Ultrasonic. Advantages

Size: px
Start display at page:

Download "Ultrasonic. Advantages"

Transcription

1 Ultrasonic Advantages Non-Contact: Nothing touches the target object Measures Distance: The distance to the target is measured, not just its presence Long and Short Range: Objects can be sensed from 2 inches to 37 feet High Resolution: Precise discrimination of target position changes Proportional Outputs: All analog, switch and data outputs are range dependent Ambient Light Levels: Unaffected by ambient light levels

2 Optical Characteristics of Target: Unaffected by the transparency, reflectivity, opacity or color of the target object Surface Characteristics: Target surface texture is generally not a problemgeneral Specifications apply to all Senix products. Refer to specific models for detailed specifications. Range: Compact and Modular models as close as 5 cm (2 inches) and as far as 1128 cm (37 feet), other models vary. Power Input: DC all models, AC input options available for Modular sensors

3 Beam Angle: Conical shape, 15 degrees total angle unless otherwise noted Adjustment: All models are push-button adjustable for basic setup. Update Rate: 20 Hz nominal, adjustable from 2 to 120 Hz on PC-configurable models

4

5 LVDT LVDT stands for linear variable differential transformer. An LVDT is a noncontacting linear displacement transducer that works on the principle of mutual inductance, producing an electrical signal that is proportional to the position of a separate moving core (or armature).

6 The fundamental advantages of LVDTs are their high degree of robustness, infinite resolution, and ability to operate at high temperatures and in extreme environments.

7

8 Centering the core with respect to the two secondary windings gives them the same magnitude of induced voltages, but the polarity, or phasing, will be opposite. When the core is displaced from this null position, the output amplitude on one secondary coil (Va) increases, while the output amplitude on the other coil (Vb) decreases.

9

10 These voltages can be used individually or combined to produce an output signal proportional to position, dependent upon the method of demodulation employed.

11 The following are the two main methods used. Ratiometric Operation Differential Operation

12 Ratiometric Operation A highly accurate method of translating the LVDT output is to measure the secondary voltages independently to generate a ratio of the difference divided by the sum of these values

13 Ratiometric operation improves the following: Immunity to LVDT supply voltage and frequency variations Immunity to errors due to temperature effects on LVDT sensitivity Frequency and phase response Immunity to common-mode noise on LVDT lines Transducer interchangeability

14 Additionally, the sum of the secondary output voltages (V a + V b ) is nominally constant throughout the LVDT stroke range, so it can be used for system error detection in high-integrity systems. Operating in the ratiometric mode requires a five- or six-wire, center-tapped LVDT specifically designed for the purpose.

15

16 Differential Operation LVDTs are normally available with either four or five wires; the extra wire is the center tap in the output. When operating in differential mode, this center-tap connection is often not used.

17

18 In this connection configuration, when the core is displaced from the center null position, the output will increase in-phase with the input in one direction and antiphase with the input in the other.

19 When using LVDTs in the differential mode, changes in supply voltage, operating temperature, and supply frequency will directly affect the output, lowering its accuracy.

20 Hall Effect The "Hall Effect" is named after Edwin Hall who discovered the effect in The basic "Hall Effect" sensing element is a semiconductor device which, when biased by an electrical current through it, will generate an electrical voltage proportional to the magnitude of a magnetic field flowing perpendicular to the surface of the semiconductor.

21 The voltage generated is very small and must be amplified and signal processed to provide a useful output from the sensor.

22 Unipolar Head-On. Very sensitive, but nonlinear over large distances (consequently linear over very tiny distances). Well-suited to measuring tiny deflections. Note that perpendicular magnetic flux is required for greatest sensitivity!

23

24 Three-magnet Bipolar Slide-by. Keep the distance constant, and the motion of the magnets can be detected with extreme sensitivity. Calibration is problematic but the setup provides extreme sensitivity if operated on the steep part of the distance/gauss curve.

25

26 Unipolar Slide-by. Probably most useful for alignment and orientation. For small distances, the distance/gauss slopes are linear to either side of the null point and can be calibrated.

27

28 Bipolar slide-by (1 Magnet). The magnet can also be a linear bar type. Good linear region in the middle of the distance/gauss relation that can be accurately and repeatably calibrated.

29

30 Bipolar slide-by (2 Magnets). The magnet can also be a linear bar type. Long linear region in the middle of the distance/gauss relation that can be accurately and repeatably calibrated. This principle is used in many commercial Hall-effect-based linear distance sensors.

31

32 Bipolar Slide-by (Ring Magnet). Useful for transducing rotation. Keep the gap constant, as with all slide-by techniques.

33

34 Photoconductors Photoconductors are made from semiconductors that have been heavily doped n-type or p-type and are frequently used for infrared detection

35 The resistance of an infrared photoconductive detector can be as little as 10 Ω or as much as 10 MΩ

36 Photoconductive detectors are usually operated by biasing them with a fixed voltage and measuring the current flowing in the biasing circuit. The current in the absence of radiation is called the dark current.

37 Photoconductors are frequently, but not always, polycrystalline materials. That is, instead of being one big single crystal, the detector is made up of a number of smaller crystals.

38 Photodiodes A diode consists of a region of single crystal semiconductor material that has been doped n-type in contact with a region of the same material that has been doped p- type.

39

40 Photodiode junctions are unusual because the top "p" layer is very thin. The thickness of this layer is determined by the wavelength of radiation to be detected.

41 When light is absorbed in the active area an electron-hole pair is formed. The electrons and holes are separated electrons passing to the "n" region and holes to the "p" region. This results in a current generated by light (usually abbreviated Isc). The migration of electrons and holes to their respective region is called "The Photovoltaic Effect".

42 The materials most commonly used for infrared photodiodes are InSb and HgCdTe while wider bandgap materials such as silicon and SiC are used for shorter wavelength detection.

43

44

45 Strain Gauges

46 The most universal measuring device for the electrical measurement of mechanical quantities is the strain gage. Several types of strain gages depend on the proportional variance of electrical resistance to strain: the piezoresistive or semi-conductor gage, the carbon-resistive gage, the bonded metallic wire, and foil resistance gages.

47 Example of Strain Gauge In work

48

49

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices

Unit 2 Semiconductor Devices. Lecture_2.5 Opto-Electronic Devices Unit 2 Semiconductor Devices Lecture_2.5 Opto-Electronic Devices Opto-electronics Opto-electronics is the study and application of electronic devices that interact with light. Electronics (electrons) Optics

More information

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

Length and Position Measurement

Length and Position Measurement Length and Position Measurement Primary standards were once based on the length of a bar of metal at a given temperature. The present standard is: 1 meter = distance traveled by light in a vacuum in 3.335641

More information

VARIABLE INDUCTANCE TRANSDUCER

VARIABLE INDUCTANCE TRANSDUCER VARIABLE INDUCTANCE TRANSDUCER These are based on a change in the magnetic characteristic of an electrical circuit in response to a measurand which may be displacement, velocity, acceleration, etc. 1.

More information

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2 Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

DSC Lab 2: Force and Displacement Measurement Page 1

DSC Lab 2: Force and Displacement Measurement Page 1 DSC Lab 2: Force and Displacement Measurement Page 1 Overview of Laboratory on Force and Displacement Measurement This lab course introduces concepts in force and motion measurement using strain-gauge

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensors and Actuators Introduction to sensors Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems INDUCTIVE SENSORS (Chapter 3.4, 7.3) 3 Inductive sensors 4 Inductive

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

R30D RVDTs DC-Operated Rotary Variable Differential Transformers

R30D RVDTs DC-Operated Rotary Variable Differential Transformers R30D RVDTs DC-Operated Rotary Variable Differential Transformers RVDTs incorporate a proprietary noncontact design that dramatically improves long term reliability when compared to other traditional rotary

More information

PVA Sensor Specifications

PVA Sensor Specifications Position, Velocity, and Acceleration Sensors 24.1 Sections 8.2-8.5 Position, Velocity, and Acceleration (PVA) Sensors PVA Sensor Specifications Good website to start your search for sensor specifications:

More information

Sensors (Transducer) Introduction By Sintayehu Challa

Sensors (Transducer) Introduction By Sintayehu Challa Sensors (Transducer) Introduction What are Sensors? Basically the quantities to be measured are Non-Electrical quantities such as temperature, pressure,displacement,humidity, fluid flow, speed etc, but

More information

Principles of operation 5

Principles of operation 5 Principles of operation 5 The following section explains the fundamental principles upon which Solartron Metrology s linear measurement products are based. > Inductive technology (gauging and displacement)

More information

09-2 EE 4770 Lecture Transparency. Formatted 12:49, 19 February 1998 from lsli

09-2 EE 4770 Lecture Transparency. Formatted 12:49, 19 February 1998 from lsli 09-1 09-1 Displacement and Proximity Displacement transducers measure the location of an object. Proximity transducers determine when an object is near. Criteria Used in Selection of Transducer How much

More information

Inductive Sensors. Fig. 1: Geophone

Inductive Sensors. Fig. 1: Geophone Inductive Sensors A voltage is induced in the loop whenever it moves laterally. In this case, we assume it is confined to motion left and right in the figure, and that the flux at any moment is given by

More information

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1 Sensors Chapter 3 Introduction Describing Sensor Performance Temperature Sensors Light Sensors Force Sensors Displacement Sensors Motion Sensors Sound Sensors Sensor Interfacing Storey: Electrical & Electronic

More information

An Instrumentation System

An Instrumentation System Transducer As Input Elements to Instrumentation System An Instrumentation System Input signal (measurand) electrical or non-electrical Input Device Signal Conditioning Circuit Output Device? -amplifier

More information

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY UNIT 1 DC MACHINES PART A 1. State Faraday s law of Electro magnetic induction and Lenz law. 2. Mention the following functions in DC Machine (i)

More information

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif

Introduction. ELCT903, Sensor Technology Electronics and Electrical Engineering Department 1. Dr.-Eng. Hisham El-Sherif Introduction In automation industry every mechatronic system has some sensors to measure the status of the process variables. The analogy between the human controlled system and a computer controlled system

More information

Position Sensors. The Potentiometer.

Position Sensors. The Potentiometer. Position Sensors In this tutorial we will look at a variety of devices which are classed as Input Devices and are therefore called "Sensors" and in particular those sensors which are Positional in nature

More information

Load Cells, LVDTs and Thermocouples

Load Cells, LVDTs and Thermocouples Load Cells, LVDTs and Thermocouples Introduction Load cells are utilized in nearly every electronic weighing system while LVDTs are used to measure the displacement of a moving object. Thermocouples have

More information

MECE 3320 Measurements & Instrumentation. Data Acquisition

MECE 3320 Measurements & Instrumentation. Data Acquisition MECE 3320 Measurements & Instrumentation Data Acquisition Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Sampling Concepts 1 f s t Sampling Rate f s 2 f m or

More information

Sensors & Actuators. Transduction principles Sensors & Actuators - H.Sarmento

Sensors & Actuators. Transduction principles Sensors & Actuators - H.Sarmento Sensors & Actuators Transduction principles 2014-2015 Sensors & Actuators - H.Sarmento Outline Resistive transduction. Photoconductive transduction (resistive). Capacitive transduction. Inductive transduction.

More information

Technical Explanation for Displacement Sensors and Measurement Sensors

Technical Explanation for Displacement Sensors and Measurement Sensors Technical Explanation for Sensors and Measurement Sensors CSM_e_LineWidth_TG_E_2_1 Introduction What Is a Sensor? A Sensor is a device that measures the distance between the sensor and an object by detecting

More information

14.2 Photodiodes 411

14.2 Photodiodes 411 14.2 Photodiodes 411 Maximum reverse voltage is specified for Ge and Si photodiodes and photoconductive cells. Exceeding this voltage can cause the breakdown and severe deterioration of the sensor s performance.

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

Product Information. Allegro Hall-Effect Sensor ICs. By Shaun Milano Allegro MicroSystems, LLC. Hall Effect Principles. Lorentz Force F = q v B V = 0

Product Information. Allegro Hall-Effect Sensor ICs. By Shaun Milano Allegro MicroSystems, LLC. Hall Effect Principles. Lorentz Force F = q v B V = 0 Product Information Allegro Hall-Effect Sensor ICs y Shaun Milano Allegro MicroSystems, LLC is a world leader in developing, manufacturing, and marketing high-performance Halleffect sensor integrated circuits.

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

Chapter Semiconductor Electronics

Chapter Semiconductor Electronics Chapter Semiconductor Electronics Q1. p-n junction is said to be forward biased, when [1988] (a) the positive pole of the battery is joined to the p- semiconductor and negative pole to the n- semiconductor

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 5: Displacement measurement Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of Engineering

More information

Lab VIII Photodetectors ECE 476

Lab VIII Photodetectors ECE 476 Lab VIII Photodetectors ECE 476 I. Purpose The electrical and optical properties of various photodetectors will be investigated. II. Background Photodiode A photodiode is a standard diode packaged so that

More information

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities.

Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Shaft Encoders: Shaft encoders are digital transducers that are used for measuring angular displacements and angular velocities. Encoder Types: Shaft encoders can be classified into two categories depending

More information

Magnetic induction with Cobra3

Magnetic induction with Cobra3 Principle A magnetic field of variable frequency and varying strength is produced in a long coil. The voltages induced across thin coils which are pushed into the long coil are determined as a function

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

Electronic Instrumentation and Measurements

Electronic Instrumentation and Measurements Electronic Instrumentation and Measurements A fundamental part of many electromechanical systems is a measurement system that composed of four basic parts: Sensors Signal Conditioning Analog-to-Digital-Conversion

More information

1. A transducer converts

1. A transducer converts 1. A transducer converts a. temperature to resistance b. force into current c. position into voltage d. one form of energy to another 2. Whose of the following transducers the output is a change in resistance?

More information

1393 DISPLACEMENT SENSORS

1393 DISPLACEMENT SENSORS 1393 DISPLACEMENT SENSORS INTRODUCTION While regular sensors detect the existence of objects, displacement sensors detect the amount of displacement when objects move from one position to another. Detecting

More information

IT.MLD900 SENSORS AND TRANSDUCERS TRAINER. Signal Conditioning

IT.MLD900 SENSORS AND TRANSDUCERS TRAINER. Signal Conditioning SENSORS AND TRANSDUCERS TRAINER IT.MLD900 The s and Instrumentation Trainer introduces students to input sensors, output actuators, signal conditioning circuits, and display devices through a wide range

More information

UNIT 10 INTRODUCTION TO TRANSDUCERS AND SENSORS

UNIT 10 INTRODUCTION TO TRANSDUCERS AND SENSORS UNIT 10 INTRODUCTION TO TRANSDUCERS AND SENSORS Structure 10.1 Introduction Objectives 10.2 Active and Passive Sensors 10.3 Basic Requirements of a Sensor/Transducer 10.4 Discrete Event Sensors 10.4.1

More information

Industrial Sensors. Proximity Mechanical Optical Inductive/Capacitive. Position/Velocity Potentiometer LVDT Encoders Tachogenerator

Industrial Sensors. Proximity Mechanical Optical Inductive/Capacitive. Position/Velocity Potentiometer LVDT Encoders Tachogenerator Proximity Mechanical Optical Inductive/Capacitive Position/Velocity Potentiometer LVDT Encoders Tachogenerator Force/Pressure Vibration/acceleration Industrial Sensors 1 Definitions Accuracy: The agreement

More information

EE T55 MEASUREMENTS AND INSTRUMENTATION

EE T55 MEASUREMENTS AND INSTRUMENTATION EE T55 MEASUREMENTS AND INSTRUMENTATION UNIT V: TRANSDUCERS Temperature transducers-rtd, thermistor, Thermocouple-Displacement transducer-inductive, capacitive, LVDT, Pressure transducer Bourdon tube,

More information

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES

OPTOELECTRONIC and PHOTOVOLTAIC DEVICES OPTOELECTRONIC and PHOTOVOLTAIC DEVICES Outline 1. Introduction to the (semiconductor) physics: energy bands, charge carriers, semiconductors, p-n junction, materials, etc. 2. Light emitting diodes Light

More information

Analytical Chemistry II

Analytical Chemistry II Analytical Chemistry II L3: Signal processing (selected slides) Semiconductor devices Apart from resistors and capacitors, electronic circuits often contain nonlinear devices: transistors and diodes. The

More information

LAB ASSIGNMENT No. 1 Characteristics of IC Temperature Sensor (LM 335)

LAB ASSIGNMENT No. 1 Characteristics of IC Temperature Sensor (LM 335) LAB ASSIGNMENT No. 1 Characteristics of IC Temperature Sensor (LM 335) Equipment Required: ST2302with power supply cord Multi Meter Connecting cords Connection diagram: Temperature Transducers: The most

More information

CHAPTER 9 BRIDGES, STRAIN GAGES AND SOME VARIABLE IMPEDANCE TRANSDUCERS

CHAPTER 9 BRIDGES, STRAIN GAGES AND SOME VARIABLE IMPEDANCE TRANSDUCERS CHPTE 9 BIDGES, STIN GGES ND SOME IBLE IMPEDNCE TNSDUCES Many transducers translate a change in the quantity you wish to measure into a change in impedance, i.e., resistance, capacitance or inductance.

More information

Analog Electronic Circuits

Analog Electronic Circuits Analog Electronic Circuits Chapter 1: Semiconductor Diodes Objectives: To become familiar with the working principles of semiconductor diode To become familiar with the design and analysis of diode circuits

More information

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit

Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Experiment 1: Fraunhofer Diffraction of Light by a Single Slit Purpose 1. To understand the theory of Fraunhofer diffraction of light at a single slit and at a circular aperture; 2. To learn how to measure

More information

Sensors. Signal Source Sensors Transducer

Sensors. Signal Source Sensors Transducer Sensors Signal Source Sensors Transducer Introduction Measuring System Sections Sensor-detector stage Signal conditioning stage Terminating readout stage Information I = out f ( I ) in Introduction Transfer

More information

Part 10: Transducers

Part 10: Transducers Part 10: Transducers 10.1: Classification of Transducers An instrument may be defined as a device or a system which is designed to maintain a functional relationship between prescribed properties of physical

More information

Synchronous Machines Study Material

Synchronous Machines Study Material Synchronous machines: The machines generating alternating emf from the mechanical input are called alternators or synchronous generators. They are also known as AC generators. All modern power stations

More information

Electro-hydraulic Servo Valve Systems

Electro-hydraulic Servo Valve Systems Fluidsys Training Centre, Bangalore offers an extensive range of skill-based and industry-relevant courses in the field of Pneumatics and Hydraulics. For more details, please visit the website: https://fluidsys.org

More information

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3.

Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. Objective Type Questions 1. Why pure semiconductors are insulators at 0 o K? 2. What is effect of temperature on barrier voltage? 3. What is difference between electron and hole? 4. Why electrons have

More information

Lecture 5. In The Name of Allah. Instrumentation. Dr. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Lecture 5. In The Name of Allah. Instrumentation. Dr. Ali Karimpour Associate Professor Ferdowsi University of Mashhad In The Name of Allah Instrumentation Dr. Ali Karimpour Associate Professor Ferdowsi University of Mashhad Position Sensors Topics to be covered include: v v v v v v Introduction Resistive Displacement

More information

Magnetic induction with Cobra3

Magnetic induction with Cobra3 Magnetic induction with Cobra3 LEP Related Topics Maxwell s equations, electrical eddy field, magnetic field of coils, coil, magnetic flux, induced voltage. Principle A magnetic field of variable frequency

More information

Lecture 5. In The Name of Allah. Instrumentation. Dr. Ali Karimpour Associate Professor Ferdowsi University of Mashhad

Lecture 5. In The Name of Allah. Instrumentation. Dr. Ali Karimpour Associate Professor Ferdowsi University of Mashhad In The Name of Allah Instrumentation Dr. Ali Karimpour Associate Professor Ferdowsi University of Mashhad Position Sensors Topics to be covered include: v v v v v v Introduction Resistive Displacement

More information

Making Basic Strain Measurements

Making Basic Strain Measurements IOtech Product Marketing Specialist steve.radecky@iotech.com Making Basic Strain Measurements using 24-Bit IOtech Hardware INTRODUCTION Strain gages are sensing devices used in a variety of physical test

More information

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit.

Dimensions in inches (mm) .268 (6.81).255 (6.48) .390 (9.91).379 (9.63) .045 (1.14).030 (.76) 4 Typ. Figure 1. Typical application circuit. LINEAR OPTOCOUPLER FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > KHz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption, < mw Isolation Test Voltage,

More information

In the name of God, the most merciful Electromagnetic Radiation Measurement

In the name of God, the most merciful Electromagnetic Radiation Measurement In the name of God, the most merciful Electromagnetic Radiation Measurement In these slides, many figures have been taken from the Internet during my search in Google. Due to the lack of space and diversity

More information

Fundamentals of Infrared Detector Operation and Testing

Fundamentals of Infrared Detector Operation and Testing Fundamentals of Infrared Detector Operation and Testing JOHN DAVID VINCENT Santa Barbara Research Center Goleta, California WILEY A Wiley-Interscience Publication John Wiley & Sons New York I Chichester

More information

DE52/DC52 FUNDAMENTALS OF ELECTRICAL & ELECT ENGG DEC 2014

DE52/DC52 FUNDAMENTALS OF ELECTRICAL & ELECT ENGG DEC 2014 Q.2 a. Derive an expression for the current flowing at any instant during the discharge of a capacitor C across a resistor R. b. The coil of a moving coil instrument is wound with 50 turns of wire. The

More information

Electronic Devices 1. Current flowing in each of the following circuits A and respectively are: (Circuit 1) (Circuit 2) 1) 1A, 2A 2) 2A, 1A 3) 4A, 2A 4) 2A, 4A 2. Among the following one statement is not

More information

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random.

In an unmagnetized piece of iron, the atoms are arranged in domains. In each domain the atoms are aligned, but the domains themselves are random. 4/7 Properties of the Magnetic Force 1. Perpendicular to the field and velocity. 2. If the velocity and field are parallel, the force is zero. 3. Roughly (field and vel perp), the force is the product

More information

The Study on the Method of Eliminating Errors of PSD

The Study on the Method of Eliminating Errors of PSD Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com The Study on the Method of Eliminating Errors of PSD Changjun ZHOU, * Wei WANG, Hongxiao CHAO, Lina HONG, Xin CAO, Pengfei ZHANG, Lingyue

More information

Magnetism can produce electric current can. produce magnetism Electromagnetic Induction

Magnetism can produce electric current can. produce magnetism Electromagnetic Induction Magnetism can produce electric current, and electric current can produce magnetism. In 1831, two physicists, Michael Faraday in England and Joseph Henry in the United States, independently discovered that

More information

37 Electromagnetic Induction. Magnetism can produce electric current, and electric current can produce magnetism.

37 Electromagnetic Induction. Magnetism can produce electric current, and electric current can produce magnetism. Magnetism can produce electric current, and electric current can produce magnetism. In 1831, two physicists, Michael Faraday in England and Joseph Henry in the United States, independently discovered that

More information

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer:

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer: Biomedical Electrodes, Sensors, and Transducers from: Chaterjee, Biomedical Instrumentation, chapter 6 Key Points Electrodes, Sensors, and Transducers: - types of electrodes - voltaic - electrolytic -

More information

10/14/2009. Semiconductor basics pn junction Solar cell operation Design of silicon solar cell

10/14/2009. Semiconductor basics pn junction Solar cell operation Design of silicon solar cell PHOTOVOLTAICS Fundamentals PV FUNDAMENTALS Semiconductor basics pn junction Solar cell operation Design of silicon solar cell SEMICONDUCTOR BASICS Allowed energy bands Valence and conduction band Fermi

More information

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering

PART A. 1. List the types of DC Motors. Give any difference between them. BTL 1 Remembering UNIT I DC MACHINES Three phase circuits, a review. Construction of DC machines Theory of operation of DC generators Characteristics of DC generators Operating principle of DC motors Types of DC motors

More information

Downloaded from

Downloaded from SOLID AND SEMICONDUCTOR DEVICES (EASY AND SCORING TOPIC) 1. Distinction of metals, semiconductor and insulator on the basis of Energy band of Solids. 2. Types of Semiconductor. 3. PN Junction formation

More information

Electrical Engineering / Electromagnetics

Electrical Engineering / Electromagnetics Electrical Engineering / Electromagnetics. Plot voltage versus time and current versus time for the circuit with the following substitutions: A. esistor B. Capacitor C. Inductor t = 0 A/B/C A. I t t B.

More information

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s.

UNIT-VI FIELD EFFECT TRANSISTOR. 1. Explain about the Field Effect Transistor and also mention types of FET s. UNIT-I FIELD EFFECT TRANSISTOR 1. Explain about the Field Effect Transistor and also mention types of FET s. The Field Effect Transistor, or simply FET however, uses the voltage that is applied to their

More information

Course Plan Overview January 2015

Course Plan Overview January 2015 Course Plan Overview January 2015 Page- 1 Impedance: Traditional electrical sense - as generalized resistance: Simple & Complex!! In the mechanical sense, or in a general sense with regard to other domains

More information

HALL EFFECT SENSING AND APPLICATION

HALL EFFECT SENSING AND APPLICATION HALL EFFECT SENSING AND APPLICATION MICRO SWITCH Sensing and Control Chapter 1 Hall Effect Sensing Introduction... 1 Hall Effect Sensors... 1 Why use the Hall Effect... 2 Using this Manual... 2 Chapter

More information

Electronic Components (Elements)

Electronic Components (Elements) Lecture_3 Electronic Components (Elements) Instructor: IBRAHIM ABU-ISBEIH 25 July 2011 Reverse Engineering 1 Objectives: After completing this class, you will be able to identify the most commonly used

More information

Chapter 1: Semiconductor Diodes

Chapter 1: Semiconductor Diodes Chapter 1: Semiconductor Diodes Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. 2 Diode Characteristics Conduction Region Non-Conduction Region The voltage across

More information

Choosing and Using Photo Sensors

Choosing and Using Photo Sensors Part II Choosing and Using Photo Sensors Selection of the right photo sensor is the first step towards designing an optimal sensor-based system. The second step, and indeed a very important one, is the

More information

1. Position detection on a spindle drive unit by means of a linear potentiometer

1. Position detection on a spindle drive unit by means of a linear potentiometer Displacement measurements 1. Position detection on a spindle drive unit by means of a linear potentiometer Learning contents: Mechanical assembly and electrical connection of a spindle drive unit Mechanical

More information

Chapter 8. Digital and Analog Interfacing Methods

Chapter 8. Digital and Analog Interfacing Methods Chapter 8 Digital and Analog Interfacing Methods Lesson 16 MCU Based Instrumentation Outline Resistance and Capacitance based Sensor Interface Inductance based Sensor (LVDT) Interface Current based (Light

More information

TECHNICAL RESEARCH REPORT

TECHNICAL RESEARCH REPORT TECHNICAL RESEARCH REPORT Characterization of an ETREMA MP 5/6 Magnetostrictive Actuator by R. Venkataraman, J. Rameau, P. S. Krishnaprasad CDCSS T.R. 98-1 (ISR T.R. 98-1) C + - D S CENTER FOR DYNAMICS

More information

Figure 1.1 Mechatronic system components (p. 3)

Figure 1.1 Mechatronic system components (p. 3) Figure 1.1 Mechatronic system components (p. 3) Example 1.2 Measurement System Digital Thermometer (p. 5) Figure 2.2 Electric circuit terminology (p. 13) Table 2.2 Resistor color band codes (p. 18) Figure

More information

Basic Electronics Important questions

Basic Electronics Important questions Basic Electronics Important questions B.E-2/4 Mech- B Faculty: P.Lakshmi Prasanna Note: Read the questions in the following order i. Assignment questions ii. Class test iii. Expected questions iv. Tutorials

More information

Diode Bridges. Book page

Diode Bridges. Book page Diode Bridges Book page 450-454 Rectification The process of converting an ac supply into dc is called rectification The device that carries this out is called a rectifier Half wave rectifier only half

More information

As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method

As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method Velocity Resolution with Step-Up Gearing: As before, the speed resolution is given by the change in speed corresponding to a unity change in the count. Hence, for the pulse-counting method It follows that

More information

Sensors and Transducers

Sensors and Transducers Sensors and Transducers Transducers-Transducer is a device which converts one form of energy into another form of energy. Electrical transducers are those which convert one form of energy into electrical

More information

Faraday Laws of Electromagnetic Induction CLIL LESSON

Faraday Laws of Electromagnetic Induction CLIL LESSON Faraday Laws of Electromagnetic Induction CLIL LESSON Experimental trials Michael Faraday-1931 This law shows the relationship between electric circuit and magnetic field A coil is connected to a galvanometer

More information

Momentum and Impulse. Objective. Theory. Investigate the relationship between impulse and momentum.

Momentum and Impulse. Objective. Theory. Investigate the relationship between impulse and momentum. [For International Campus Lab ONLY] Objective Investigate the relationship between impulse and momentum. Theory ----------------------------- Reference -------------------------- Young & Freedman, University

More information

PHYS 1442 Section 004 Lecture #15

PHYS 1442 Section 004 Lecture #15 PHYS 1442 Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer Inductance 3/17/2014 1 PHYS 1442-004, Dr. Andrew Brandt Announcements HW8 on Ch 21-22 will be

More information

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit.

Dimensions in inches (mm) .021 (0.527).035 (0.889) .016 (.406).020 (.508 ) .280 (7.112).330 (8.382) Figure 1. Typical application circuit. IL Linear Optocoupler Dimensions in inches (mm) FEATURES Couples AC and DC signals.% Servo Linearity Wide Bandwidth, > khz High Gain Stability, ±.%/C Low Input-Output Capacitance Low Power Consumption,

More information

Electron Devices and Circuits (EC 8353)

Electron Devices and Circuits (EC 8353) Electron Devices and Circuits (EC 8353) Prepared by Ms.S.KARKUZHALI, A.P/EEE Diodes The diode is a 2-terminal device. A diode ideally conducts in only one direction. Diode Characteristics Conduction Region

More information

Characterisation of SiPM Index :

Characterisation of SiPM Index : Characterisation of SiPM --------------------------------------------------------------------------------------------Index : 1. Basics of SiPM* 2. SiPM module 3. Working principle 4. Experimental setup

More information

Novel laser power sensor improves process control

Novel laser power sensor improves process control Novel laser power sensor improves process control A dramatic technological advancement from Coherent has yielded a completely new type of fast response power detector. The high response speed is particularly

More information

MEMS Optical Scanner "ECO SCAN" Application Notes. Ver.0

MEMS Optical Scanner ECO SCAN Application Notes. Ver.0 MEMS Optical Scanner "ECO SCAN" Application Notes Ver.0 Micro Electro Mechanical Systems Promotion Dept., Visionary Business Center The Nippon Signal Co., Ltd. 1 Preface This document summarizes precautions

More information

Moderne Teilchendetektoren - Theorie und Praxis 2. Dr. Bernhard Ketzer Technische Universität München SS 2013

Moderne Teilchendetektoren - Theorie und Praxis 2. Dr. Bernhard Ketzer Technische Universität München SS 2013 Moderne Teilchendetektoren - Theorie und Praxis 2 Dr. Bernhard Ketzer Technische Universität München SS 2013 7 Signal Processing and Acquisition 7.1 Signals 7.2 Amplifier 7.3 Electronic Noise 7.4 Analog-to-Digital

More information

EECS 145L Final Examination Solutions (Fall 2013)

EECS 145L Final Examination Solutions (Fall 2013) UNIVERSITY OF CALIFORNIA, BERKELEY College of Engineering, Electrical Engineering and Computer Sciences Department 1.1 Instrumentation amplifier (1) differential amplification (2) very high input impedance

More information

OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO

OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO OPERATION AND MAINTENANCE MANUAL TRIAXIAL ACCELEROMETER MODEL PA-23 STOCK NO. 990-60700-9801 GEOTECH INSTRUMENTS, LLC 10755 SANDEN DRIVE DALLAS, TEXAS 75238-1336 TEL: (214) 221-0000 FAX: (214) 343-4400

More information

Lecture 16 Microwave Detector and Switching Diodes

Lecture 16 Microwave Detector and Switching Diodes Basic Building Blocks of Microwave Engineering Prof. Amitabha Bhattacharya Department of Electronics and Communication Engineering Indian Institute of Technology, Kharagpur Lecture 16 Microwave Detector

More information

Detectors for Optical Communications

Detectors for Optical Communications Optical Communications: Circuits, Systems and Devices Chapter 3: Optical Devices for Optical Communications lecturer: Dr. Ali Fotowat Ahmady Sep 2012 Sharif University of Technology 1 Photo All detectors

More information

Downloaded from Downloaded from

Downloaded from  Downloaded from IV SEMESTER FINAL EXAMINATION- 2002 SUBJECT: BEG232EC, Instrumentation Candidates are required to give their answers in their own words as far as practicable. The figure in the margin indicates full marks.

More information

STRAIN, FORCE, PRESSURE, AND FLOW MEASUREMENTS

STRAIN, FORCE, PRESSURE, AND FLOW MEASUREMENTS SECTION 4 STRAIN,, PRESSURE, AND FLOW MEASUREMENTS Walt Kester STRAIN GAGES The most popular electrical elements used in force measurements include the resistance strain gage, the semiconductor strain

More information

LEDs, Photodetectors and Solar Cells

LEDs, Photodetectors and Solar Cells LEDs, Photodetectors and Solar Cells Chapter 7 (Parker) ELEC 424 John Peeples Why the Interest in Photons? Answer: Momentum and Radiation High electrical current density destroys minute polysilicon and

More information