We will discuss the following: Seam Carving for Image Resizing An interesting new way to consider resizing images This

More information

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Yosuke Bando 1,2 Henry Holtzman 2 Ramesh Raskar 2 1 Toshiba Corporation 2 MIT Media Lab Defocus & Motion Blur PSF Depth

More information

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f)

Capturing Light. The Light Field. Grayscale Snapshot 12/1/16. P(q, f) Capturing Light Rooms by the Sea, Edward Hopper, 1951 The Penitent Magdalen, Georges de La Tour, c. 1640 Some slides from M. Agrawala, F. Durand, P. Debevec, A. Efros, R. Fergus, D. Forsyth, M. Levoy,

More information

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS

6.098 Digital and Computational Photography Advanced Computational Photography. Bill Freeman Frédo Durand MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Bill Freeman Frédo Durand MIT - EECS Administrivia PSet 1 is out Due Thursday February 23 Digital SLR initiation? During

More information

Get the Shot! Photography + Instagram Workshop September 21, 2013 BlogPodium. Saturday, 21 September, 13

Get the Shot! Photography + Instagram Workshop September 21, 2013 BlogPodium. Saturday, 21 September, 13 Get the Shot! Photography + Instagram Workshop September 21, 2013 BlogPodium Part One: Taking your camera off manual Technical details Common problems and how to fix them Practice Ways to make your photos

More information

Chapter 7- Lighting & Cameras

Chapter 7- Lighting & Cameras Cameras: By default, your scene already has one camera and that is usually all you need, but on occasion you may wish to add more cameras. You add more cameras by hitting ShiftA, like creating all other

More information

CS354 Computer Graphics Computational Photography. Qixing Huang April 23 th 2018

CS354 Computer Graphics Computational Photography. Qixing Huang April 23 th 2018 CS354 Computer Graphics Computational Photography Qixing Huang April 23 th 2018 Background Sales of digital cameras surpassed sales of film cameras in 2004 Digital Cameras Free film Instant display Quality

More information

DSLR Essentials: Class Notes

DSLR Essentials: Class Notes DSLR Essentials: Class Notes The digital SLR has seen a surge in popularity in recent years. Many are enjoying the superior photographic experiences provided by these feature packed cameras. Interchangeable

More information

Movie 10 (Chapter 17 extract) Photomerge

Movie 10 (Chapter 17 extract) Photomerge Movie 10 (Chapter 17 extract) Adobe Photoshop CS for Photographers by Martin Evening, ISBN: 0 240 51942 6 is published by Focal Press, an imprint of Elsevier. The title will be available from early February

More information

Digital Art Specifications

Digital Art Specifications Lenticular APPROVED APPLICATIONS (UP TO CS6) Adobe Photoshop (.psd /.tif /.pdf /.eps) Adobe Illustrator* (.ai /.eps) Adobe Adobe InDesign* (.indd) QuarkXpress* (.qx) *Be sure to include linked graphics

More information

Digital Arts I - Course Outline

Digital Arts I - Course Outline Points Course Possible Hours Course Overview 4 Lesson 1: Start the Course Identify computer requirements. Learn how to move through the course. Switch between windows. Lesson 2: Set Up Your Computer Find

More information

WAEC Sample Questions and Schemes - Uploaded online by There will be three Papers, 1, 2 and 3, all of which must be taken.

WAEC Sample Questions and Schemes - Uploaded online by  There will be three Papers, 1, 2 and 3, all of which must be taken. PHOTOGRAPHY EXAMINATION SCHEME There will be three Papers, 1, 2 and 3, all of which must be taken. Papers 1 & 2 will be a composite paper to be taken in 3 hours. Paper 1: will consist of 40 (forty) multiple

More information

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros

Cameras. Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26. with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Cameras Digital Visual Effects, Spring 2008 Yung-Yu Chuang 2008/2/26 with slides by Fredo Durand, Brian Curless, Steve Seitz and Alexei Efros Camera trial #1 scene film Put a piece of film in front of

More information

4 PHOTOSHOP SPECIAL EFFECTS HACKS FROM SCOTT KELBY

4 PHOTOSHOP SPECIAL EFFECTS HACKS FROM SCOTT KELBY 4 PHOTOSHOP SPECIAL EFFECTS HACKS FROM SCOTT KELBY You can do some pretty cool stuff in Photoshop, with most tiny tweaks taking no time at all. However, for some of us (myself included) it s hard to know

More information

Working with your Camera

Working with your Camera Topic 5 Introduction to Shutter, Aperture and ISO Learning Outcomes In this topic, you will learn about the three main functions on a DSLR: Shutter, Aperture and ISO. We must also consider white balance

More information

Restoration of Motion Blurred Document Images

Restoration of Motion Blurred Document Images Restoration of Motion Blurred Document Images Bolan Su 12, Shijian Lu 2 and Tan Chew Lim 1 1 Department of Computer Science,School of Computing,National University of Singapore Computing 1, 13 Computing

More information

Introduction , , Computational Photography Fall 2018, Lecture 1

Introduction , , Computational Photography Fall 2018, Lecture 1 Introduction http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 1 Overview of today s lecture Teaching staff introductions What is computational

More information

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics

IMAGE FORMATION. Light source properties. Sensor characteristics Surface. Surface reflectance properties. Optics IMAGE FORMATION Light source properties Sensor characteristics Surface Exposure shape Optics Surface reflectance properties ANALOG IMAGES An image can be understood as a 2D light intensity function f(x,y)

More information

Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems

Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems Design of Temporally Dithered Codes for Increased Depth of Field in Structured Light Systems Ricardo R. Garcia University of California, Berkeley Berkeley, CA rrgarcia@eecs.berkeley.edu Abstract In recent

More information

Recent advances in deblurring and image stabilization. Michal Šorel Academy of Sciences of the Czech Republic

Recent advances in deblurring and image stabilization. Michal Šorel Academy of Sciences of the Czech Republic Recent advances in deblurring and image stabilization Michal Šorel Academy of Sciences of the Czech Republic Camera shake stabilization Alternative to OIS (optical image stabilization) systems Should work

More information

Table of contents. Introduction...1. Evaluation of DEMO 1: Light efficiency...1. Evaluation of DEMO 2: Illumination uniformity...3

Table of contents. Introduction...1. Evaluation of DEMO 1: Light efficiency...1. Evaluation of DEMO 2: Illumination uniformity...3 Table of contents Introduction...1 Evaluation of DEMO 1: Light efficiency...1 Evaluation of DEMO 2: Illumination uniformity...3 Summary and discussion...7 Appendix - List of manufacturers...8 List of figures

More information

Video Registration: Key Challenges. Richard Szeliski Microsoft Research

Video Registration: Key Challenges. Richard Szeliski Microsoft Research Video Registration: Key Challenges Richard Szeliski Microsoft Research 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. Key Challenges 1. Mosaics and panoramas 2. Object-based based segmentation (MPEG-4) 3. Engineering

More information

Image Deblurring with Blurred/Noisy Image Pairs

Image Deblurring with Blurred/Noisy Image Pairs Image Deblurring with Blurred/Noisy Image Pairs Huichao Ma, Buping Wang, Jiabei Zheng, Menglian Zhou April 26, 2013 1 Abstract Photos taken under dim lighting conditions by a handheld camera are usually

More information