# MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology

Size: px
Start display at page:

Download "MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability. Preliminary Concepts, Formulas, and Terminology"

Transcription

1 MAT104: Fundamentals of Mathematics II Summary of Counting Techniques and Probability Preliminary Concepts, Formulas, and Terminology Meanings of Basic Arithmetic Operations in Mathematics Addition: Generally indicated by the word "OR" "PLUS" or "SUM" or "TOTAL" or "TOGETHER" Used to put complete pieces together in complex situations Useful in counting possibilities involving choices among unique options Subtraction: "MINUS" or "DIFFERENCE" Used to remove complete pieces from complex situations Useful in working with dependent (i.e., overlapping) events Multiplication: Generally indicated by the word "AND" "TIMES" or "PRODUCT" Used to combine individual characteristics to form one complete piece Useful in computing probabilities involving sequences of events Division: "DIVIDED BY" or "QUOTIENT" Used to eliminate individual characteristics from one complete piece Useful in interpreting Permutations and Combinations Factorials For any integer, ; by definition,. Permutations For any integers and with and,. Combinations For any integers and with and, Dependent vs. Independent Events Dependent: Outcome of one event has a measurable effect on another Independent: Outcomes of all events have no effect on any others Binary [Probability] (Also Referred to as Bernoulli Experiments). Situations involving exactly the same two options at each stage of computation Many complex situations can be interpreted as binary (i.e., Bernoulli) experiments

2 Counting Techniques Tree Diagrams All possible outcomes are visually represented by their own branches. List all possible ways to form a 3-digit number from the digits 0, 1, and 2 if the first digit cannot be 0, and no two consecutive digits may be even. Solution: { } Product Rule Multiply the number of possibilities for each part of an event to obtain a total. 1. How many complete dinners can be created from a menu with 5 appetizers, 8 entrées, and 4 desserts if a complete dinner consists of one appetizer, one entrée, and one dessert? 2. How many unique license plates exist if each license plate must consist of 3 letters followed by 4 digits?

3 Sum Rule Add the number of possibilities for different ways to complete an event to obtain a total. 1. How many ways can a postsecondary student be selected from a group of 120 undergraduate students and 56 graduate students? 2. How many unique license plates exist if each license plate must consist of 3 letters followed by 4 digits or 3 letters followed by 3 digits? 3 letters followed by 4 digits: 3 letters followed by 3 digits: Total: Subtraction Rule (Inclusion-Exclusion Principle) Items cannot be counted more than once when applying the Sum Rule; subtract overlapping quantities to compensate, but be sure to include all possibilities exactly once. 1. How many students are in a group of students consisting of 135 computer science majors, 112 mathematics majors, and 43 computer science/mathematics double majors? 2. How many 3-letter "words" (sequences of letters; not necessarily real words) begin or end with a vowel? Begin with a vowel: End with a vowel: Begin and end with a vowel: Total:

4 Fill-in-the-Blanks Technique Draw a line to represent a slot for each location an object must be placed, write the number of possible options that can go in each slot, and multiply the results to obtain a total number of possible outcomes. For more complicated situations, fill in the slots with their respective values by progressing from the slot with the most restrictions (or the least options) to the slot with the least restrictions (or the most options), not necessarily left to right. If necessary, break the exercise into multiple cases, calculate each case individually, and add the results together to obtain a final answer. 1. How many ways can a person roll a die, then flip a coin, then spin a 1-to-10 spinner? 2. How many even 4-digit numbers greater than 7499 with no repeated digits exist? 7500s and 7900s: 7600s and 7800s: 8000s: 9000s: Total:

5 Exponentiation (Permutations with Repetition/Replacement) The number of ways to arrange objects from a set of objects if any object can be repeated is. 1. How many 8-digit bit strings exist (a bit string is a sequence of binary digits, each of which is a or ; an example of an 8-digit bit string is )? Either or at each position: 2. How many ways can a student randomly guess the answers to a 10-question multiple choice quiz if each question has possible answers of (a), (b), (c), and (d)? Factorials There are ways to arrange a group of objects if the order in which they are arranged matters. 1. How many ways can a group of 10 students line up to buy ice cream? 2. How many ways can 5 textbooks be arranged on a shelf? 3. How many ways can 5 elementary school students, 6 high school students, and 7 college students be lined up such that all students at the same level of school are grouped next to one another? 4. How many ways can the letters in the set { A, B, C, D, E, F, G } be arranged such that the string "BAD" must occur in the outcome? Consider "BAD" as a single object and the letters C, E, F, and G separately:

6 Permutations There are ways to arrange of a group of objects if the order they are arranged matters. How many ways can 3 of a group of 10 students line up to buy ice cream? Combinations There are ways to arrange of a group of objects if the order in which they are arranged is irrelevant. 1. How many 5-card poker hands can be dealt from a standard deck of playing cards? 2. How many 3-member committees can be selected from a group of 12 people? 3. How many ways can a 7-member board of trustees be created from a group of 10 men and 8 women if 4 members must be male and 3 members must be female?

7 Pascal's Triangle This is a visual computational technique for determining values of combinations with applications including determining coefficients in binomial expansions. Each row begins and ends with (with a special Row at the top consisting of a single ) and is written such that consecutive rows are aligned using alternating staggers with each row containing one value more than the preceding row. Aside from the leading and trailing in each row, all other values are found by adding the values staggered to either side of the desired location in any row. The first several rows are as follows: To illustrate its use, consider the computation of. If we number the position of each value in a given row such that the first position is and the last position is the same as the row number, we look at the value at position in Row to determine the value of. That value is. If we calculate the value of using the definition of a combination, we obtain the same value:

8 Permutations with Indistinguishable Objects The number of ways to arrange a set of objects consisting identical objects of type 1, identical objects of type 2, and so on up to identical objects of type, is. How many unique ways can one arrange the letters of the word MISSISSIPPI? Pigeonhole Principle (Dirichlet Drawer Principle) If the number of objects being distributed into a set of containers is greater than the number of containers, some container must contain more than one object. 1. How many students must take a test to guarantee at least two of them receive the same letter grade (A, B, C, D, or F; no plus or minus)? 2. How many times must a die be rolled to guarantee a number occurs twice? Generalized Pigeonhole Principle If n objects are distributed into containers, at least one container holds objects, rounded up. 1. How many people can be guaranteed to share a birthday (assume 366 possible birthdays to include Leap Day, February 29) in a group of 10,000 people? at least people must share a birthday 2. How many times must a pair of dice be thrown to guarantee some total shown on the dice occurs at least 5 times? possible totals on each throw: { } At least should be interpreted as greater than

9 Combinations with Repetition/Replacement The number of ways to select objects from a set containing types of objects such that the type of object selected can be repeated and each of the types is available for each selection is: 1. How many ways can 7 coins be selected from a pile containing pennies, nickels, dimes, and quarters if the order in which the coins are selected is irrelevant and the pile contains at least 7 of each type of coin? 2. How many solutions exist to the equation such that the value of each variable is a nonnegative integer? This can be thought of as the number of ways to select items from a set consisting of elements such that each element is replaced after it is selected; alternatively, consider the situation in which unique objects are in a bag, and random selections are made, recording which type is drawn and replacing it each time: Distributing Distinguishable Objects into Distinguishable Boxes The number of ways to distribute distinguishable objects into distinguishable boxes such that objects are placed in box is. How many ways can a 5-card poker hand be dealt to each of 4 players from a standard deck? 52 cards to be distributed to 4 players leaves 32 cards left to consider along with the 20 dealt:

10 Distributing Indistinguishable Objects into Distinguishable Boxes This situation is identical to computing the number of combinations with repetition: How many ways can 12 identical blocks be placed into 9 numbered boxes? Distributing Distinguishable Objects into Indistinguishable Boxes No simple closed formula exists for this situation, although a complicated formula involving summations does exist. It is usually easiest to write out all possibilities. Distributing Indistinguishable Objects into Indistinguishable Boxes No simple closed formula exists for this situation. It is usually easiest to write out all possibilities.

11 Probability Concepts Discrete Probability If the sample space (i.e., the set of all possible outcomes),, for a given experiment and the set of desired outcomes,, are both countable, the probability that occurs is given by: In sum, the counting techniques previously described in this packet can be applied to by the sample space,, and the event of interest,, to obtain their respective sizes, and the probability that the event,, occurs is obtained by dividing their values. The probability of any event occurring is always between and, where any event with a probability of is an impossibility, and any event with a probability of is a certainty. 1. What is the probability that an individual wins a lottery in which he or she must correctly pick all 6 numbers randomly selected from 1 through 60? Number of ways to win: Total number of outcomes: Probability of winning: 2. Find the probability that a 5-card poker hand is a full house. Note that a full house consists of of one denomination and of another, and that there are denominations to start. Number of full houses: Total number of 5-card poker hands: Probability of dealing a full house: 3. What is the probability that a student gets at least 8 out of 10 questions correct on a quiz consisting of 10 True/False questions if he or she randomly guesses all the answers? Number of ways to get correct: Number of ways to get correct: Number of ways to get correct: Total number of ways to answer all questions: Probability of at least correct by guessing:

12 Complement Rule The probability that a given event,, occurs is given by, where is the probability that event does not occur, or the probability that the complement of occurs. Find the probability that a student gets at least 2 out of 10 questions wrong on a quiz consisting of 10 multiple choice questions with 4 answers each if the student randomly guesses the answers. Number of ways to get wrong: Number of ways to get wrong: Total number of ways to answer all questions: Probability of no more than wrong: Probability of at least wrong: Binomial Probability (Bernoulli Trials) If a probability experiment can be expressed as a repetition of identical independent trials of an experiment such that the probability of success for each trial is and the probability of failure for each trial is, then the probability of obtaining exactly successes in trials is given by. 1. What is the probability of randomly guessing exactly 8 questions correctly on a quiz consisting of 10 multiple choice questions with 3 possible answer for each? 2. Find the probability that at least 11 eggs in a carton of one dozen are intact if the probability of a broken egg is 1.5%. Total desired probability:

13 Arithmetic Facts Involving Counting Techniques

### EECS 203 Spring 2016 Lecture 15 Page 1 of 6

EECS 203 Spring 2016 Lecture 15 Page 1 of 6 Counting We ve been working on counting for the last two lectures. We re going to continue on counting and probability for about 1.5 more lectures (including

### Honors Precalculus Chapter 9 Summary Basic Combinatorics

Honors Precalculus Chapter 9 Summary Basic Combinatorics A. Factorial: n! means 0! = Why? B. Counting principle: 1. How many different ways can a license plate be formed a) if 7 letters are used and each

### Find the probability of an event by using the definition of probability

LESSON 10-1 Probability Lesson Objectives Find the probability of an event by using the definition of probability Vocabulary experiment (p. 522) trial (p. 522) outcome (p. 522) sample space (p. 522) event

### CSCI 2200 Foundations of Computer Science (FoCS) Solutions for Homework 7

CSCI 00 Foundations of Computer Science (FoCS) Solutions for Homework 7 Homework Problems. [0 POINTS] Problem.4(e)-(f) [or F7 Problem.7(e)-(f)]: In each case, count. (e) The number of orders in which a

### Probability and Counting Techniques

Probability and Counting Techniques Diana Pell (Multiplication Principle) Suppose that a task consists of t choices performed consecutively. Suppose that choice 1 can be performed in m 1 ways; for each

### Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY

Advanced Intermediate Algebra Chapter 12 Summary INTRO TO PROBABILITY 1. Jack and Jill do not like washing dishes. They decide to use a random method to select whose turn it is. They put some red and blue

### MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions

MAT104: Fundamentals of Mathematics II Counting Techniques Class Exercises Solutions 1. Appetizers: Salads: Entrées: Desserts: 2. Letters: (A, B, C, D, E, F, G, H, I, J, K, L, M, N, O, P, Q, R, S, T, U,

### Finite Mathematics MAT 141: Chapter 8 Notes

Finite Mathematics MAT 4: Chapter 8 Notes Counting Principles; More David J. Gisch The Multiplication Principle; Permutations Multiplication Principle Multiplication Principle You can think of the multiplication

### Section 6.1 #16. Question: What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit?

Section 6.1 #16 What is the probability that a five-card poker hand contains a flush, that is, five cards of the same suit? page 1 Section 6.1 #38 Two events E 1 and E 2 are called independent if p(e 1

### Section The Multiplication Principle and Permutations

Section 2.1 - The Multiplication Principle and Permutations Example 1: A yogurt shop has 4 flavors (chocolate, vanilla, strawberry, and blueberry) and three sizes (small, medium, and large). How many different

### CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min)

CS1802 Discrete Structures Recitation Fall 2018 September 25-26, 2018 CS1802 Week 3: Counting Next Week : QUIZ 1 (30 min) Permutations and Combinations i. Evaluate the following expressions. 1. P(10, 4)

### Chapter 2. Permutations and Combinations

2. Permutations and Combinations Chapter 2. Permutations and Combinations In this chapter, we define sets and count the objects in them. Example Let S be the set of students in this classroom today. Find

### CSC/MTH 231 Discrete Structures II Spring, Homework 5

CSC/MTH 231 Discrete Structures II Spring, 2010 Homework 5 Name 1. A six sided die D (with sides numbered 1, 2, 3, 4, 5, 6) is thrown once. a. What is the probability that a 3 is thrown? b. What is the

### Unit Nine Precalculus Practice Test Probability & Statistics. Name: Period: Date: NON-CALCULATOR SECTION

Name: Period: Date: NON-CALCULATOR SECTION Vocabulary: Define each word and give an example. 1. discrete mathematics 2. dependent outcomes 3. series Short Answer: 4. Describe when to use a combination.

### Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations

Algebra 2 Notes Section 10.1: Apply the Counting Principle and Permutations Objective(s): Vocabulary: I. Fundamental Counting Principle: Two Events: Three or more Events: II. Permutation: (top of p. 684)

### Course Learning Outcomes for Unit V

UNIT V STUDY GUIDE Counting Reading Assignment See information below. Key Terms 1. Combination 2. Fundamental counting principle 3. Listing 4. Permutation 5. Tree diagrams Course Learning Outcomes for

### W = {Carrie (U)nderwood, Kelly (C)larkson, Chris (D)aughtry, Fantasia (B)arrino, and Clay (A)iken}

UNIT V STUDY GUIDE Counting Course Learning Outcomes for Unit V Upon completion of this unit, students should be able to: 1. Apply mathematical principles used in real-world situations. 1.1 Draw tree diagrams

### Foundations of Computing Discrete Mathematics Solutions to exercises for week 12

Foundations of Computing Discrete Mathematics Solutions to exercises for week 12 Agata Murawska (agmu@itu.dk) November 13, 2013 Exercise (6.1.2). A multiple-choice test contains 10 questions. There are

### MATH 215 DISCRETE MATHEMATICS INSTRUCTOR: P. WENG

MATH DISCRETE MATHEMATICS INSTRUCTOR: P. WENG Counting and Probability Suggested Problems Basic Counting Skills, Inclusion-Exclusion, and Complement. (a An office building contains 7 floors and has 7 offices

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### Poker: Probabilities of the Various Hands

Poker: Probabilities of the Various Hands 22 February 2012 Poker II 22 February 2012 1/27 Some Review from Monday There are 4 suits and 13 values. The suits are Spades Hearts Diamonds Clubs There are 13

### November 6, Chapter 8: Probability: The Mathematics of Chance

Chapter 8: Probability: The Mathematics of Chance November 6, 2013 Last Time Crystallographic notation Groups Crystallographic notation The first symbol is always a p, which indicates that the pattern

### Algebra II- Chapter 12- Test Review

Sections: Counting Principle Permutations Combinations Probability Name Choose the letter of the term that best matches each statement or phrase. 1. An illustration used to show the total number of A.

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

NYS COMMON CORE MAEMAICS CURRICULUM 7 : Calculating Probabilities for Chance Experiments with Equally Likely Classwork Examples: heoretical Probability In a previous lesson, you saw that to find an estimate

### Chapter 1. Probability

Chapter 1. Probability 1.1 Basic Concepts Scientific method a. For a given problem, we define measures that explains the problem well. b. Data is collected with observation and the measures are calculated.

### 1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building?

1. An office building contains 27 floors and has 37 offices on each floor. How many offices are in the building? 2. A particular brand of shirt comes in 12 colors, has a male version and a female version,

### Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples

Rosen, Discrete Mathematics and Its Applications, 6th edition Extra Examples Section 6.1 An Introduction to Discrete Probability Page references correspond to locations of Extra Examples icons in the textbook.

### M146 - Chapter 5 Handouts. Chapter 5

Chapter 5 Objectives of chapter: Understand probability values. Know how to determine probability values. Use rules of counting. Section 5-1 Probability Rules What is probability? It s the of the occurrence

### Fundamental. If one event can occur m ways and another event can occur n ways, then the number of ways both events can occur is:.

12.1 The Fundamental Counting Principle and Permutations Objectives 1. Use the fundamental counting principle to count the number of ways an event can happen. 2. Use the permutations to count the number

### Counting Methods and Probability

CHAPTER Counting Methods and Probability Many good basketball players can make 90% of their free throws. However, the likelihood of a player making several free throws in a row will be less than 90%. You

### Unit 14 Probability. Target 3 Calculate the probability of independent and dependent events (compound) AND/THEN statements

Target 1 Calculate the probability of an event Unit 14 Probability Target 2 Calculate a sample space 14.2a Tree Diagrams, Factorials, and Permutations 14.2b Combinations Target 3 Calculate the probability

### 5 Elementary Probability Theory

5 Elementary Probability Theory 5.1 What is Probability? The Basics We begin by defining some terms. Random Experiment: any activity with a random (unpredictable) result that can be measured. Trial: one

### LISTING THE WAYS. getting a total of 7 spots? possible ways for 2 dice to fall: then you win. But if you roll. 1 q 1 w 1 e 1 r 1 t 1 y

LISTING THE WAYS A pair of dice are to be thrown getting a total of 7 spots? There are What is the chance of possible ways for 2 dice to fall: 1 q 1 w 1 e 1 r 1 t 1 y 2 q 2 w 2 e 2 r 2 t 2 y 3 q 3 w 3

### Section : Combinations and Permutations

Section 11.1-11.2: Combinations and Permutations Diana Pell A construction crew has three members. A team of two must be chosen for a particular job. In how many ways can the team be chosen? How many words

### PROBABILITY. 1. Introduction. Candidates should able to:

PROBABILITY Candidates should able to: evaluate probabilities in simple cases by means of enumeration of equiprobable elementary events (e.g for the total score when two fair dice are thrown), or by calculation

### Probability. Dr. Zhang Fordham Univ.

Probability! Dr. Zhang Fordham Univ. 1 Probability: outline Introduction! Experiment, event, sample space! Probability of events! Calculate Probability! Through counting! Sum rule and general sum rule!

### Part 1: I can express probability as a fraction, decimal, and percent

Name: Pattern: Part 1: I can express probability as a fraction, decimal, and percent For #1 to #4, state the probability of each outcome. Write each answer as a) a fraction b) a decimal c) a percent Example:

### Park Forest Math Team. Meet #5. Self-study Packet

Park Forest Math Team Meet #5 Self-study Packet Problem Categories for this Meet: 1. Mystery: Problem solving 2. Geometry: Angle measures in plane figures including supplements and complements 3. Number

### 2. Combinatorics: the systematic study of counting. The Basic Principle of Counting (BPC)

2. Combinatorics: the systematic study of counting The Basic Principle of Counting (BPC) Suppose r experiments will be performed. The 1st has n 1 possible outcomes, for each of these outcomes there are

### Name: Class: Date: 6. An event occurs, on average, every 6 out of 17 times during a simulation. The experimental probability of this event is 11

Class: Date: Sample Mastery # Multiple Choice Identify the choice that best completes the statement or answers the question.. One repetition of an experiment is known as a(n) random variable expected value

### Key Concept Probability of Independent Events. Key Concept Probability of Mutually Exclusive Events. Key Concept Probability of Overlapping Events

15-4 Compound Probability TEKS FOCUS TEKS (1)(E) Apply independence in contextual problems. TEKS (1)(B) Use a problemsolving model that incorporates analyzing given information, formulating a plan or strategy,

### Probability, Permutations, & Combinations LESSON 11.1

Probability, Permutations, & Combinations LESSON 11.1 Objective Define probability Use the counting principle Know the difference between combination and permutation Find probability Probability PROBABILITY:

### Topics to be covered

Basic Counting 1 Topics to be covered Sum rule, product rule, generalized product rule Permutations, combinations Binomial coefficients, combinatorial proof Inclusion-exclusion principle Pigeon Hole Principle

### Most of the time we deal with theoretical probability. Experimental probability uses actual data that has been collected.

AFM Unit 7 Day 3 Notes Theoretical vs. Experimental Probability Name Date Definitions: Experiment: process that gives a definite result Outcomes: results Sample space: set of all possible outcomes Event:

### Probability of Independent and Dependent Events

706 Practice A Probability of In and ependent Events ecide whether each set of events is or. Explain your answer.. A student spins a spinner and rolls a number cube.. A student picks a raffle ticket from

### Poker: Probabilities of the Various Hands

Poker: Probabilities of the Various Hands 19 February 2014 Poker II 19 February 2014 1/27 Some Review from Monday There are 4 suits and 13 values. The suits are Spades Hearts Diamonds Clubs There are 13

### Lesson 4: Calculating Probabilities for Chance Experiments with Equally Likely Outcomes

Lesson : Calculating Probabilities for Chance Experiments with Equally Likely Outcomes Classwork Example : heoretical Probability In a previous lesson, you saw that to find an estimate of the probability

### There are three types of mathematicians. Those who can count and those who can t.

1 Counting There are three types of mathematicians. Those who can count and those who can t. 1.1 Orderings The details of the question always matter. So always take a second look at what is being asked

### The Product Rule can be viewed as counting the number of elements in the Cartesian product of the finite sets

Chapter 6 - Counting 6.1 - The Basics of Counting Theorem 1 (The Product Rule). If every task in a set of k tasks must be done, where the first task can be done in n 1 ways, the second in n 2 ways, and

### The study of probability is concerned with the likelihood of events occurring. Many situations can be analyzed using a simplified model of probability

The study of probability is concerned with the likelihood of events occurring Like combinatorics, the origins of probability theory can be traced back to the study of gambling games Still a popular branch

### The Product Rule The Product Rule: A procedure can be broken down into a sequence of two tasks. There are n ways to do the first task and n

Chapter 5 Chapter Summary 5.1 The Basics of Counting 5.2 The Pigeonhole Principle 5.3 Permutations and Combinations 5.5 Generalized Permutations and Combinations Section 5.1 The Product Rule The Product

### Problem Set 2. Counting

Problem Set 2. Counting 1. (Blitzstein: 1, Q3 Fred is planning to go out to dinner each night of a certain week, Monday through Friday, with each dinner being at one of his favorite ten restaurants. i

### In this section, we will learn to. 1. Use the Multiplication Principle for Events. Cheesecake Factory. Outback Steakhouse. P.F. Chang s.

Section 10.6 Permutations and Combinations 10-1 10.6 Permutations and Combinations In this section, we will learn to 1. Use the Multiplication Principle for Events. 2. Solve permutation problems. 3. Solve

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

More 9.-9.3 Practice Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Answer the question. ) In how many ways can you answer the questions on

### Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results:

Lenarz Math 102 Practice Exam # 3 Name: 1. A 10-sided die is rolled 100 times with the following results: Outcome Frequency 1 8 2 8 3 12 4 7 5 15 8 7 8 8 13 9 9 10 12 (a) What is the experimental probability

### Grade 7/8 Math Circles February 25/26, Probability

Faculty of Mathematics Waterloo, Ontario N2L 3G1 Probability Grade 7/8 Math Circles February 25/26, 2014 Probability Centre for Education in Mathematics and Computing Probability is the study of how likely

### Probability Rules. 2) The probability, P, of any event ranges from which of the following?

Name: WORKSHEET : Date: Answer the following questions. 1) Probability of event E occurring is... P(E) = Number of ways to get E/Total number of outcomes possible in S, the sample space....if. 2) The probability,

### Intermediate Math Circles November 1, 2017 Probability I

Intermediate Math Circles November 1, 2017 Probability I Probability is the study of uncertain events or outcomes. Games of chance that involve rolling dice or dealing cards are one obvious area of application.

### Answer each of the following problems. Make sure to show your work.

Answer each of the following problems. Make sure to show your work. 1. A board game requires each player to roll a die. The player with the highest number wins. If a player wants to calculate his or her

### 10-1. Combinations. Vocabulary. Lesson. Mental Math. able to compute the number of subsets of size r.

Chapter 10 Lesson 10-1 Combinations BIG IDEA With a set of n elements, it is often useful to be able to compute the number of subsets of size r Vocabulary combination number of combinations of n things

### Theory of Probability - Brett Bernstein

Theory of Probability - Brett Bernstein Lecture 3 Finishing Basic Probability Review Exercises 1. Model flipping two fair coins using a sample space and a probability measure. Compute the probability of

### Chapter 11: Probability and Counting Techniques

Chapter 11: Probability and Counting Techniques Diana Pell Section 11.1: The Fundamental Counting Principle Exercise 1. How many different two-letter words (including nonsense words) can be formed when

### CIS 2033 Lecture 6, Spring 2017

CIS 2033 Lecture 6, Spring 2017 Instructor: David Dobor February 2, 2017 In this lecture, we introduce the basic principle of counting, use it to count subsets, permutations, combinations, and partitions,

### Unit 9: Probability Assignments

Unit 9: Probability Assignments #1: Basic Probability In each of exercises 1 & 2, find the probability that the spinner shown would land on (a) red, (b) yellow, (c) blue. 1. 2. Y B B Y B R Y Y B R 3. Suppose

### Unit 19 Probability Review

. What is sample space? All possible outcomes Unit 9 Probability Review 9. I can use the Fundamental Counting Principle to count the number of ways an event can happen. 2. What is the difference between

### Probability. The MEnTe Program Math Enrichment through Technology. Title V East Los Angeles College

Probability The MEnTe Program Math Enrichment through Technology Title V East Los Angeles College 2003 East Los Angeles College. All rights reserved. Topics Introduction Empirical Probability Theoretical

### Chapter 1: Sets and Probability

Chapter 1: Sets and Probability Section 1.3-1.5 Recap: Sample Spaces and Events An is an activity that has observable results. An is the result of an experiment. Example 1 Examples of experiments: Flipping

### 3 The multiplication rule/miscellaneous counting problems

Practice for Exam 1 1 Axioms of probability, disjoint and independent events 1 Suppose P (A 0, P (B 05 (a If A and B are independent, what is P (A B? What is P (A B? (b If A and B are disjoint, what is

### Mat 344F challenge set #2 Solutions

Mat 344F challenge set #2 Solutions. Put two balls into box, one ball into box 2 and three balls into box 3. The remaining 4 balls can now be distributed in any way among the three remaining boxes. This

### Introductory Probability

Introductory Probability Combinations Nicholas Nguyen nicholas.nguyen@uky.edu Department of Mathematics UK Agenda Assigning Objects to Identical Positions Denitions Committee Card Hands Coin Toss Counts

### CHAPTER 8 Additional Probability Topics

CHAPTER 8 Additional Probability Topics 8.1. Conditional Probability Conditional probability arises in probability experiments when the person performing the experiment is given some extra information

### Fundamental Counting Principle

Lesson 88 Probability with Combinatorics HL2 Math - Santowski Fundamental Counting Principle Fundamental Counting Principle can be used determine the number of possible outcomes when there are two or more

### PROBABILITY. Example 1 The probability of choosing a heart from a deck of cards is given by

Classical Definition of Probability PROBABILITY Probability is the measure of how likely an event is. An experiment is a situation involving chance or probability that leads to results called outcomes.

### Bayes stuff Red Cross and Blood Example

Bayes stuff Red Cross and Blood Example 42% of the workers at Motor Works are female, while 67% of the workers at City Bank are female. If one of these companies is selected at random (assume a 50-50 chance

### Discrete Structures Lecture Permutations and Combinations

Introduction Good morning. Many counting problems can be solved by finding the number of ways to arrange a specified number of distinct elements of a set of a particular size, where the order of these

### Week 1: Probability models and counting

Week 1: Probability models and counting Part 1: Probability model Probability theory is the mathematical toolbox to describe phenomena or experiments where randomness occur. To have a probability model

### Section Summary. Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning

Section 7.1 Section Summary Finite Probability Probabilities of Complements and Unions of Events Probabilistic Reasoning Probability of an Event Pierre-Simon Laplace (1749-1827) We first study Pierre-Simon

### Finite Math B, Chapter 8 Test Review Name

Finite Math B, Chapter 8 Test Review Name Evaluate the factorial. 1) 6! A) 720 B) 120 C) 360 D) 1440 Evaluate the permutation. 2) P( 10, 5) A) 10 B) 30,240 C) 1 D) 720 3) P( 12, 8) A) 19,958,400 B) C)

### Name Class Date. Introducing Probability Distributions

Name Class Date Binomial Distributions Extension: Distributions Essential question: What is a probability distribution and how is it displayed? 8-6 CC.9 2.S.MD.5(+) ENGAGE Introducing Distributions Video

### Answer each of the following problems. Make sure to show your work.

Answer each of the following problems. Make sure to show your work. 1. A board game requires each player to roll a die. The player with the highest number wins. If a player wants to calculate his or her

### MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. C) 1 6

Math 300 Exam 4 Review (Chapter 11) Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Give the probability that the spinner shown would land on

### CSE 312: Foundations of Computing II Quiz Section #2: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions)

CSE 31: Foundations of Computing II Quiz Section #: Inclusion-Exclusion, Pigeonhole, Introduction to Probability (solutions) Review: Main Theorems and Concepts Binomial Theorem: x, y R, n N: (x + y) n

### JIGSAW ACTIVITY, TASK # Make sure your answer in written in the correct order. Highest powers of x should come first, down to the lowest powers.

JIGSAW ACTIVITY, TASK #1 Your job is to multiply and find all the terms in ( 1) Recall that this means ( + 1)( + 1)( + 1)( + 1) Start by multiplying: ( + 1)( + 1) x x x x. x. + 4 x x. Write your answer

### LC OL Probability. ARNMaths.weebly.com. As part of Leaving Certificate Ordinary Level Math you should be able to complete the following.

A Ryan LC OL Probability ARNMaths.weebly.com Learning Outcomes As part of Leaving Certificate Ordinary Level Math you should be able to complete the following. Counting List outcomes of an experiment Apply

### Counting. Chapter 6. With Question/Answer Animations

. All rights reserved. Authorized only for instructor use in the classroom. No reproduction or further distribution permitted without the prior written consent of McGraw-Hill Education. Counting Chapter

### Block 1 - Sets and Basic Combinatorics. Main Topics in Block 1:

Block 1 - Sets and Basic Combinatorics Main Topics in Block 1: A short revision of some set theory Sets and subsets. Venn diagrams to represent sets. Describing sets using rules of inclusion. Set operations.

### MATH STUDENT BOOK. 7th Grade Unit 6

MATH STUDENT BOOK 7th Grade Unit 6 Unit 6 Probability and Graphing Math 706 Probability and Graphing Introduction 3 1. Probability 5 Theoretical Probability 5 Experimental Probability 13 Sample Space 20

### Discrete Mathematics: Logic. Discrete Mathematics: Lecture 15: Counting

Discrete Mathematics: Logic Discrete Mathematics: Lecture 15: Counting counting combinatorics: the study of the number of ways to put things together into various combinations basic counting principles

### Probability MAT230. Fall Discrete Mathematics. MAT230 (Discrete Math) Probability Fall / 37

Probability MAT230 Discrete Mathematics Fall 2018 MAT230 (Discrete Math) Probability Fall 2018 1 / 37 Outline 1 Discrete Probability 2 Sum and Product Rules for Probability 3 Expected Value MAT230 (Discrete

### Fundamentals of Probability

Fundamentals of Probability Introduction Probability is the likelihood that an event will occur under a set of given conditions. The probability of an event occurring has a value between 0 and 1. An impossible

### CS1800: Intro to Probability. Professor Kevin Gold

CS1800: Intro to Probability Professor Kevin Gold Probability Deals Rationally With an Uncertain World Using probabilities is the only rational way to deal with uncertainty De Finetti: If you disagree,

### ECON 214 Elements of Statistics for Economists

ECON 214 Elements of Statistics for Economists Session 4 Probability Lecturer: Dr. Bernardin Senadza, Dept. of Economics Contact Information: bsenadza@ug.edu.gh College of Education School of Continuing

### CS100: DISCRETE STRUCTURES. Lecture 8 Counting - CH6

CS100: DISCRETE STRUCTURES Lecture 8 Counting - CH6 Lecture Overview 2 6.1 The Basics of Counting: THE PRODUCT RULE THE SUM RULE THE SUBTRACTION RULE THE DIVISION RULE 6.2 The Pigeonhole Principle. 6.3

### Using a table: regular fine micro. red. green. The number of pens possible is the number of cells in the table: 3 2.

Counting Methods: Example: A pen has tip options of regular tip, fine tip, or micro tip, and it has ink color options of red ink or green ink. How many different pens are possible? Using a table: regular

### Bell Work. Warm-Up Exercises. Two six-sided dice are rolled. Find the probability of each sum or 7

Warm-Up Exercises Two six-sided dice are rolled. Find the probability of each sum. 1. 7 Bell Work 2. 5 or 7 3. You toss a coin 3 times. What is the probability of getting 3 heads? Warm-Up Notes Exercises

### Combinatorics: The Fine Art of Counting

Combinatorics: The Fine Art of Counting Lecture Notes Counting 101 Note to improve the readability of these lecture notes, we will assume that multiplication takes precedence over division, i.e. A / B*C

### 12.1 The Fundamental Counting Principle and Permutations

12.1 The Fundamental Counting Principle and Permutations The Fundamental Counting Principle Two Events: If one event can occur in ways and another event can occur in ways then the number of ways both events

### STATISTICAL COUNTING TECHNIQUES

STATISTICAL COUNTING TECHNIQUES I. Counting Principle The counting principle states that if there are n 1 ways of performing the first experiment, n 2 ways of performing the second experiment, n 3 ways