Transfer Efficiency and Depth Invariance in Computational Cameras

Size: px
Start display at page:

Download "Transfer Efficiency and Depth Invariance in Computational Cameras"

Transcription

1 Transfer Efficiency and Depth Invariance in Computational Cameras Jongmin Baek Stanford University IEEE International Conference on Computational Photography 2010 Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

2 The Problem: Defocus Blur f/1.4 Jongmin Baek (Stanford University) f/11.0 Transfer Efficiency and Depth Invariance March 29, / 30

3 The Cause: Image Formation Image Object d Sensor Lens Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

4 The Cause: Image Formation Image Object d Sensor Lens Response at the sensor plane depends on how all paths interfere. Under paraxial wave optics, imaging process is a convolution. + η = I in PSF Noise I out Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

5 The Cause: Image Formation Image Object d Sensor Lens Response at the sensor plane depends on how all paths interfere. In the frequency domain, it is a multiplication. + η = frequency frequency frequency Noise F(I in ) OTF F(I out ) Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

6 The Cause: Image Formation Image Object d Sensor Lens Response at the sensor plane depends on how all paths interfere. Under paraxial wave optics, imaging process is a convolution. + η = I in PSF Noise I out Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

7 The Cause: Image Formation Image Object d ǫ Sensor Lens Response at the sensor plane depends on how all paths interfere. Under paraxial wave optics, imaging process is a convolution. + η = I in PSF Noise I out Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

8 A Solution: Computational Imaging Engineer the optics to preserve scene information at all depths. Reconstruct the scene later. Scene Optics Scene Noise Digital Processing Scene Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

9 A Solution: Aperture Modulation The aperture controls how the paths interfere. Engineer the aperture to control defocus. Top: Levin et al. and Veeraraghavan et al., SIGGRAPH 2007; Bottom: Nagahara et al., ECCV 2008; Levin et al., SIGGRAPH Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

10 Solution #1: Amplitude Modulation Image Object d ǫ Sensor Lens e.g. coded aperture (Levin et al., 2007) lattice focal lens (Levin et al., 2009) Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

11 Solution #2: Phase Modulation Image Object d ǫ Sensor Lens e.g. wavefront coding (Dowski et al., 1995), lattice focal lens (Levin et al., 2009) Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

12 Solution #3: Time Modulation Image Object d ǫ Sensor Lens e.g. focus sweep (Nagahara et al., 2008) lattice focal lens (Levin et al., 2009) Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

13 The Metaproblem Many spatiotemporally modulated apertures exist for extending the depth of field. How do we analyze them? Can we make general statements about computational cameras based on such apertures? Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

14 Outline Space of Optical Transfer Functions Space of Optical Transfer Functions Optimizing Computational Cameras Evaluating Computational Cameras Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

15 Outline Space of Optical Transfer Functions Space of Optical Transfer Functions Optimizing Computational Cameras Evaluating Computational Cameras Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

16 Space of Optical Transfer Functions Optical Transfer Function: The Tool of the Trade Every spatiotemporally modulated aperture corresponds to one. The OTF is generally thought of as a 2D function in the frequency domain, that also varies with defocus. Focused Slightly defocused More defocused Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

17 Optical Transfer Function (Cont d) ψ := the defocus parameter in optics: ψ 1 f 1 d i 1 d o. Space of Optical Transfer Functions ψ f x f y Figure: The OTF of a square aperture as a 3D function. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

18 OTF Slices Space of Optical Transfer Functions The OTF is a 3D function. Typically, we slice at a particular depth ψ. ψ f x f y Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

19 OTF Slices Space of Optical Transfer Functions The OTF is a 3D function. Typically, we slice at a particular depth ψ. Instead, fix (f x, f y ). ψ f x f y Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

20 OTF Slices Space of Optical Transfer Functions The OTF is a 3D function. Typically, we slice at a particular depth ψ. Instead, fix (f x, f y ). Now a function of single variable ψ. ψ f x f y Figure: The OTF slice at (0.3, 0.3) Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

21 What OTF slices are realisable? Space of Optical Transfer Functions Not all complex 1D functions are realisable. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

22 What OTF slices are realisable? Space of Optical Transfer Functions Not all complex 1D functions are realisable. Why do we want to know? We want to make a general statement about all spatiotemporally modulated apertures. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

23 What OTF slices are realisable? Space of Optical Transfer Functions Not all complex 1D functions are realisable. Why do we want to know? We want to make a general statement about all spatiotemporally modulated apertures. Previously known: OTF(ψ) Diffraction Limit. The L 2 -norm of OTF slices is bounded (Bagheri 2009; Levin 2009). Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

24 Space of OTF Slices Space of Optical Transfer Functions f x = 0.1 Observation: OTF slices are very structured. f y = 0.1 f y = 0.3 f y = 0.5 f y = 0.7 f y = 0.9 f x = 0.3 f x = 0.5 f x = 0.7 f x = 0.9 Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

25 Space of OTF Slices Space of Optical Transfer Functions f x = 0.1 Observation: OTF slices are very structured. f y = 0.1 f y = 0.3 f y = 0.5 f y = 0.7 f y = 0.9 f x = 0.3 f x = 0.5 f x = 0.7 f x = 0.9 Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

26 Space of OTF Slices Space of Optical Transfer Functions Observation: OTF slices are very structured. We show all OTF slices are complex 1D functions bounded by a trapezoid in magnitude, and vice versa. OTF(ψ)e 2πiγψ dγ π f x f y max {0, min(k 1, K 2 ) 2πγ K 1 K 2 } See proofs in the paper. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

27 Space of OTF Slices Space of Optical Transfer Functions Observation: OTF slices are very structured. We show all OTF slices are complex 1D functions bounded by a trapezoid in magnitude, and vice versa. OTF(ψ)e 2πiγψ dγ π f x f y max {0, min(k 1, K 2 ) 2πγ K 1 K 2 } See proofs in the paper. Caveat: set of all apertures set of all OTF slices Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

28 Space of Optical Transfer Functions Utilizing the Dual Structure: Application Suppose we want a box -shaped OTF slice: Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

29 Space of Optical Transfer Functions Utilizing the Dual Structure: Application Suppose we want a box -shaped OTF slice: The dual OTF slice is a sinc and must fit under the trapezoid. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

30 Space of Optical Transfer Functions Utilizing the Dual Structure: Application Suppose we want a box -shaped OTF slice: The dual OTF slice is a sinc and must fit under the trapezoid. Tells us how tall and wide the box can be. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

31 Space of Optical Transfer Functions Utilizing the Dual Structure: Application Suppose we want a box -shaped OTF slice: The dual OTF slice is a sinc and must fit under the trapezoid. Tells us how tall and wide the box can be. Note that a lot of energy under the trapezoid is wasted. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

32 Outline Optimizing Computational Cameras Space of Optical Transfer Functions Optimizing Computational Cameras Evaluating Computational Cameras Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

33 Outline Optimizing Computational Cameras Space of Optical Transfer Functions Optimizing Computational Cameras Evaluating Computational Cameras Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

34 What is a good OTF/MTF? Optimizing Computational Cameras Scene Optics Scene Noise Digital Processing Scene Sources of reconstruction error: 1 OTF/MTF is low (ill-conditioned inversion.) 2 OTF/MTF is depth-dependent (inversion with wrong kernel.) Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

35 What is a good OTF/MTF? Optimizing Computational Cameras Sources of reconstruction error: 1 OTF/MTF is low (ill-conditioned inversion.) 2 OTF/MTF is depth-dependent (inversion with wrong kernel.) Design Cubic phase plate Focus sweep Lattice focal lens Goal Depth-invariant MTF Depth-invariant OTF High transfer efficiency Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

36 What is a good OTF/MTF? Optimizing Computational Cameras Sources of reconstruction error: 1 OTF/MTF is low (ill-conditioned inversion.) 2 OTF/MTF is depth-dependent (inversion with wrong kernel.) Design Cubic phase plate Focus sweep Lattice focal lens Goal Depth-invariant MTF Depth-invariant OTF High transfer efficiency Want either depth invariance or transfer efficiency Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

37 What is a good OTF/MTF? Optimizing Computational Cameras Sources of reconstruction error: 1 OTF/MTF is low (ill-conditioned inversion.) 2 OTF/MTF is depth-dependent (inversion with wrong kernel.) Design Cubic phase plate Focus sweep Lattice focal lens Goal Depth-invariant MTF Depth-invariant OTF High transfer efficiency Want either depth invariance or transfer efficiency Why not aim for both? Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

38 Optimizing Computational Cameras What is a good OTF/MTF? (Cont d) Depth Variance :-( :-( :-) 2D scatter plot of the scores: :-( depth depth depth Transfer Efficiency depth Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

39 Optimizing Computational Cameras What is a good OTF/MTF? (Cont d) Depth Variance :-( :-( :-) Minimize depth variance: :-( depth depth Closed aperture depth Transfer Efficiency depth Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

40 Optimizing Computational Cameras What is a good OTF/MTF? (Cont d) Depth Variance :-( :-( :-) Maximize transfer efficiency: :-( depth depth Regular aperture Closed aperture depth Transfer Efficiency depth Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

41 Best of Both Worlds? Optimizing Computational Cameras We want transfer efficiency and depth invariance. Trivial to get one out of two. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

42 Best of Both Worlds? Optimizing Computational Cameras We want transfer efficiency and depth invariance. Trivial to get one out of two. Can we get both simultaneously? Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

43 Best of Both Worlds? Optimizing Computational Cameras We want transfer efficiency and depth invariance. Trivial to get one out of two. Can we get both simultaneously? No. The two metrics are highly negatively correlated: Can t obtain one without sacrificing the other. See the paper for the scary math. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

44 Outline Evaluating Computational Cameras Space of Optical Transfer Functions Optimizing Computational Cameras Evaluating Computational Cameras Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

45 Outline Evaluating Computational Cameras Space of Optical Transfer Functions Optimizing Computational Cameras Evaluating Computational Cameras Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

46 Depth Variance Evaluating computational Cameras Evaluating Computational Cameras Transfer Efficiency green is strictly better than red. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

47 Depth Variance Evaluating computational Cameras Evaluating Computational Cameras Transfer Efficiency how do we compare yellow and green? Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

48 Evaluating Computational Cameras Evaluating computational Cameras (Cont d) Observation: Most designs do not represent a single fixed camera. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

49 Evaluating Computational Cameras Evaluating computational Cameras (Cont d) Observation: Most designs do not represent a single fixed camera. Each represents a parametrized family of cameras. We should compare families of cameras. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

50 OTF Depth Variance OTF Tradeoff Evaluating Computational Cameras Transfer Efficiency Transfer Efficiency Square aperture Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

51 OTF Depth Variance OTF Tradeoff Evaluating Computational Cameras Transfer Efficiency Transfer Efficiency Square aperture, parametrized by f-number Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

52 OTF Depth Variance OTF Tradeoff Evaluating Computational Cameras Transfer Efficiency Transfer Efficiency Square aperture, parametrized by f-number Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

53 OTF Depth Variance OTF Tradeoff Evaluating Computational Cameras Transfer Efficiency Transfer Efficiency Square aperture, parametrized by f-number Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

54 OTF Depth Variance OTF Tradeoff Evaluating Computational Cameras Transfer Efficiency Transfer Efficiency Square aperture, parametrized by f-number Cubic phase plate (Dowski 1995), parametrized by thickness Focus sweep (Nagahara 2008), parametrized by sweep distance Lattice focal lens (Levin 2009), parameterized by lenslets Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

55 MTF Tradeoff Evaluating Computational Cameras Square aperture, parametrized by f-number Cubic phase plate (Dowski 1995), parametrized by thickness Focus sweep (Nagahara 2008), parametrized by sweep distance Lattice focal lens (Levin 2009), parameterized by lenslets Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

56 MTF Depth Variance MTF Tradeoff Evaluating Computational Cameras Transfer Efficiency Transfer Efficiency Square aperture, parametrized by f-number Cubic phase plate (Dowski 1995), parametrized by thickness Focus sweep (Nagahara 2008), parametrized by sweep distance Lattice focal lens (Levin 2009), parameterized by lenslets Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

57 Observations Evaluating Computational Cameras 1 All the following families outperform stopping down. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

58 Observations Evaluating Computational Cameras 1 All the following families outperform stopping down. 2 Focus sweep exhibits the best tradeoff in obtaining OTF invariance. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

59 Observations Evaluating Computational Cameras 1 All the following families outperform stopping down. 2 Focus sweep exhibits the best tradeoff in obtaining OTF invariance. 3 Cubic phase plate exhibits the best tradeoff in obtaining MTF invariance. Only on certain frequencies, however. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

60 Observations Evaluating Computational Cameras 1 All the following families outperform stopping down. 2 Focus sweep exhibits the best tradeoff in obtaining OTF invariance. 3 Cubic phase plate exhibits the best tradeoff in obtaining MTF invariance. Only on certain frequencies, however. 4 Lattice focal lens falls in bewteen a regular lens and CPP. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

61 Observations Evaluating Computational Cameras 1 All the following families outperform stopping down. 2 Focus sweep exhibits the best tradeoff in obtaining OTF invariance. 3 Cubic phase plate exhibits the best tradeoff in obtaining MTF invariance. Only on certain frequencies, however. 4 Lattice focal lens falls in bewteen a regular lens and CPP. See the paper for discussions. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

62 Beyond Existing Designs Evaluating Computational Cameras Can we do better than focus sweep and cubic phase plate? Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

63 Beyond Existing Designs Evaluating Computational Cameras Can we do better than focus sweep and cubic phase plate? Not by much. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

64 Beyond Existing Designs Evaluating Computational Cameras Can we do better than focus sweep and cubic phase plate? Not by much. We identified the space of all realisable OTF slices: Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

65 Beyond Existing Designs Evaluating Computational Cameras Can we do better than focus sweep and cubic phase plate? Not by much. We identified the space of all realisable OTF slices: Mathematically calculate an upper bound over this space. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

66 Beyond Existing Designs Evaluating Computational Cameras Can we do better than focus sweep and cubic phase plate? Not by much. We identified the space of all realisable OTF slices: Mathematically calculate an upper bound over this space. We show that... focus sweep is near optimal in trading off transfer efficiency for OTF invariance. for a fixed spatial frequency (f x, f y ), there exists a cubic phase plate near optimal in trading off transfer efficiency for MTF invariance. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

67 Take-aways Conclusions 1 OTF slices of an imaging system obey a particular structure. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

68 Take-aways Conclusions 1 OTF slices of an imaging system obey a particular structure. 2 There is an inherent tradeoff between transfer efficiency and depth invariance. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

69 Take-aways Conclusions 1 OTF slices of an imaging system obey a particular structure. 2 There is an inherent tradeoff between transfer efficiency and depth invariance. 3 Some existing designs are already pretty good. Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

70 Future work Conclusions Aggregate bounds over all spatial frequencies Information-theoretic treatment of OTFs Jongmin Baek (Stanford University) Transfer Efficiency and Depth Invariance March 29, / 30

Coded photography , , Computational Photography Fall 2018, Lecture 14

Coded photography , , Computational Photography Fall 2018, Lecture 14 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 14 Overview of today s lecture The coded photography paradigm. Dealing with

More information

Coded photography , , Computational Photography Fall 2017, Lecture 18

Coded photography , , Computational Photography Fall 2017, Lecture 18 Coded photography http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 18 Course announcements Homework 5 delayed for Tuesday. - You will need cameras

More information

Coded Computational Photography!

Coded Computational Photography! Coded Computational Photography! EE367/CS448I: Computational Imaging and Display! stanford.edu/class/ee367! Lecture 9! Gordon Wetzstein! Stanford University! Coded Computational Photography - Overview!!

More information

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis

Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Near-Invariant Blur for Depth and 2D Motion via Time-Varying Light Field Analysis Yosuke Bando 1,2 Henry Holtzman 2 Ramesh Raskar 2 1 Toshiba Corporation 2 MIT Media Lab Defocus & Motion Blur PSF Depth

More information

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing

Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Dappled Photography: Mask Enhanced Cameras for Heterodyned Light Fields and Coded Aperture Refocusing Ashok Veeraraghavan, Ramesh Raskar, Ankit Mohan & Jack Tumblin Amit Agrawal, Mitsubishi Electric Research

More information

Computational Camera & Photography: Coded Imaging

Computational Camera & Photography: Coded Imaging Computational Camera & Photography: Coded Imaging Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Image removed due to copyright restrictions. See Fig. 1, Eight major types

More information

High resolution extended depth of field microscopy using wavefront coding

High resolution extended depth of field microscopy using wavefront coding High resolution extended depth of field microscopy using wavefront coding Matthew R. Arnison *, Peter Török #, Colin J. R. Sheppard *, W. T. Cathey +, Edward R. Dowski, Jr. +, Carol J. Cogswell *+ * Physical

More information

Coding and Modulation in Cameras

Coding and Modulation in Cameras Coding and Modulation in Cameras Amit Agrawal June 2010 Mitsubishi Electric Research Labs (MERL) Cambridge, MA, USA Coded Computational Imaging Agrawal, Veeraraghavan, Narasimhan & Mohan Schedule Introduction

More information

Project 4 Results http://www.cs.brown.edu/courses/cs129/results/proj4/jcmace/ http://www.cs.brown.edu/courses/cs129/results/proj4/damoreno/ http://www.cs.brown.edu/courses/csci1290/results/proj4/huag/

More information

Deconvolution , , Computational Photography Fall 2018, Lecture 12

Deconvolution , , Computational Photography Fall 2018, Lecture 12 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2018, Lecture 12 Course announcements Homework 3 is out. - Due October 12 th. - Any questions?

More information

Deconvolution , , Computational Photography Fall 2017, Lecture 17

Deconvolution , , Computational Photography Fall 2017, Lecture 17 Deconvolution http://graphics.cs.cmu.edu/courses/15-463 15-463, 15-663, 15-862 Computational Photography Fall 2017, Lecture 17 Course announcements Homework 4 is out. - Due October 26 th. - There was another

More information

4D Frequency Analysis of Computational Cameras for Depth of Field Extension

4D Frequency Analysis of Computational Cameras for Depth of Field Extension 4D Frequency Analysis of Computational Cameras for Depth of Field Extension Anat Levin1,2 Samuel W. Hasinoff1 Paul Green1 Fre do Durand1 1 MIT CSAIL 2 Weizmann Institute Standard lens image Our lattice-focal

More information

Computational Approaches to Cameras

Computational Approaches to Cameras Computational Approaches to Cameras 11/16/17 Magritte, The False Mirror (1935) Computational Photography Derek Hoiem, University of Illinois Announcements Final project proposal due Monday (see links on

More information

Deblurring. Basics, Problem definition and variants

Deblurring. Basics, Problem definition and variants Deblurring Basics, Problem definition and variants Kinds of blur Hand-shake Defocus Credit: Kenneth Josephson Motion Credit: Kenneth Josephson Kinds of blur Spatially invariant vs. Spatially varying

More information

A Framework for Analysis of Computational Imaging Systems

A Framework for Analysis of Computational Imaging Systems A Framework for Analysis of Computational Imaging Systems Kaushik Mitra, Oliver Cossairt, Ashok Veeraghavan Rice University Northwestern University Computational imaging CI systems that adds new functionality

More information

Computational Cameras. Rahul Raguram COMP

Computational Cameras. Rahul Raguram COMP Computational Cameras Rahul Raguram COMP 790-090 What is a computational camera? Camera optics Camera sensor 3D scene Traditional camera Final image Modified optics Camera sensor Image Compute 3D scene

More information

Chapter 2 Fourier Integral Representation of an Optical Image

Chapter 2 Fourier Integral Representation of an Optical Image Chapter 2 Fourier Integral Representation of an Optical This chapter describes optical transfer functions. The concepts of linearity and shift invariance were introduced in Chapter 1. This chapter continues

More information

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera

To Do. Advanced Computer Graphics. Outline. Computational Imaging. How do we see the world? Pinhole camera Advanced Computer Graphics CSE 163 [Spring 2017], Lecture 14 Ravi Ramamoorthi http://www.cs.ucsd.edu/~ravir To Do Assignment 2 due May 19 Any last minute issues or questions? Next two lectures: Imaging,

More information

When Does Computational Imaging Improve Performance?

When Does Computational Imaging Improve Performance? When Does Computational Imaging Improve Performance? Oliver Cossairt Assistant Professor Northwestern University Collaborators: Mohit Gupta, Changyin Zhou, Daniel Miau, Shree Nayar (Columbia University)

More information

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho)

Recent Advances in Image Deblurring. Seungyong Lee (Collaboration w/ Sunghyun Cho) Recent Advances in Image Deblurring Seungyong Lee (Collaboration w/ Sunghyun Cho) Disclaimer Many images and figures in this course note have been copied from the papers and presentation materials of previous

More information

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring

Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Implementation of Adaptive Coded Aperture Imaging using a Digital Micro-Mirror Device for Defocus Deblurring Ashill Chiranjan and Bernardt Duvenhage Defence, Peace, Safety and Security Council for Scientific

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon)

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department. 2.71/2.710 Final Exam. May 21, Duration: 3 hours (9 am-12 noon) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Mechanical Engineering Department 2.71/2.710 Final Exam May 21, 2013 Duration: 3 hours (9 am-12 noon) CLOSED BOOK Total pages: 5 Name: PLEASE RETURN THIS BOOKLET WITH

More information

Understanding camera trade-offs through a Bayesian analysis of light field projections - A revision Anat Levin, William Freeman, and Fredo Durand

Understanding camera trade-offs through a Bayesian analysis of light field projections - A revision Anat Levin, William Freeman, and Fredo Durand Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-2008-049 July 28, 2008 Understanding camera trade-offs through a Bayesian analysis of light field projections - A revision

More information

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude.

( ) Deriving the Lens Transmittance Function. Thin lens transmission is given by a phase with unit magnitude. Deriving the Lens Transmittance Function Thin lens transmission is given by a phase with unit magnitude. t(x, y) = exp[ jk o ]exp[ jk(n 1) (x, y) ] Find the thickness function for left half of the lens

More information

Modeling and Synthesis of Aperture Effects in Cameras

Modeling and Synthesis of Aperture Effects in Cameras Modeling and Synthesis of Aperture Effects in Cameras Douglas Lanman, Ramesh Raskar, and Gabriel Taubin Computational Aesthetics 2008 20 June, 2008 1 Outline Introduction and Related Work Modeling Vignetting

More information

Extended depth of field for visual measurement systems with depth-invariant magnification

Extended depth of field for visual measurement systems with depth-invariant magnification Extended depth of field for visual measurement systems with depth-invariant magnification Yanyu Zhao a and Yufu Qu* a,b a School of Instrument Science and Opto-Electronic Engineering, Beijing University

More information

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS

Wavefront coding. Refocusing & Light Fields. Wavefront coding. Final projects. Is depth of field a blur? Frédo Durand Bill Freeman MIT - EECS 6.098 Digital and Computational Photography 6.882 Advanced Computational Photography Final projects Send your slides by noon on Thrusday. Send final report Refocusing & Light Fields Frédo Durand Bill Freeman

More information

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do?

The ultimate camera. Computational Photography. Creating the ultimate camera. The ultimate camera. What does it do? Computational Photography The ultimate camera What does it do? Image from Durand & Freeman s MIT Course on Computational Photography Today s reading Szeliski Chapter 9 The ultimate camera Infinite resolution

More information

Understanding camera trade-offs through a Bayesian analysis of light field projections Anat Levin, William T. Freeman, and Fredo Durand

Understanding camera trade-offs through a Bayesian analysis of light field projections Anat Levin, William T. Freeman, and Fredo Durand Computer Science and Artificial Intelligence Laboratory Technical Report MIT-CSAIL-TR-2008-021 April 16, 2008 Understanding camera trade-offs through a Bayesian analysis of light field projections Anat

More information

Toward Non-stationary Blind Image Deblurring: Models and Techniques

Toward Non-stationary Blind Image Deblurring: Models and Techniques Toward Non-stationary Blind Image Deblurring: Models and Techniques Ji, Hui Department of Mathematics National University of Singapore NUS, 30-May-2017 Outline of the talk Non-stationary Image blurring

More information

An Analysis of Focus Sweep for Improved 2D Motion Invariance

An Analysis of Focus Sweep for Improved 2D Motion Invariance 3 IEEE Conference on Computer Vision and Pattern Recognition Workshops An Analysis of Focus Sweep for Improved D Motion Invariance Yosuke Bando TOSHIBA Corporation yosuke.bando@toshiba.co.jp Abstract Recent

More information

Introduction to Light Fields

Introduction to Light Fields MIT Media Lab Introduction to Light Fields Camera Culture Ramesh Raskar MIT Media Lab http://cameraculture.media.mit.edu/ Introduction to Light Fields Ray Concepts for 4D and 5D Functions Propagation of

More information

Coded Aperture Pairs for Depth from Defocus

Coded Aperture Pairs for Depth from Defocus Coded Aperture Pairs for Depth from Defocus Changyin Zhou Columbia University New York City, U.S. changyin@cs.columbia.edu Stephen Lin Microsoft Research Asia Beijing, P.R. China stevelin@microsoft.com

More information

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens

Lecture Notes 10 Image Sensor Optics. Imaging optics. Pixel optics. Microlens Lecture Notes 10 Image Sensor Optics Imaging optics Space-invariant model Space-varying model Pixel optics Transmission Vignetting Microlens EE 392B: Image Sensor Optics 10-1 Image Sensor Optics Microlens

More information

Optimal Single Image Capture for Motion Deblurring

Optimal Single Image Capture for Motion Deblurring Optimal Single Image Capture for Motion Deblurring Amit Agrawal Mitsubishi Electric Research Labs (MERL) 1 Broadway, Cambridge, MA, USA agrawal@merl.com Ramesh Raskar MIT Media Lab Ames St., Cambridge,

More information

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry

Optics of Wavefront. Austin Roorda, Ph.D. University of Houston College of Optometry Optics of Wavefront Austin Roorda, Ph.D. University of Houston College of Optometry Geometrical Optics Relationships between pupil size, refractive error and blur Optics of the eye: Depth of Focus 2 mm

More information

Admin. Lightfields. Overview. Overview 5/13/2008. Idea. Projects due by the end of today. Lecture 13. Lightfield representation of a scene

Admin. Lightfields. Overview. Overview 5/13/2008. Idea. Projects due by the end of today. Lecture 13. Lightfield representation of a scene Admin Lightfields Projects due by the end of today Email me source code, result images and short report Lecture 13 Overview Lightfield representation of a scene Unified representation of all rays Overview

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014

MASSACHUSETTS INSTITUTE OF TECHNOLOGY. 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 2.71/2.710 Optics Spring 14 Practice Problems Posted May 11, 2014 1. (Pedrotti 13-21) A glass plate is sprayed with uniform opaque particles. When a distant point

More information

Improved motion invariant imaging with time varying shutter functions

Improved motion invariant imaging with time varying shutter functions Improved motion invariant imaging with time varying shutter functions Steve Webster a and Andrew Dorrell b Canon Information Systems Research, Australia (CiSRA), Thomas Holt Drive, North Ryde, Australia

More information

To Denoise or Deblur: Parameter Optimization for Imaging Systems

To Denoise or Deblur: Parameter Optimization for Imaging Systems To Denoise or Deblur: Parameter Optimization for Imaging Systems Kaushik Mitra, Oliver Cossairt and Ashok Veeraraghavan 1 ECE, Rice University 2 EECS, Northwestern University 3/3/2014 1 Capture moving

More information

High Resolution Transmission Electron Microscopy (HRTEM) Summary 4/11/2018. Thomas LaGrange Faculty Lecturer and Senior Staff Scientist

High Resolution Transmission Electron Microscopy (HRTEM) Summary 4/11/2018. Thomas LaGrange Faculty Lecturer and Senior Staff Scientist Thomas LaGrange Faculty Lecturer and Senior Staff Scientist High Resolution Transmission Electron Microscopy (HRTEM) Doctoral Course MS-637 April 16-18th, 2018 Summary Contrast in TEM images results from

More information

Resolution. [from the New Merriam-Webster Dictionary, 1989 ed.]:

Resolution. [from the New Merriam-Webster Dictionary, 1989 ed.]: Resolution [from the New Merriam-Webster Dictionary, 1989 ed.]: resolve v : 1 to break up into constituent parts: ANALYZE; 2 to find an answer to : SOLVE; 3 DETERMINE, DECIDE; 4 to make or pass a formal

More information

Coded Aperture for Projector and Camera for Robust 3D measurement

Coded Aperture for Projector and Camera for Robust 3D measurement Coded Aperture for Projector and Camera for Robust 3D measurement Yuuki Horita Yuuki Matugano Hiroki Morinaga Hiroshi Kawasaki Satoshi Ono Makoto Kimura Yasuo Takane Abstract General active 3D measurement

More information

Point Spread Function Engineering for Scene Recovery. Changyin Zhou

Point Spread Function Engineering for Scene Recovery. Changyin Zhou Point Spread Function Engineering for Scene Recovery Changyin Zhou Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Graduate School of Arts and Sciences

More information

What are Good Apertures for Defocus Deblurring?

What are Good Apertures for Defocus Deblurring? What are Good Apertures for Defocus Deblurring? Changyin Zhou, Shree Nayar Abstract In recent years, with camera pixels shrinking in size, images are more likely to include defocused regions. In order

More information

High Contrast Imaging

High Contrast Imaging High Contrast Imaging Suppressing diffraction (rings and other patterns) Doing this without losing light Suppressing scattered light Doing THIS without losing light Diffraction rings arise from the abrupt

More information

To Denoise or Deblur: Parameter Optimization for Imaging Systems

To Denoise or Deblur: Parameter Optimization for Imaging Systems To Denoise or Deblur: Parameter Optimization for Imaging Systems Kaushik Mitra a, Oliver Cossairt b and Ashok Veeraraghavan a a Electrical and Computer Engineering, Rice University, Houston, TX 77005 b

More information

Performance of extended depth of field systems and theoretical diffraction limit

Performance of extended depth of field systems and theoretical diffraction limit Performance of extended depth of field systems and theoretical diffraction limit Frédéric Guichard, Frédéric Cao, Imène Tarchouna, Nicolas Bachelard DxO Labs, 3 Rue Nationale, 92100 Boulogne, France ABSTRACT

More information

SUPER RESOLUTION INTRODUCTION

SUPER RESOLUTION INTRODUCTION SUPER RESOLUTION Jnanavardhini - Online MultiDisciplinary Research Journal Ms. Amalorpavam.G Assistant Professor, Department of Computer Sciences, Sambhram Academy of Management. Studies, Bangalore Abstract:-

More information

3D light microscopy techniques

3D light microscopy techniques 3D light microscopy techniques The image of a point is a 3D feature In-focus image Out-of-focus image The image of a point is not a point Point Spread Function (PSF) 1D imaging 2D imaging 3D imaging Resolution

More information

Aberrations and Visual Performance: Part I: How aberrations affect vision

Aberrations and Visual Performance: Part I: How aberrations affect vision Aberrations and Visual Performance: Part I: How aberrations affect vision Raymond A. Applegate, OD, Ph.D. Professor and Borish Chair of Optometry University of Houston Houston, TX, USA Aspects of this

More information

Today. next week. MIT 2.71/ /04/09 wk13-a- 1

Today. next week. MIT 2.71/ /04/09 wk13-a- 1 Today Spatially coherent and incoherent imaging with a single lens re-derivation of the single-lens imaging condition ATF/OTF/PSF and the Numerical Aperture resolution in optical systems pupil engineering

More information

WaveMaster IOL. Fast and accurate intraocular lens tester

WaveMaster IOL. Fast and accurate intraocular lens tester WaveMaster IOL Fast and accurate intraocular lens tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is a new instrument providing real time analysis

More information

Optical transfer function shaping and depth of focus by using a phase only filter

Optical transfer function shaping and depth of focus by using a phase only filter Optical transfer function shaping and depth of focus by using a phase only filter Dina Elkind, Zeev Zalevsky, Uriel Levy, and David Mendlovic The design of a desired optical transfer function OTF is a

More information

Computational Photography Introduction

Computational Photography Introduction Computational Photography Introduction Jongmin Baek CS 478 Lecture Jan 9, 2012 Background Sales of digital cameras surpassed sales of film cameras in 2004. Digital cameras are cool Free film Instant display

More information

This document explains the reasons behind this phenomenon and describes how to overcome it.

This document explains the reasons behind this phenomenon and describes how to overcome it. Internal: 734-00583B-EN Release date: 17 December 2008 Cast Effects in Wide Angle Photography Overview Shooting images with wide angle lenses and exploiting large format camera movements can result in

More information

Extended Depth of Field Catadioptric Imaging Using Focal Sweep

Extended Depth of Field Catadioptric Imaging Using Focal Sweep Extended Depth of Field Catadioptric Imaging Using Focal Sweep Ryunosuke Yokoya Columbia University New York, NY 10027 yokoya@cs.columbia.edu Shree K. Nayar Columbia University New York, NY 10027 nayar@cs.columbia.edu

More information

Today. Defocus. Deconvolution / inverse filters. MIT 2.71/2.710 Optics 12/12/05 wk15-a-1

Today. Defocus. Deconvolution / inverse filters. MIT 2.71/2.710 Optics 12/12/05 wk15-a-1 Today Defocus Deconvolution / inverse filters MIT.7/.70 Optics //05 wk5-a- MIT.7/.70 Optics //05 wk5-a- Defocus MIT.7/.70 Optics //05 wk5-a-3 0 th Century Fox Focus in classical imaging in-focus defocus

More information

Focal Sweep Videography with Deformable Optics

Focal Sweep Videography with Deformable Optics Focal Sweep Videography with Deformable Optics Daniel Miau Columbia University dmiau@cs.columbia.edu Oliver Cossairt Northwestern University ollie@eecs.northwestern.edu Shree K. Nayar Columbia University

More information

Computer Generated Holograms for Testing Optical Elements

Computer Generated Holograms for Testing Optical Elements Reprinted from APPLIED OPTICS, Vol. 10, page 619. March 1971 Copyright 1971 by the Optical Society of America and reprinted by permission of the copyright owner Computer Generated Holograms for Testing

More information

What will be on the midterm?

What will be on the midterm? What will be on the midterm? CS 178, Spring 2014 Marc Levoy Computer Science Department Stanford University General information 2 Monday, 7-9pm, Cubberly Auditorium (School of Edu) closed book, no notes

More information

1. INTRODUCTION. Appeared in: Proceedings of the SPIE Biometric Technology for Human Identification II, Vol. 5779, pp , Orlando, FL, 2005.

1. INTRODUCTION. Appeared in: Proceedings of the SPIE Biometric Technology for Human Identification II, Vol. 5779, pp , Orlando, FL, 2005. Appeared in: Proceedings of the SPIE Biometric Technology for Human Identification II, Vol. 5779, pp. 41-50, Orlando, FL, 2005. Extended depth-of-field iris recognition system for a workstation environment

More information

INFRARED IMAGING-PASSIVE THERMAL COMPENSATION VIA A SIMPLE PHASE MASK

INFRARED IMAGING-PASSIVE THERMAL COMPENSATION VIA A SIMPLE PHASE MASK Romanian Reports in Physics, Vol. 65, No. 3, P. 700 710, 2013 Dedicated to Professor Valentin I. Vlad s 70 th Anniversary INFRARED IMAGING-PASSIVE THERMAL COMPENSATION VIA A SIMPLE PHASE MASK SHAY ELMALEM

More information

Defocusing and Deblurring by Using with Fourier Transfer

Defocusing and Deblurring by Using with Fourier Transfer Defocusing and Deblurring by Using with Fourier Transfer AKIRA YANAGAWA and TATSUYA KATO 1. Introduction Image data may be obtained through an image system, such as a video camera or a digital still camera.

More information

Depth from Diffusion

Depth from Diffusion Depth from Diffusion Changyin Zhou Oliver Cossairt Shree Nayar Columbia University Supported by ONR Optical Diffuser Optical Diffuser ~ 10 micron Micrograph of a Holographic Diffuser (RPC Photonics) [Gray,

More information

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013

Lecture 18: Light field cameras. (plenoptic cameras) Visual Computing Systems CMU , Fall 2013 Lecture 18: Light field cameras (plenoptic cameras) Visual Computing Systems Continuing theme: computational photography Cameras capture light, then extensive processing produces the desired image Today:

More information

Optical Information Processing. Adolf W. Lohmann. Edited by Stefan Sinzinger. Ch>

Optical Information Processing. Adolf W. Lohmann. Edited by Stefan Sinzinger. Ch> Optical Information Processing Adolf W. Lohmann Edited by Stefan Sinzinger Ch> Universitätsverlag Ilmenau 2006 Contents Preface to the 2006 edition 13 Preface to the third edition 15 Preface volume 1 17

More information

3.0 Alignment Equipment and Diagnostic Tools:

3.0 Alignment Equipment and Diagnostic Tools: 3.0 Alignment Equipment and Diagnostic Tools: Alignment equipment The alignment telescope and its use The laser autostigmatic cube (LACI) interferometer A pin -- and how to find the center of curvature

More information

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques Antennas and Propagation : Array Signal Processing and Parametric Estimation Techniques Introduction Time-domain Signal Processing Fourier spectral analysis Identify important frequency-content of signal

More information

Sensitivity analysis of phase diversity technique for high resolution earth observing telescopes

Sensitivity analysis of phase diversity technique for high resolution earth observing telescopes Sensitivity analysis of phase diversity technique for high resolution earth observing telescopes C. Latry a, J.-M. Delvit a, C. Thiebaut a a CNES (French Space Agency) ICSO 2016 Biarritz, France 18-23

More information

Puntino. Shack-Hartmann wavefront sensor for optimizing telescopes. The software people for optics

Puntino. Shack-Hartmann wavefront sensor for optimizing telescopes. The software people for optics Puntino Shack-Hartmann wavefront sensor for optimizing telescopes 1 1. Optimize telescope performance with a powerful set of tools A finely tuned telescope is the key to obtaining deep, high-quality astronomical

More information

Focused Image Recovery from Two Defocused

Focused Image Recovery from Two Defocused Focused Image Recovery from Two Defocused Images Recorded With Different Camera Settings Murali Subbarao Tse-Chung Wei Gopal Surya Department of Electrical Engineering State University of New York Stony

More information

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester

WaveMaster IOL. Fast and Accurate Intraocular Lens Tester WaveMaster IOL Fast and Accurate Intraocular Lens Tester INTRAOCULAR LENS TESTER WaveMaster IOL Fast and accurate intraocular lens tester WaveMaster IOL is an instrument providing real time analysis of

More information

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design)

Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Lens design Some of the important topics needed to be addressed in a successful lens design project (R.R. Shannon: The Art and Science of Optical Design) Focal length (f) Field angle or field size F/number

More information

BROADCAST ENGINEERING 5/05 WHITE PAPER TUTORIAL. HEADLINE: HDTV Lens Design: Management of Light Transmission

BROADCAST ENGINEERING 5/05 WHITE PAPER TUTORIAL. HEADLINE: HDTV Lens Design: Management of Light Transmission BROADCAST ENGINEERING 5/05 WHITE PAPER TUTORIAL HEADLINE: HDTV Lens Design: Management of Light Transmission By Larry Thorpe and Gordon Tubbs Broadcast engineers have a comfortable familiarity with electronic

More information

INTRODUCTION TO WAVEFRONT CODING FOR INCOHERENT IMAGING

INTRODUCTION TO WAVEFRONT CODING FOR INCOHERENT IMAGING New Concepts in Imaging: Optical and Statistical Models D. Mary, C. Theys and C. Aime (eds) EAS Publications Series, 59 (2013) 77 92 INTRODUCTION TO WAVEFRONT CODING FOR INCOHERENT IMAGING M. Roche 1 Abstract.

More information

A Review over Different Blur Detection Techniques in Image Processing

A Review over Different Blur Detection Techniques in Image Processing A Review over Different Blur Detection Techniques in Image Processing 1 Anupama Sharma, 2 Devarshi Shukla 1 E.C.E student, 2 H.O.D, Department of electronics communication engineering, LR College of engineering

More information

OPTICAL IMAGE FORMATION

OPTICAL IMAGE FORMATION GEOMETRICAL IMAGING First-order image is perfect object (input) scaled (by magnification) version of object optical system magnification = image distance/object distance no blurring object distance image

More information

Filters. Materials from Prof. Klaus Mueller

Filters. Materials from Prof. Klaus Mueller Filters Materials from Prof. Klaus Mueller Think More about Pixels What exactly a pixel is in an image or on the screen? Solid square? This cannot be implemented A dot? Yes, but size matters Pixel Dots

More information

Image and Depth from a Single Defocused Image Using Coded Aperture Photography

Image and Depth from a Single Defocused Image Using Coded Aperture Photography Image and Depth from a Single Defocused Image Using Coded Aperture Photography Mina Masoudifar a, Hamid Reza Pourreza a a Department of Computer Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

More information

Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION

Determining MTF with a Slant Edge Target ABSTRACT AND INTRODUCTION Determining MTF with a Slant Edge Target Douglas A. Kerr Issue 2 October 13, 2010 ABSTRACT AND INTRODUCTION The modulation transfer function (MTF) of a photographic lens tells us how effectively the lens

More information

Head Mounted Display Optics II!

Head Mounted Display Optics II! ! Head Mounted Display Optics II! Gordon Wetzstein! Stanford University! EE 267 Virtual Reality! Lecture 8! stanford.edu/class/ee267/!! Lecture Overview! focus cues & the vergence-accommodation conflict!

More information

Shaping light in microscopy:

Shaping light in microscopy: Shaping light in microscopy: Adaptive optical methods and nonconventional beam shapes for enhanced imaging Martí Duocastella planet detector detector sample sample Aberrated wavefront Beamsplitter Adaptive

More information

THE RESTORATION OF DEFOCUS IMAGES WITH LINEAR CHANGE DEFOCUS RADIUS

THE RESTORATION OF DEFOCUS IMAGES WITH LINEAR CHANGE DEFOCUS RADIUS THE RESTORATION OF DEFOCUS IMAGES WITH LINEAR CHANGE DEFOCUS RADIUS 1 LUOYU ZHOU 1 College of Electronics and Information Engineering, Yangtze University, Jingzhou, Hubei 43423, China E-mail: 1 luoyuzh@yangtzeu.edu.cn

More information

The Formation of an Aerial Image, part 3

The Formation of an Aerial Image, part 3 T h e L i t h o g r a p h y T u t o r (July 1993) The Formation of an Aerial Image, part 3 Chris A. Mack, FINLE Technologies, Austin, Texas In the last two issues, we described how a projection system

More information

digital film technology Resolution Matters what's in a pattern white paper standing the test of time

digital film technology Resolution Matters what's in a pattern white paper standing the test of time digital film technology Resolution Matters what's in a pattern white paper standing the test of time standing the test of time An introduction >>> Film archives are of great historical importance as they

More information

Single-Image Shape from Defocus

Single-Image Shape from Defocus Single-Image Shape from Defocus José R.A. Torreão and João L. Fernandes Instituto de Computação Universidade Federal Fluminense 24210-240 Niterói RJ, BRAZIL Abstract The limited depth of field causes scene

More information

Coded Aperture and Coded Exposure Photography

Coded Aperture and Coded Exposure Photography Coded Aperture and Coded Exposure Photography Martin Wilson University of Cape Town Cape Town, South Africa Email: Martin.Wilson@uct.ac.za Fred Nicolls University of Cape Town Cape Town, South Africa Email:

More information

Optical Performance of Nikon F-Mount Lenses. Landon Carter May 11, Measurement and Instrumentation

Optical Performance of Nikon F-Mount Lenses. Landon Carter May 11, Measurement and Instrumentation Optical Performance of Nikon F-Mount Lenses Landon Carter May 11, 2016 2.671 Measurement and Instrumentation Abstract In photographic systems, lenses are one of the most important pieces of the system

More information

SURVEILLANCE SYSTEMS WITH AUTOMATIC RESTORATION OF LINEAR MOTION AND OUT-OF-FOCUS BLURRED IMAGES. Received August 2008; accepted October 2008

SURVEILLANCE SYSTEMS WITH AUTOMATIC RESTORATION OF LINEAR MOTION AND OUT-OF-FOCUS BLURRED IMAGES. Received August 2008; accepted October 2008 ICIC Express Letters ICIC International c 2008 ISSN 1881-803X Volume 2, Number 4, December 2008 pp. 409 414 SURVEILLANCE SYSTEMS WITH AUTOMATIC RESTORATION OF LINEAR MOTION AND OUT-OF-FOCUS BLURRED IMAGES

More information

Optical design of a high resolution vision lens

Optical design of a high resolution vision lens Optical design of a high resolution vision lens Paul Claassen, optical designer, paul.claassen@sioux.eu Marnix Tas, optical specialist, marnix.tas@sioux.eu Prof L.Beckmann, l.beckmann@hccnet.nl Summary:

More information

NTU CSIE. Advisor: Wu Ja Ling, Ph.D.

NTU CSIE. Advisor: Wu Ja Ling, Ph.D. An Interactive Background Blurring Mechanism and Its Applications NTU CSIE Yan Chih Yu Advisor: Wu Ja Ling, Ph.D. 1 2 Outline Introduction Related Work Method Object Segmentation Depth Map Generation Image

More information

Enhancing the performance of the light field microscope using wavefront coding

Enhancing the performance of the light field microscope using wavefront coding Stanford Computer Graphics Laboratory Technical Report 2014-2 Enhancing the performance of the light field microscope using wavefront coding Noy Cohen, Samuel Yang, Aaron Andalman, Michael Broxton, Logan

More information

Fourier transforms, SIM

Fourier transforms, SIM Fourier transforms, SIM Last class More STED Minflux Fourier transforms This class More FTs 2D FTs SIM 1 Intensity.5 -.5 FT -1.5 1 1.5 2 2.5 3 3.5 4 4.5 5 6 Time (s) IFT 4 2 5 1 15 Frequency (Hz) ff tt

More information

multiframe visual-inertial blur estimation and removal for unmodified smartphones

multiframe visual-inertial blur estimation and removal for unmodified smartphones multiframe visual-inertial blur estimation and removal for unmodified smartphones, Severin Münger, Carlo Beltrame, Luc Humair WSCG 2015, Plzen, Czech Republic images taken by non-professional photographers

More information

Computational Photography Image Stabilization

Computational Photography Image Stabilization Computational Photography Image Stabilization Jongmin Baek CS 478 Lecture Mar 7, 2012 Overview Optical Stabilization Lens-Shift Sensor-Shift Digital Stabilization Image Priors Non-Blind Deconvolution Blind

More information

Collimation Tester Instructions

Collimation Tester Instructions Description Use shear-plate collimation testers to examine and adjust the collimation of laser light, or to measure the wavefront curvature and divergence/convergence magnitude of large-radius optical

More information

Cameras As Computing Systems

Cameras As Computing Systems Cameras As Computing Systems Prof. Hank Dietz In Search Of Sensors University of Kentucky Electrical & Computer Engineering Things You Already Know The sensor is some kind of chip Most can't distinguish

More information

A Study of Slanted-Edge MTF Stability and Repeatability

A Study of Slanted-Edge MTF Stability and Repeatability A Study of Slanted-Edge MTF Stability and Repeatability Jackson K.M. Roland Imatest LLC, 2995 Wilderness Place Suite 103, Boulder, CO, USA ABSTRACT The slanted-edge method of measuring the spatial frequency

More information

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope

PROCEEDINGS OF SPIE. Measurement of low-order aberrations with an autostigmatic microscope PROCEEDINGS OF SPIE SPIEDigitalLibrary.org/conference-proceedings-of-spie Measurement of low-order aberrations with an autostigmatic microscope William P. Kuhn Measurement of low-order aberrations with

More information