Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps

Size: px
Start display at page:

Download "Single-Supply, 150MHz, 16-Bit Accurate, Ultra-Low Distortion Op Amps"

Transcription

1 9-; Rev ; /8 Single-Supply, 5MHz, 6-Bit Accurate, General Description The MAX4434/MAX4435 single and MAX4436/MAX4437 dual operational amplifiers feature wide bandwidth, 6- bit settling time in 3ns, and low-noise/low-distortion operation. The are compensated for unity-gain stability and have a small-signal -3dB bandwidth of 5MHz. The are compensated for closed-loop gains of +5 or greater and have a small-signal, -3dB bandwidth of 5MHz. The op amps require only 5mA of supply current per amplifier while achieving 5dB open-loop gain. Voltage noise density is a low.nv/ Hz and provides 97dB spurious-free dynamic range (SFDR) at MHz. These characteristics make these op amps ideal for driving modern, high-speed 4- and 6-bit analog-to-digital converters (ADCs). These high-speed op amps feature wide-output voltage swings and a high-current output drive up to 65mA. Using a voltage feedback architecture, the MAX4434 MAX4437 meet the requirements of many applications that previously depended on current feedback amplifiers. The MAX4434/MAX4435 are available in space-saving 5-pin SOT3 packages and the MAX4436/MAX4437 are available in 8-pin µmax packages. Applications High-Speed 4- and 6-Bit ADC Preamplifiers Low-Noise Preamplifiers IF/RF Amplifiers Low-Distortion Active Filters High-Performance Receivers Precision Instrumentation µmax is a registered trademark of Maxim Integrated Products, Inc. Pin Configurations Features 6-Bit Accurate Settling in 3ns () 97dB SFDR at MHz, 4Vp-p Output.nV/ Hz Input Voltage Noise Density db (min) Open-Loop Gain 388V/µs Slew Rate () 65mA High Output Drive Available in Space-Saving Packages 5-Pin SOT3 (MAX4434/MAX4435) 8-Pin µmax (MAX4436/MAX4437) Ordering Information PART TEMP RANGE PIN-PACKAGE MAX4434EUK-T -4 C to +85 C 5 SOT3 MAX4434ESA -4 C to +85 C 8 SO MAX4434EUK/V+T -4 C to +85 C 5 SOT3 MAX4435EUK-T -4 C to +85 C 5 SOT3 MAX4435ESA -4 C to +85 C 8 SO MAX4436EUA -4 C to +85 C 8 µmax MAX4436ESA -4 C to +85 C 8 SO MAX4437EUA -4 C to +85 C 8 µmax MAX4437ESA -4 C to +85 C 8 SO +Denotes a lead(pb)-free/rohs-compliant package. Selector Guide appears at end of data sheet. Typical Operating Circuit V CC TOP VIEW OUT 5 V CC MAX4434 MAX4435 C HIGH-SPEED 4-/6-BIT ADC V EE 5 IN+ 3 4 IN- SOT3 IN 3 MAX MAX4435 Pin Configurations continued at end of data sheet. Maxim Integrated Products For pricing, delivery, and ordering information, please contact Maxim Direct at , or visit Maxim's website at

2 Single-Supply, 5MHz, 6-Bit Accurate, ABSOLUTE MAXIMUM RATINGS Supply Voltage (V CC - V EE )...+6V Differential Input Voltage...+V Input Voltage Range...(V CC +.3V) to (V EE -.3V) Current into Any Input Pin...±5mA Output Short-Circuit Duration to V CC or V EE...(Note ) Continuous Power Dissipation (T A = +7 C) 5-Pin SOT3 (derate 7.mW/ C above +7 C)...57mW Note : The are not protected for output short-circuit conditions. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability. DC ELECTRICAL CHARACTERISTICS 8-Pin SO (derate 5.88mW/ C above +7 C)...47mW 8-Pin µmax (derate 4.5mW/ C above +7 C)... 33mW Operating Temperature Range...-4 C to +85 C Junction Temperature...+5 C Storage Temperature Range C to +5 C Lead Temperature (soldering, s)...+3 C (V CC = +5V, V EE =, R L = to V CC /, T A = T MIN to T MAX, unless otherwise noted. Typical values are at T A = +5 C.) (Note ) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Input Common-Mode Voltage Range V CM Guaranteed by CMRR test V EE V CC - V Input Offset Voltage V OS 3.5 mv Input Offset Voltage Temperature Coefficient TCV OS 4 µv/ C Input Offset Voltage Matching MAX4436/MAX mv Input Bias Current I B 4 µa Input Offset Current I OS 5 µa Differential Mode -mv V IN +mv Input Resistance R IN Common Mode V CM (V CC - V) kω.7 MΩ Common-Mode Rejection Ratio CMRR V EE V CM (V CC - V) 75 db (V EE +.5) V OUT (V CC -.5), R L = kω Open-Loop Gain A VOL (V EE +.5) V OUT (V CC -.5), R L = 5Ω Output Voltage Swing V OUT R L = kω 5 96 V CC - V OH 65 V OL - V EE 5 7 R Sinking 4 65 Output Current I L = Ω to OUT Ground Sourcing 35 6 Output Short-Circuit Current I SC Sinking or sourcing ±7 ma DC Power-Supply Rejection Ratio PSRR V CC = +4.5V to +5.5V 85 db Operating Supply Voltage V S Guaranteed by PSRR test V Quiescent Supply Current (Per Amplifier) I S 5 8 ma db mv ma Note : All devices are % production tested at +5 C. Specifications over temperature limits are guaranteed by design.

3 Single-Supply, 5MHz, 6-Bit Accurate, AC ELECTRICAL CHARACTERISTICS (V CC = +5V, V EE =, V CM = V CC /, R L = 5Ω, A VCL = +, and T A = +5 C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS Small-Signal -3dB Bandwidth Large-Signal -3dB Bandwidth Small-Signal.dB Gain Flatness Large-Signal.dB Gain Flatness Slew Rate BW SS BW LS BW.dBSS BW.dBLS SR V OUT = mvp-p V OUT = mvp-p (A VCL = +5) V OUT = Vp-p V OUT = 4Vp-p (A VCL = +5) V OUT = mvp-p V OUT = mvp-p (A VCL = +5) V OUT = Vp-p V OUT = 4Vp-p (A VCL = +5) V OUT = V step V OUT = 4V step (A VCL = +5) MHz MHz MHz MHz V/µs V OUT = V step R F V OUT = 4V step (A VCL = +5) Settling Time to 6-Bit (.5%) Output Glitch Settling to 6-Bit (.5%) Output Overload Recovery Time AC Common-Mode Rejection Ratio t S.5% V OUT =.5V to 3.5V step V OUT =.5V to 3.5V step (A VCL = +5) V OUT = V to 4V step 5pF load, C L charged from V to 4V 4 ns 5% overdrive, settling to % accuracy ns CMRR f C = khz -9 db ns ns 3

4 Single-Supply, 5MHz, 6-Bit Accurate, AC ELECTRICAL CHARACTERISTICS (continued) (V CC = +5V, V EE =, V CM = V CC /, R L = 5Ω, A VCL = +, and T A = +5 C, unless otherwise noted.) PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS AC Power-Supply Rejection Ratio Spurious-Free Dynamic Range Input Noise Voltage Density Input Noise Current Density PSRR f C = khz - db SFDR V OUT = Vp-p f C = khz -97 centered at V CC / f C = MHz -98 V OUT = 3Vp-p f C = khz -3 centered at V CC / f C = MHz -99 V OUT = 4Vp-p f C = khz - centered at V CC / f C = MHz -97 en f C = khz. nv/ Hz in f C = khz. pa/ Hz Input Capacitance C IN.3 pf dbc Maximum Capacitive Load Without Sustained Oscillations 3 pf Output Impedance Z OUT f C = MHz.5 Ω Crosstalk f C = MHz, MAX4436/MAX db Typical Operating Characteristics (V CC = +5V, V EE =, R L = 5Ω, C L =, T A = +5 C, unless otherwise noted.) 3 SMALL-SIGNAL GAIN vs. FREQUENCY (A VCL = +V/V) mvp-p MAX toc 3 SMALL-SIGNAL GAIN vs. FREQUENCY (A VCL = +5V/V) mvp-p MAX toc.3.. GAIN FLATNESS vs. FREQUENCY (A VCL = +V/V) mvp-p MAX toc k M M M G -7 k M M M G -.7 k M M M G 4

5 Single-Supply, 5MHz, 6-Bit Accurate, Typical Operating Characteristics (continued) (V CC = +5V, V EE =, R L = 5Ω, C L =, T A = +5 C, unless otherwise noted.) GAIN FLATNESS vs. FREQUENCY (A VCL = +V/V) Vp-p -.7 k M M M LARGE-SIGNAL GAIN vs. FREQUENCY (A VCL = +V/V) Vp-p MAX toc k M M M MAX toc GAIN FLATNESS vs. FREQUENCY (A VCL = +5V/V) MAX toc5 -.7 k M M M G LARGE-SIGNAL GAIN vs. FREQUENCY (A VCL = +5V/V) -7 k M M M MAX toc mV/div 5mV/div GAIN FLATNESS vs. FREQUENCY (A VCL = +5V/V) 4Vp-p -.7 k M M M SMALL-SIGNAL PULSE RESPONSE ns/div A VCL = +V/V MAX toc6 MAX toc9 SMALL-SIGNAL PULSE RESPONSE LARGE-SIGNAL PULSE RESPONSE LARGE-SIGNAL PULSE RESPONSE mv/div A VCL = +5V/V MAX toc V/div A VCL = +V/V MAX toc mv/div A VCL = +5V/V MAX toc 5mV/div V/div V/div ns/div ns/div ns/div 5

6 Single-Supply, 5MHz, 6-Bit Accurate, Typical Operating Characteristics (continued) (V CC = +5V, V EE =, R L = 5Ω, C L =, T A = +5 C, unless otherwise noted.) 5mV/div 5mV/div SMALL-SIGNAL PULSE RESPONSE ns/div A VCL = +V/V C L = 5pF MAX toc3 mv/div 5mV/div SMALL-SIGNAL PULSE RESPONSE ns/div A V = +5V/V C L = 5pF MAX toc4 V/div V/div LARGE-SIGNAL PULSE RESPONSE ns/div A VCL = +V/V C L = 3pF MAX toc5 mv/div V/div LARGE-SIGNAL PULSE RESPONSE A VCL = +5V/V C L = 3pF MAX toc6 POWER-SUPPLY REJECTION RATIO (db) POWER-SUPPLY REJECTION RATIO vs. FREQUENCY MAX toc7 COMMON-MODE REJECTION RATIO (db) COMMON-MODE REJECTION RATIO vs. FREQUENCY MAX toc8 ns/div -. FREQUENCY (MHz) -. FREQUENCY (MHz) ISOLATION RESISTANCE (Ω) ISOLATION RESISTANCE vs. CAPACITIVE LOAD 5 5 CAPACITIVE LOAD (pf) MAX toc9 IMPEDANCE (Ω).. CLOSED-LOOP IMPEDANCE vs. FREQUENCY. FREQUENCY (MHz) MAX toc k GAIN AND PHASE vs. FREQUENCY MAX toc 35 A VCL = V/V 7 5 GAIN PHASE k M M M G PHASE (degrees) 6

7 Single-Supply, 5MHz, 6-Bit Accurate, Typical Operating Characteristics (continued) (V CC = +5V, V EE =, R L = 5Ω, C L =, T A = +5 C, unless otherwise noted.) HARMONIC DISTORTION (db) V OUT = Vp-p HARMONIC DISTORTION vs. FREQUENCY ND HARMONIC 3RD HARMONIC -. FREQUENCY (MHz) MAX toc HARMONIC DISTORTION (db) f = 5kHz HARMONIC DISTORTION vs. SWING ND HARMONIC 3RD HARMONIC SWING (Vp-p) MAX toc3 HARMONIC DISTORTION (db) HARMONIC DISTORTION vs. RESISTIVE LOAD V - OUT = Vp-p f = 5kHz ND HARMONIC - 3RD HARMONIC RESISTIVE LOAD (Ω) MAX toc4 VOLTAGE NOISE (nv/ Hz) VOLTAGE NOISE vs. FREQUENCY MAX toc5 CURRENT NOISE DENSITY (pa/ Hz) CURRENT NOISE DENSITY vs. FREQUENCY MAX toc MAX4436/MAX4437 CROSSTALK vs. FREQUENCY MAX toc7 k k k M k k k M -. FREQUENCY (MHz) QUIESCENT CURRENT (ma) QUIESCENT CURRENT PER AMPLIFIER vs. TEMPERATURE MAX toc8 BIAS CURRENT (μa) BIAS CURRENT vs. TEMPERATURE MAX toc9 OFFSET VOLTAGE (mv) OFFSET VOLTAGE vs. TEMPERATURE MAX toc TEMPERATURE ( C) TEMPERATURE ( C) TEMPERATURE ( C) 7

8 Single-Supply, 5MHz, 6-Bit Accurate, Typical Operating Characteristics (continued) (V CC = +5V, V EE =, R L = 5Ω, C L =, T A = +5 C, unless otherwise noted.) VOLTAGE SWING (mv) VOLTAGE SWING vs. TEMPERATURE FROM POSITIVE FROM NEGATIVE TEMPERATURE ( C) MAX toc3 VOLTAGE SWING (mv) R L = kω VOLTAGE SWING vs. TEMPERATURE FROM POSITIVE RAIL FROM NEGATIVE RAIL TEMPERATURE ( C) MAX toc3 Pin Description PIN MAX4434/MAX4435 NAME FUNCTION SOT3 SO 6 OUT Output 4 V EE Ground 3 3 IN+ Noninverting Input 4 IN- Inverting Input 5 7 V CC Positive Power Supply, 5, 8 N.C. No Connection. Not internally connected. PIN MAX4436/MAX4437 SO/µMAX NAME FUNCTION OUTA Amplifier A Output INA- Amplifier A Inverting Input 3 INA+ Amplifier A Noninverting Input 4 V EE Ground 5 INB+ Amplifier A Noninverting Input 6 INB- Amplifier A Inverting Input 7 OUTB Amplifier A Output 8 V CC Positive Power Supply 8

9 Single-Supply, 5MHz, 6-Bit Accurate, Detailed Description The are wide-bandwidth, ultra-lowdistortion, voltage-feedback amplifiers. The MAX4434/ MAX4436 are internally compensated for unity gain. The are internally compensated for gains of +5V/V or greater. These amplifiers have ultra-fast 35ns (MAX4434/ MAX4436) 6-bit settling times, -97dB SFDR at MHz, and 4Vp-p output swing with minimum 5dB openloop gain. High-Speed ADC Input Driver Application The op amps are ideal for driving high-speed 4- to 6-bit ADCs. In most cases, these ADCs operate with a charge balance scheme, with capacitive loads internally switched on and off from the input. The driver used must withstand these changing capacitive loads while holding the signal amplitude stability consistent with the ADC s resolution and, at the same time, have a frequency response compatible with the sampling speed of the ADC (Figure ). Inverting and Noninverting Configurations The circuits typically used for the inverting and noninverting configurations of the are shown in Figures a and b. The minimum unconditionally stable gain values are for the and 5 for the. Use care in selecting the value for the resistor marked R S in both circuits. From dynamic stability considerations (based on the part s frequency response and the input capacitance of the ), the maximum recommended value for R S is 5Ω. In general, lower R S values will yield a higher bandwidth and better dynamic stability, at the cost of higher power consumption, higher power dissipation in the IC, and reduced output drive availability. For a minimum R S value, take into consideration that the current indicated as I F is supplied by the output stage and must be discounted from the maximum output current to calculate the maximum current available to the load. I F can be found using the following equation: I F = V IN(MAX) / R S If DC thermal stability is an important design concern, the Thevenin resistance seen by both inputs at DC must be balanced. This includes the resistance of the signal source and termination resistors if the amplifier signal input is fed from a transmission line. The capacitance associated with the feedback resistors must also be considered as a possible limitation to the available bandwidth or to the dynamic stability. Only resistors with small parallel capacitance specifications should be considered. Applications Information V CC V EE Figure. Typical Application Circuit HIGH-SPEED 4/6-BIT ADC Layout and Power-Supply Bypassing The have wide bandwidth and consequently require careful board layout. To realize the full AC performance of these high-speed amplifiers, pay careful attention to power-supply bypassing and board layout. The PC board should have a large lowimpedance ground plane that is as free of voids as possible. Do not use commercial breadboards. Keep signal lines as short and straight as possible. Observe high-frequency bypassing techniques to maintain the amplifier s accuracy and stability. In general, use sur- R F V IN R S V OUT V IN I F R S R F I F A = + RF R S = V OUT V IN R B V OUT A = - R F R S = V OUT V IN Figure a. Noninverting Configuration Figure b. Inverting Configuration 9

10 Single-Supply, 5MHz, 6-Bit Accurate, V IN MAX4434- MAX4437 V OUT face-mount components since they have shorter bodies and lower parasitic reactance. This will result in improved performance over through-hole components. The bypass capacitors should include nf and/or.µf surface-mount ceramic capacitors between V CC and the ground plane, located as close to the package as possible. Place a µf tantalum capacitor at the power supply s point of entry to the PC board to ensure the integrity of the incoming supplies. Input termination resistors and output back-termination resistors, if used, should be surface-mount types and should be placed as close to the IC pins as possible. Driving Capacitive Loads The can drive capacitive loads. However, excessive capacitive loads may cause ringing or instability at the output as phase margin is reduced. Adding a small isolation resistor in series with the output capacitive load helps reduce the ringing but slightly increases gain error (see Typical Operating Characteristics and Figure 3). R ISO Figure 3. Capacitive-Load Driving Circuit C L R L PART AMPS MIN GAIN STABLE (V/V) Selector Guide BW (MHz) SETTLING TIME TO.5% (ns) MAX MAX MAX MAX TOP VIEW Pin Configurations (continued) N.C. INA- IN- IN+ V EE OUTA INB- INA+ V EE SO μmax/so MAX4434 MAX4435 N.C. V CC OUT N.C. V CC OUTB INB+ MAX4436 MAX4437 Chip Information MAX4434/MAX4435 TRANSISTOR COUNT: 4 MAX4436/MAX4437 TRANSISTOR COUNT: 38

11 Single-Supply, 5MHz, 6-Bit Accurate, Package Information (For the latest package outline information and land patterns, go to PACKAGE TYPE PACKAGE CODE DOCUMENT NO. 5 SOT3 U SO S µmax U8- -4 SOT-3 5L.EPS

12 Single-Supply, 5MHz, 6-Bit Accurate, Package Information (continued) (For the latest package outline information and land patterns, go to α 8LUMAXD.EPS α

13 Single-Supply, 5MHz, 6-Bit Accurate, Package Information (continued) (For the latest package outline information and land patterns, go to N TOP VIEW E H INCHES MILLIMETERS DIM MIN MAX MIN MAX A A B C e.5 BSC.7 BSC E H L VARIATIONS: DIM D D D INCHES MILLIMETERS MIN MAX MIN MAX N MS AA AB AC SOICN.EPS D A C e B A FRONT VIEW L SIDE VIEW -8 PROPRIETARY INFORMATION TITLE: PACKAGE OUTLINE,.5" SOIC APPROVAL DOCUMENT CONTROL NO. REV. -4 B 3

14 Single-Supply, 5MHz, 6-Bit Accurate, REVISION NUMBER REVISION DATE DESCRIPTION Revision History PAGES CHANGED / Initial release /8 Added automotive part number Maxim cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim product. No circuit patent licenses are implied. Maxim reserves the right to change the circuitry and specifications without notice at any time. 4 Maxim Integrated Products, San Gabriel Drive, Sunnyvale, CA Maxim Integrated Products is a registered trademark of Maxim Integrated Products, Inc.

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

Ultra-Small, Low-Cost, 210MHz, Single-Supply Op Amps with Rail-to-Rail Outputs 9-5; Rev 4; /9 Ultra-Small, Low-Cost, MHz, Single-Supply General Description The MAX445 single and MAX445 dual op amps are unity-gain-stable devices that combine high-speed performance with rail-to-rail

More information

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable

6500V/µs, Wideband, High-Output-Current, Single- Ended-to-Differential Line Drivers with Enable 99 Rev ; /99 EVALUATION KIT AVAILABLE 65V/µs, Wideband, High-Output-Current, Single- General Description The // single-ended-todifferential line drivers are designed for high-speed communications. Using

More information

+3V/+5V, 250MHz, SOT23 ADC Buffer Amplifiers with High-Speed Disable

+3V/+5V, 250MHz, SOT23 ADC Buffer Amplifiers with High-Speed Disable 9-5; Rev ; / +V/+5V, 5MHz, SOT ADC Buffer Amplifiers General Description The MAX85/MAX86 single and MAX87/MAX88/ MAX87/MAX88 dual ADC buffer amplifiers feature high-speed performance and single +V supply

More information

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection OUT

Low-Cost, 230MHz, Single/Quad Op Amps with Rail-to-Rail Outputs and ±15kV ESD Protection OUT 9-4; Rev ; 9/5 Low-Cost, 3MHz, Single/Quad Op Amps with General Description The op amps are unity-gain stable devices that combine high-speed performance, rail-to-rail outputs, and ±5kV ESD protection.

More information

MAX4267EUA -40 C to +85 C 8 µmax. MAX4268EEE -40 C to +85 C 16 QSOP. MAX4270EEE -40 C to +85 C 16 QSOP

MAX4267EUA -40 C to +85 C 8 µmax. MAX4268EEE -40 C to +85 C 16 QSOP. MAX4270EEE -40 C to +85 C 16 QSOP 9; Rev ; 8/ Ultra-Low-Distortion, +V, MHz Op Amps with Disable General Description The MAX6 MAX7 ultra-low distortion, voltage-feedback op amps are capable of driving a Ω load while maintaining ultra-low

More information

Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps

Single/Dual/Quad, +1.8V/750nA, SC70, Rail-to-Rail Op Amps 9-; Rev 4; 7/ Single/Dual/Quad, +.8V/75nA, SC7, General Description The MAX4464/MAX447/MAX447/MAX447/MAX4474 family of micropower op amps operate from a single +.8V to +5.5V supply and draw only 75nA of

More information

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs

Low-Cost, Low-Power, Ultra-Small, 3V/5V, 500MHz Single-Supply Op Amps with Rail-to-Rail Outputs 9-83; Rev ; / Low-Cost, Low-Power, Ultra-Small, 3V/5V, 5MHz General Description The MAX442 single and MAX443 dual operational amplifiers are unity-gain-stable devices that combine high-speed performance,

More information

TOP VIEW. Maxim Integrated Products 1

TOP VIEW. Maxim Integrated Products 1 9-987; Rev ; 9/3 5MHz, Triple, -Channel Video General Description The is a triple, wideband, -channel, noninverting gain-of-two video amplifier with input multiplexing, capable of driving up to two back-terminated

More information

Low-Cost, +3V/+5V, 620µA, 200MHz, Single-Supply Op Amps with Rail-to-Rail Outputs

Low-Cost, +3V/+5V, 620µA, 200MHz, Single-Supply Op Amps with Rail-to-Rail Outputs 9-824; Rev ; /5 Low-Cost, +3V/+5V, 62µA, 2MHz, General Description The MAX4452/MAX4352 single, MAX4453/MAX4353 dual, and / quad amplifiers combine high-speed performance with ultra-low power consumption.

More information

350MHz, Ultra-Low-Noise Op Amps

350MHz, Ultra-Low-Noise Op Amps 9-442; Rev ; /95 EVALUATION KIT AVAILABLE 35MHz, Ultra-Low-Noise Op Amps General Description The / op amps combine high-speed performance with ultra-low-noise performance. The is compensated for closed-loop

More information

PART. Maxim Integrated Products 1

PART. Maxim Integrated Products 1 - + 9-; Rev ; / Low-Cost, High-Slew-Rate, Rail-to-Rail I/O Op Amps in SC7 General Description The MAX9/MAX9/MAX9 single/dual/quad, low-cost CMOS op amps feature Rail-to-Rail input and output capability

More information

1-Input/4-Output Video Distribution Amplifiers MAX4137/MAX4138

1-Input/4-Output Video Distribution Amplifiers MAX4137/MAX4138 -00; Rev 0; / EVALUATION KIT AVAILABLE General Description The / are -input/-output voltagefeedback amplifiers that combine high speed with fast switching for video distribution applications. The is internally

More information

400MHz, Ultra-Low-Distortion Op Amps

400MHz, Ultra-Low-Distortion Op Amps 9; Rev ; /97 EVALUATION KIT AVAILABLE MHz, Ultra-Low-Distortion Op Amps General Description The MAX8/MAX9/MAX8/MAX9 op amps combine ultra-high-speed performance with ultra-lowdistortion operation. The

More information

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART

V OUT. +Denotes lead(pb)-free/rohs-compliant package. PART 9-346; Rev 2; / 2kHz, 4µA, Rail-to-Rail General Description The single MAX99/MAX99 and dual MAX992/ MAX993 operational amplifiers (op amps) feature a maximized ratio of gain bandwidth (GBW) to supply current

More information

I/O Op Amps with Shutdown

I/O Op Amps with Shutdown MHz, μa, Rail-to-Rail General Description The single MAX994/MAX995 and dual MAX996/ MAX997 operational amplifiers feature maximized ratio of gain bandwidth to supply current and are ideal for battery-powered

More information

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Rail-to-Rail, 200kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP 19-579; Rev ; 12/1 EVALUATION KIT AVAILABLE Rail-to-Rail, 2kHz Op Amp General Description The op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

Precision, High-Bandwidth Op Amp

Precision, High-Bandwidth Op Amp EVALUATION KIT AVAILABLE MAX9622 General Description The MAX9622 op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device autocalibrates its input offset voltage

More information

300MHz, Low-Power, High-Output-Current, Differential Line Driver

300MHz, Low-Power, High-Output-Current, Differential Line Driver 9-; Rev ; /9 EVALUATION KIT AVAILABLE 3MHz, Low-Power, General Description The differential line driver offers high-speed performance while consuming only mw of power. Its amplifier has fully symmetrical

More information

V CC OUT MAX9945 IN+ V EE

V CC OUT MAX9945 IN+ V EE 19-4398; Rev ; 2/9 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs

More information

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp

EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp 19-227; Rev ; 9/1 EVALUATION KIT AVAILABLE Precision, High-Bandwidth Op Amp General Description The op amp features rail-to-rail output and MHz GBW at just 1mA supply current. At power-up, this device

More information

Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable

Ultra-Small, Low-Cost, 85MHz Op Amps with Rail-to-Rail Outputs and Disable 9-3; Rev 4; /9 Ultra-Small, Low-Cost, 85MHz Op Amps with General Description The MAX4389/MAX439/MAX439 MAX4396 family of op amps are unity-gain stable devices that combine high-speed performance, rail-to-rail

More information

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197

Micropower, Single-Supply, Rail-to-Rail, Precision Instrumentation Amplifiers MAX4194 MAX4197 General Description The is a variable-gain precision instrumentation amplifier that combines Rail-to-Rail single-supply operation, outstanding precision specifications, and a high gain bandwidth. This

More information

Low-Cost, High-Speed, Single-Supply Op Amps with Rail-to-Rail Outputs

Low-Cost, High-Speed, Single-Supply Op Amps with Rail-to-Rail Outputs 9-; Rev ; / Low-Cost, High-Speed, Single-Supply General Description The MAX single, MAX dual, MAX triple, and MAX quad op amps are unity-gain-stable devices that combine high-speed performance with Railto-Rail

More information

nanopower Op Amp in a Tiny 6-Bump WLP

nanopower Op Amp in a Tiny 6-Bump WLP EVALUATION KIT AVAILABLE MAX4464 General Description The MAX4464 is an ultra-small (6-bump WLP) op amp that draws only 75nA of supply current. It operates from a single +.8V to +5.5V supply and features

More information

PART MAX4144ESD MAX4146ESD. Typical Application Circuit. R t IN- IN+ TWISTED-PAIR-TO-COAX CABLE CONVERTER

PART MAX4144ESD MAX4146ESD. Typical Application Circuit. R t IN- IN+ TWISTED-PAIR-TO-COAX CABLE CONVERTER 9-47; Rev ; 9/9 EVALUATION KIT AVAILABLE General Description The / differential line receivers offer unparalleled high-speed performance. Utilizing a threeop-amp instrumentation amplifier architecture,

More information

1.0V Micropower, SOT23, Operational Amplifier

1.0V Micropower, SOT23, Operational Amplifier 19-3; Rev ; 1/ 1.V Micropower, SOT3, Operational Amplifier General Description The micropower, operational amplifier is optimized for ultra-low supply voltage operation. The amplifier consumes only 9µA

More information

V CC OUT MAX9945 IN+ V EE

V CC OUT MAX9945 IN+ V EE 19-4398; Rev 1; 12/ 38V, Low-Noise, MOS-Input, General Description The operational amplifier features an excellent combination of low operating power and low input voltage noise. In addition, MOS inputs

More information

Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220

Miniature, 300MHz, Single-Supply, Rail-to-Rail Op Amps with Enable MAX4212/MAX4213/MAX4216/MAX4218/MAX4220 9-7; Rev ; / EVALUATION KIT MANUAL AVAILABLE Miniature, MHz, Single-Supply, General Description The MAX/MAX single, MAX dual, MAX triple, and MAX quad op amps are unity-gain-stable devices that combine

More information

SC70/SOT23-8, 50mA IOUT, Rail-to-Rail I/O Op Amps with Shutdown/Mute

SC70/SOT23-8, 50mA IOUT, Rail-to-Rail I/O Op Amps with Shutdown/Mute 9-36; Rev ; 9/ SC7/SOT3-8, 5mA I, Rail-to-Rail I/O General Description The op amps deliver 4mW per channel into 3Ω from ultra-small SC7/SOT3 packages making them ideal for mono/stereo headphone drivers

More information

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages

Nanopower Op Amp in Ultra-Tiny WLP and SOT23 Packages EVALUATION KIT AVAILABLE MAX47 General Description The MAX47 is a single operational amplifier that provides a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for battery-powered

More information

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 9-266; Rev 2; /07 General Description The MAX987/MAX988/MAX99/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail inputs and outputs. Their operating

More information

60V High-Speed Precision Current-Sense Amplifier

60V High-Speed Precision Current-Sense Amplifier EVALUATION KIT AVAILABLE MAX9643 General Description The MAX9643 is a high-speed 6V precision unidirectional current-sense amplifier ideal for a wide variety of power-supply control applications. Its high

More information

Precision, Low-Power and Low-Noise Op Amp with RRIO

Precision, Low-Power and Low-Noise Op Amp with RRIO MAX41 General Description The MAX41 is a low-power, zero-drift operational amplifier available in a space-saving, 6-bump, wafer-level package (WLP). Designed for use in portable consumer, medical, and

More information

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References

Low-Power, Low-Drift, +2.5V/+5V/+10V Precision Voltage References 19-38; Rev 3; 6/7 Low-Power, Low-Drift, +2.5V/+5V/+1V General Description The precision 2.5V, 5V, and 1V references offer excellent accuracy and very low power consumption. Extremely low temperature drift

More information

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs

MAX9650/MAX9651 High-Current VCOM Drive Op Amps for TFT LCDs General Description The MAX965/MAX9651 are single- and dual-channel VCOM amplifiers with rail-to-rail inputs and outputs. The MAX965/MAX9651 can drive up to 13mA of peak current per channel and operate

More information

SGM8631/2/3 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8631/2/3 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers /2/3 6MHz, Rail-to-Rail I/O PRODUCT DESCRIPTION The (single), SGM8632 (dual) and SGM8633 (single with shutdown) are low noise, low voltage, and low power operational amplifiers that can be designed into

More information

SGM8631/2/3/4 470μA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8631/2/3/4 470μA, 6MHz, Rail-to-Rail I/O CMOS Operational Amplifiers PRODUCT DESCRIPTION The SGM863 (single), SGM863 (dual), SGM8633 (single with shutdown) and SGM8634 (quad) are low noise, low voltage, and low power operational amplifiers, that can be designed into a wide

More information

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM8621/2/3/4 3MHz, Rail-to-Rail I/O CMOS Operational Amplifiers SGM8621/2/3/4 3MHz, Rail-to-Rail I/O PRODUCT DESCRIPTION The SGM8621 (single), SGM8622 (dual), SGM8623 (single with shutdown) and SGM8624 (quad) are low noise, low voltage, and low power operational amplifiers,

More information

PART. Note: All devices are specified over the -40 C to +125 C operating PART. Maxim Integrated Products 1

PART. Note: All devices are specified over the -40 C to +125 C operating PART. Maxim Integrated Products 1 9-2424; Rev 2; 5/6 Ultra-Low Offset/Drift, Low-Noise, General Description The are low-noise, low-drift, ultrahigh precision amplifiers that offer near-zero DC offset and drift through the use of autocorrelating

More information

76V, High-Side, Current-Sense Amplifiers with Voltage Output

76V, High-Side, Current-Sense Amplifiers with Voltage Output 9-2562; Rev ; /2 76V, High-Side, Current-Sense Amplifiers with General Description The are high-side, current-sense amplifiers with an input voltage range that extends from 4.5V to 76V making them ideal

More information

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1 19-13; Rev 2; 9/ Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output 19-1548; Rev 3; 12/5 Low-Cost, UCSP/SOT23, Micropower, High-Side General Description The MAX4372 low-cost, precision, high-side currentsense amplifier is available in a tiny, space-saving SOT23-5-pin package.

More information

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1

-40 C to +85 C. AABN -40 C to +85 C 8 SO -40 C to +85 C 6 SOT23-6 AABP. Maxim Integrated Products 1 19-13; Rev 3; 12/ Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp

MIC915. Features. General Description. Applications. Ordering Information. Pin Configuration. Pin Description. Dual 135MHz Low-Power Op Amp MIC915 Dual 135MHz Low-Power Op Amp General Description The MIC915 is a high-speed, unity-gain stable operational amplifier. It provides a gain-bandwidth product of 135MHz with a very low, 2.4mA supply

More information

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias

MAX9812/MAX9813 Tiny, Low-Cost, Single/Dual-Input, Fixed-Gain Microphone Amplifiers with Integrated Bias General Description The MAX982/MAX983 are single/dual-input, 20dB fixed-gain microphone amplifiers. They offer tiny packaging and a low-noise, integrated microphone bias, making them ideal for portable

More information

Low-Power Single/Dual, Rail-to-Rail Op Amps

Low-Power Single/Dual, Rail-to-Rail Op Amps 19-532; Rev ; 8/1 Low-Power Single/Dual, Rail-to-Rail Op Amps General Description The are low-power precision op amps that feature precision MOS inputs. These devices are ideal for a large number of signal

More information

Low-Power, Precision, 4-Bump WLP, Current-Sense Amplifier

Low-Power, Precision, 4-Bump WLP, Current-Sense Amplifier EVALUATION KIT AVAILABLE General Description The is a zero-drift, high-side current-sense amplifier family that offers precision, low supply current and is available in a tiny 4-bump ultra-thin WLP of

More information

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs

+2.7V to +5.5V, Low-Power, Triple, Parallel 8-Bit DAC with Rail-to-Rail Voltage Outputs 19-1560; Rev 1; 7/05 +2.7V to +5.5V, Low-Power, Triple, Parallel General Description The parallel-input, voltage-output, triple 8-bit digital-to-analog converter (DAC) operates from a single +2.7V to +5.5V

More information

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown

Low-Cost, Micropower, SC70/SOT23-8, Microphone Preamplifiers with Complete Shutdown 9-95; Rev ; 4/ General Description The are micropower op amps optimized for use as microphone preamplifiers. They provide the ideal combination of an optimized gain bandwidth product vs. supply current,

More information

EVALUATION KIT AVAILABLE 36V, Precision, Low-Noise, Wide-Band Amplifier. S 0.94nV/ Hz Ultra-Low Input Voltage Noise

EVALUATION KIT AVAILABLE 36V, Precision, Low-Noise, Wide-Band Amplifier. S 0.94nV/ Hz Ultra-Low Input Voltage Noise 19-52; Rev 3; 1/11 EVALUATION KIT AVAILABLE 36V, Precision, Low-Noise, General Description The is a low-noise, precision, wide-band operational amplifier that can operate in a very wide +4.5V to +36V supply

More information

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier

SGM MHz, 48μA, Rail-to-Rail I/O CMOS Operational Amplifier PRODUCT DESCRIPTION The is a low cost, single rail-to-rail input and output voltage feedback amplifier. It has a wide input common mode voltage range and output voltage swing, and takes the minimum operating

More information

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators

Single/Dual/Quad, Micropower, Ultra-Low-Voltage, Rail-to-Rail I/O Comparators 9-; Rev ; / Single/Dual/Quad, Micropower, General Description The MAX9 MAX9 single/dual/quad micropower comparators feature rail-to-rail inputs and outputs, and fully specified single-supply operation

More information

Receiver for Optical Distance Measurement

Receiver for Optical Distance Measurement 19-47; Rev ; 7/9 EVALUATION KIT AVAILABLE Receiver for Optical Distance Measurement General Description The is a high-gain linear preamplifier for distance measurement applications using a laser beam.

More information

SGM321/SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers

SGM321/SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers /SGM358/SGM324 1MHz, 60μA, Rail-to-Rail I/O CMOS Operational Amplifiers GENERAL DESCRIPTION The (single), SGM358 (dual) and SGM324 (quad) are low cost, rail-to-rail input and output voltage feedback amplifiers.

More information

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps MAX4245/MAX4246/ MAX4247. Features. General Description

Ultra-Small, Rail-to-Rail I/O with Disable, Single-/Dual-Supply, Low-Power Op Amps MAX4245/MAX4246/ MAX4247. Features. General Description General Description The MAX4245/MAX4246/ family of low-cost op amps offer rail-to-rail inputs and outputs, draw only 32µA of quiescent current, and operate from a single +2.5V to +5.5V supply. For additional

More information

Low-Power, High-Efficiency, Single/Dual, Rail-to-Rail I/O Op Amps

Low-Power, High-Efficiency, Single/Dual, Rail-to-Rail I/O Op Amps 19-5338; Rev ; 8/1 Low-Power, High-Efficiency, General Description The are low-power precision op amps with rail-to-rail inputs and rail-to-rail outputs. They feature precision MOS inputs powered from

More information

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION

Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8274 FUNCTIONAL BLOCK DIAGRAM +V S FEATURES APPLICATIONS GENERAL DESCRIPTION Very Low Distortion, Dual-Channel, High Precision Difference Amplifier AD8273 FEATURES ±4 V HBM ESD Very low distortion.25% THD + N (2 khz).15% THD + N (1 khz) Drives 6 Ω loads Two gain settings Gain of

More information

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier

Dual-Channel, High-Precision, High-Voltage, Current-Sense Amplifier EVALUATION KIT AVAILABLE MAX44285 General Description The MAX44285 dual-channel high-side current-sense amplifier has precision accuracy specifications of V OS less than 12μV (max) and gain error less

More information

Maxim Integrated Products 1

Maxim Integrated Products 1 19-248; Rev ; 4/1 Low-Cost, SC7, Voltage-Output, General Description The MAX473 low-cost, high-side current-sense amplifier features a voltage output that eliminates the need for gain-setting resistors

More information

MAX4249 MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps

MAX4249 MAX4257 UCSP, Single-Supply, Low-Noise, Low-Distortion, Rail-to-Rail Op Amps EVALUATION KIT AVAILABLE MAX4249 MAX4257 General Description The MAX4249 MAX4257 low-noise, low-distortion operational amplifiers offer rail-to-rail outputs and singlesupply operation down to 2.4V. They

More information

622Mbps, Ultra-Low-Power, 3.3V Transimpedance Preamplifier for SDH/SONET

622Mbps, Ultra-Low-Power, 3.3V Transimpedance Preamplifier for SDH/SONET 19-1601; Rev 2; 11/05 EVALUATION KIT AVAILABLE 622Mbps, Ultra-Low-Power, 3.3V General Description The low-power transimpedance preamplifier for 622Mbps SDH/SONET applications consumes only 70mW at = 3.3V.

More information

Very Low Distortion, Precision Difference Amplifier AD8274

Very Low Distortion, Precision Difference Amplifier AD8274 Very Low Distortion, Precision Difference Amplifier AD8274 FEATURES Very low distortion.2% THD + N (2 khz).% THD + N ( khz) Drives Ω loads Excellent gain accuracy.3% maximum gain error 2 ppm/ C maximum

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains

More information

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005

ISL Features. Multi-Channel Buffers Plus V COM Driver. Ordering Information. Applications. Pinout FN Data Sheet December 7, 2005 Data Sheet FN6118.0 Multi-Channel Buffers Plus V COM Driver The integrates eighteen gamma buffers and a single V COM buffer for use in large panel LCD displays of 10 and greater. Half of the gamma channels

More information

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs

Low-Cost, Micropower, High-Side Current-Sense Amplifier + Comparator + Reference ICs 9-63; Rev ; /3 Low-Cost, Micropower, High-Side Current-Sense General Description The low-cost, micropower, high-side current-sense supervisors contain a highside current-sense amplifier, bandgap reference,

More information

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H

Low-Cost, SOT23, Voltage-Output, High-Side Current-Sense Amplifier MAX4173T/F/H 19-13; Rev 5; /11 Low-Cost, SOT23, Voltage-Output, General Description The MAX173 low-cost, precision, high-side currentsense amplifier is available in a tiny SOT23-6 package. It features a voltage output

More information

Low IBIAS, +1.4V/800nA, Rail-to-Rail Op Amps with +1.2V Buffered Reference

Low IBIAS, +1.4V/800nA, Rail-to-Rail Op Amps with +1.2V Buffered Reference 19-3142; Rev 5; 11/9 Low IBIAS, +1.4V/8nA, Rail-to-Rail Op Amps General Description The single MAX436/MAX437 and dual MAX438/ MAX439 operational amplifiers operate from a single +1.4V to +3.6V (without

More information

EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier

EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, Precision Current-Sense Amplifier 19-521; Rev 2; 8/1 EVALUATION KIT AVAILABLE 1µA, 4-Bump UCSP/SOT23, General Description The high-side current-sense amplifier offers precision accuracy specifications of V OS less than 25µV (max) and gain

More information

OBSOLETE. Parameter AD9621 AD9622 AD9623 AD9624 Units

OBSOLETE. Parameter AD9621 AD9622 AD9623 AD9624 Units a FEATURES MHz Small Signal Bandwidth MHz Large Signal BW ( V p-p) High Slew Rate: V/ s Low Distortion: db @ MHz Fast Settling: ns to.%. nv/ Hz Spectral Noise Density V Supply Operation Wideband Voltage

More information

Rail-to-Rail, High Output Current Amplifier AD8397

Rail-to-Rail, High Output Current Amplifier AD8397 Rail-to-Rail, High Output Current Amplifier FEATURES Dual operational amplifier Voltage feedback Wide supply range from 3 V to 24 V Rail-to-rail output Output swing to within.5 V of supply rails High linear

More information

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599

Dual, Ultralow Distortion, Ultralow Noise Op Amp AD8599 Dual, Ultralow Distortion, Ultralow Noise Op Amp FEATURES Low noise: 1 nv/ Hz at 1 khz Low distortion: 5 db THD @ khz

More information

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output

Low-Cost, UCSP/SOT23, Micropower, High-Side Current-Sense Amplifier with Voltage Output AVAILABLE General Description The MAX4372 low-cost, precision, high-side currentsense amplifier is available in a tiny, space-saving SOT23-5-pin package. Offered in three gain versions (T = 2V/V, F = 5V/V,

More information

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048

250 MHz, General Purpose Voltage Feedback Op Amps AD8047/AD8048 5 MHz, General Purpose Voltage Feedback Op Amps AD8/AD88 FEATURES Wide Bandwidth AD8, G = + AD88, G = + Small Signal 5 MHz 6 MHz Large Signal ( V p-p) MHz 6 MHz 5.8 ma Typical Supply Current Low Distortion,

More information

Dual ECL and Dual/Quad PECL, 500ps, Ultra-High-Speed Comparators

Dual ECL and Dual/Quad PECL, 500ps, Ultra-High-Speed Comparators 19-2409; Rev 1; 9/02 General Description The MAX9600/MAX9601/MAX9602 ultra-high-speed comparators feature extremely low propagation delay (ps). These dual and quad comparators minimize propagation delay

More information

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23

Single/Dual LVDS Line Receivers with Ultra-Low Pulse Skew in SOT23 19-1803; Rev 3; 3/09 Single/Dual LVDS Line Receivers with General Description The single/dual low-voltage differential signaling (LVDS) receivers are designed for highspeed applications requiring minimum

More information

PART MPEG DECODER 10-BIT DAC 10-BIT DAC 10-BIT DAC. Maxim Integrated Products 1

PART MPEG DECODER 10-BIT DAC 10-BIT DAC 10-BIT DAC. Maxim Integrated Products 1 19-3779; Rev 4; 1/7 EVALUATION KIT AVAILABLE Triple-Channel HDTV Filters General Description The are fully integrated solutions for filtering and buffering HDTV signals. The MAX95 operates from a single

More information

Low Cost, General Purpose High Speed JFET Amplifier AD825

Low Cost, General Purpose High Speed JFET Amplifier AD825 a FEATURES High Speed 41 MHz, 3 db Bandwidth 125 V/ s Slew Rate 8 ns Settling Time Input Bias Current of 2 pa and Noise Current of 1 fa/ Hz Input Voltage Noise of 12 nv/ Hz Fully Specified Power Supplies:

More information

SOT23, Low-Noise, Low-Distortion, Wide-Band, Rail-to-Rail Op Amps

SOT23, Low-Noise, Low-Distortion, Wide-Band, Rail-to-Rail Op Amps 9-237; Rev 3; 9/ SOT23, Low-Noise, Low-Distortion, Wide-Band, General Description The wideband, low-noise, low-distortion operational amplifiers offer rail-to-rail outputs and single-supply operation down

More information

V CC 1, 4. 7dB. 7dB 6 GND

V CC 1, 4. 7dB. 7dB 6 GND 9-998; Rev ; /7 EVALUATION KIT AVAILABLE.GHz to GHz, 75dB Logarithmic General Description The MAX5 complete multistage logarithmic amplifier is designed to accurately convert radio-frequency (RF) signal

More information

Micropower, Rail-to-Rail, 300kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP

Micropower, Rail-to-Rail, 300kHz Op Amp with Shutdown in a Tiny, 6-Bump WLP EVALUATION KIT AVAILABLE MAX46 General Description The MAX46 op amp features a maximized ratio of gain bandwidth (GBW) to supply current and is ideal for batterypowered applications such as handsets, tablets,

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs This product was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. The data sheet remains

More information

Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps

Micropower, SOT23, Rail-to-Rail, Fixed-Gain, GainAmp/Open-Loop Op Amps 96; Rev ; /99 Micropower, SOT, Rail-to-Rail, General Description The MAX7 MAX78 GainAmp op amp family combines low-cost Rail-to-Rail op amps with precision internal gain-setting resistors. Factory-trimmed

More information

0.8Ω, Low-Voltage, Single-Supply Dual SPST Analog Switches

0.8Ω, Low-Voltage, Single-Supply Dual SPST Analog Switches 19-116; Rev ; 1/6.Ω, Low-Voltage, Single-Supply Dual SPST General Description The are low on-resistance, low-voltage, dual single-pole/single-throw (SPST) analog switches that operate from a single +1.6V

More information

Not Recommended for New Designs

Not Recommended for New Designs Not Recommended for New Designs The MAX99 was manufactured for Maxim by an outside wafer foundry using a process that is no longer available. It is not recommended for new designs. A Maxim replacement

More information

SGM8521/2/4 150kHz, 5.5μA, Rail-to-Rail I/O, CMOS Operational Amplifiers

SGM8521/2/4 150kHz, 5.5μA, Rail-to-Rail I/O, CMOS Operational Amplifiers //4 0kHz,.μA, Rail-to-Rail I/O, GENERAL DESCRIPTION The (single), SGM8 (dual) and SGM84 (quad) are low cost, rail-to-rail input and output voltage feedback amplifiers. They have a wide input common mode

More information

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown

High-Output-Drive, Precision, Low-Power, Single- Supply, Rail-to-Rail I/O Op Amps with Shutdown 9-4; Rev 3; /7 High-Output-Drive, Precision, Low-Power, Single- General Description The MAX465 MAX469 family of operational amplifiers combines excellent DC accuracy with high output current drive, single-supply

More information

36V, Precision, Low-Power, 90µA, Dual Op Amp

36V, Precision, Low-Power, 90µA, Dual Op Amp EVALUATION KIT AVAILABLE MAX44248 36V, Precision, Low-Power, 9µA, Dual Op Amp General Description The MAX44248 is an ultra-precision, low-noise, zero-drift dual operational amplifier featuring very low-power

More information

Improved Second Source to the EL2020 ADEL2020

Improved Second Source to the EL2020 ADEL2020 Improved Second Source to the EL ADEL FEATURES Ideal for Video Applications.% Differential Gain. Differential Phase. db Bandwidth to 5 MHz (G = +) High Speed 9 MHz Bandwidth ( db) 5 V/ s Slew Rate ns Settling

More information

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications.

High-Precision, Low-Voltage, Micropower Op Amp MAX480. General Description. Features. Ordering Information. Applications. 9-77; Rev a; /98 High-Precision, Low-oltage, General Description The is a precision micropower operational amplifier with flexible power-supply capability. Its guaranteed µ maximum offset voltage (5µ typ)

More information

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers

KM4110/KM mA, Low Cost, +2.7V & +5V, 75MHz Rail-to-Rail Amplifiers + + www.fairchildsemi.com KM411/KM41.5mA, Low Cost, +.7V & +5V, 75MHz Rail-to-Rail Amplifiers Features 55µA supply current 75MHz bandwidth Power down to I s = 33µA (KM41) Fully specified at +.7V and +5V

More information

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005

EL5129, EL5329. Multi-Channel Buffers. Features. Applications. Ordering Information FN Data Sheet May 13, 2005 Data Sheet May 3, 25 FN743. Multi-Channel Buffers The EL529 and EL5329 integrate multiple gamma buffers and a single V COM buffer for use in large panel LCD displays of and greater. The EL529 integrates

More information

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface

12-Bit, Low-Power, Dual, Voltage-Output DAC with Serial Interface 19-2124; Rev 2; 7/3 12-Bit, Low-Power, Dual, Voltage-Output General Description The dual,12-bit, low-power, buffered voltageoutput, digital-to-analog converter (DAC) is packaged in a space-saving 8-pin

More information

Dual, Current Feedback Low Power Op Amp AD812

Dual, Current Feedback Low Power Op Amp AD812 a FEATURES Two Video Amplifiers in One -Lead SOIC Package Optimized for Driving Cables in Video Systems Excellent Video Specifications (R L = ): Gain Flatness. db to MHz.% Differential Gain Error. Differential

More information

Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown

Single/Dual/Quad, 270MHz, 1mA, SOT23, Current-Feedback Amplifiers with Shutdown 9-; Rev ; 8/ Single/Dual/Quad, 7MHz, ma, SOT, General Description The MAX8 family of current-feedback amplifiers combines high-speed performance, low distortion, and excellent video specifications with

More information

N.C. OUT. Maxim Integrated Products 1

N.C. OUT. Maxim Integrated Products 1 19-2892; Rev 2; 11/6 Ultra-Low-Power Precision Series General Description The MAX629 micropower, low-dropout bandgap voltage reference combines ultra-low supply current and low drift in a miniature 5-pin

More information

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators

High-Speed, Micropower, Low-Voltage, SOT23, Rail-to-Rail I/O Comparators 9-266; Rev 2; /07 High-Speed, Micropower, Low-Voltage, General Description The MAX987/MAX988/MAX99/MAX992/MAX995/ MAX996 single/dual/quad micropower comparators feature low-voltage operation and rail-to-rail

More information

Single/Triple, Low-Glitch, 250MHz, Current- Feedback Amplifiers with High-Speed Disable

Single/Triple, Low-Glitch, 250MHz, Current- Feedback Amplifiers with High-Speed Disable 9-9; Rev ; / EVALUATION KIT AVAILABLE Single/Triple, Low-Glitch,, Current- General Description The MAX/MAX9/MAX9 are low-power, current-feedback video amplifiers featuring fast disable/enable times and

More information

IF Digitally Controlled Variable-Gain Amplifier

IF Digitally Controlled Variable-Gain Amplifier 19-2601; Rev 1; 2/04 IF Digitally Controlled Variable-Gain Amplifier General Description The high-performance, digitally controlled variable-gain amplifier is designed for use from 0MHz to 400MHz. The

More information

200 ma Output Current High-Speed Amplifier AD8010

200 ma Output Current High-Speed Amplifier AD8010 a FEATURES 2 ma of Output Current 9 Load SFDR 54 dbc @ MHz Differential Gain Error.4%, f = 4.43 MHz Differential Phase Error.6, f = 4.43 MHz Maintains Video Specifications Driving Eight Parallel 75 Loads.2%

More information

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2

High Voltage, Low Noise, Low Distortion, Unity-Gain Stable, High Speed Op Amp ADA4898-1/ADA4898-2 FEATURES Ultralow noise.9 nv/ Hz.4 pa/ Hz. nv/ Hz at Hz Ultralow distortion: 93 dbc at 5 khz Wide supply voltage range: ±5 V to ±6 V High speed 3 db bandwidth: 65 MHz (G = +) Slew rate: 55 V/µs Unity gain

More information