Sensors and Actuators Introduction to sensors

Size: px
Start display at page:

Download "Sensors and Actuators Introduction to sensors"

Transcription

1 Sensors and Actuators Introduction to sensors Sander Stuijk Department of Electrical Engineering Electronic Systems

2 INDUCTIVE SENSORS (Chapter 3.4, 7.3)

3 3 Inductive sensors

4 4 Inductive sensors damping control wheel speed sensor (ABS) crankshaft position sensor pedal position sensor speedometer (eddy current)

5 5 Sensor classification type / quantity measured Quantity Position, distance, displacement Flow rate / Point velocity Force Temperature Resistive Magnetoresistor Thermistor Strain gage RTD S e n s o r Potentiometer Capacitive Differential capacitor Capacitive strain gage Inductive and electromagnetic Thermistor Capacitor Eddy currents LVDT Load cell + LVDT LVDT Hall effect Magnetostriction t y p e Selfgenerating LVDT Magnetostriction Thermal transport + thermocouple Piezoelectric sensor Pyroelectric sensor Thermocouple PN junction Photoelectric sensor Diode Bipolar transistor reactance variation sensors (capacitive and inductive sensors) typically require no physical contact eert minimal mechanical loading

6 6 Magnetic reluctance electrical circuit may offer resistance to charge flow resistor: R resistor dissipates electrical energy current follows path of least resistance total resistance R tot R R V r R R magnetic circuit may offer reluctance to magnetic flu reluctance: reluctant circuit stores magnetic energy magnetic flu follows path of least reluctance total reluctance computed in similar way as resistance in electrical circuit tot 3 4

7 7 Magnetic reluctance reluctance depends on physical properties of the device l A l length of the device A cross-sectional area μ permeability of free space (4-7 H/m) μ relative permeability of the material soft ferromagnetic material (typically to ) permeability of air (appro. ) options to vary reluctance modify length l (variable gap sensor) modify magnetic permeability μ (moving core sensor) modify cross-sectional area A (not frequently used)

8 8 Magnetic reluctance reluctance depends on physical properties of the device l A sensor requires conversion of magnetic signal to electric signal Faraday s law relates magnetic reluctance to electric current v N di dt di L dt change in reluctance changes output voltage self-inductance L and reluctance are related: L N device can also be used as sensor without changing reluctance changing magnetic field causes electrons to move induces additional (eddy) current (eddy current sensor)

9 9 Variable gap sensor what is the output voltage (in terms of ) of a sensor with N windings? l l core object, object, air l l core object core A object A aira total core A object A aira total core object air reluctance of core and object are constant core reluctance of the circuit self-inductance of the circuit L l N total N k output voltage of the sensor v core di L dt l A core N di k dt object object A A total air k

10 Variable gap sensor output voltage of the sensor v di L dt N k highly non-linear relation between output and displacement use of sensor limited to proimity sensor di dt

11 Linear displacement transformer two coils in series, moving object increases reluctance in one coil decreases reluctance in other coil v e circuit is differential voltage divider impedance of coil is equal to Z jl N L l A N j N j A l Z v e Z /(-) changing l with a relative amount Z N j l A jl Z Z /(+)

12 Linear displacement transformer two coils in series, moving object increases reluctance in one coil decreases reluctance in other coil v e circuit is differential voltage divider output of the voltage divider v o Z / Z / ve ve Z / linear relation between output voltage and displacement offset voltage present v e Z /(-) displacement () should be small sensor often not practical Z /(+)

13 3 Mutual inductance self-inductance induced voltage due to change in own current di v L dt mutual inductance induced voltage due to change in current in neighboring circuit di di v L M dt dt depends on reluctance of the space between the coils changing reluctance between coils alters mutual inductance device usable as sensor two coil solution still not practical (large offset, small fluctuation) i M v L L i v

14 4 Linear Variable Differential Transformer Linear Variable Differential Transformer (LVDT) two secondary coils in series-opposition linear relation between output voltage and core displacement operation based on mutual inductance M v L v L L M linear range

15 5 Linear Variable Differential Transformer assume sinusoidal ecitation of primary circuit output voltage of secondary circuit v ( t) V sin t ( t) S V sin t S ω sensitivity at frequency ω displacement of the core from center φ phase shift (in voltage) from primary to secondary circuit M L v L S ω and φ depend on load R L of measurement circuit ecitation frequency ω M L phase shift can be compensated

16 6 Signal conditioning for LVDT sensors output signal of LVDT is amplitude modulated ac signal ( = ) t ( = ) t ( = - ) t amplitude indicates magnitude of displacement phase indicates direction of displacement M L v L L M

17 7 Linear Variable Differential Transformer output voltage (no load connected to secondary winding) no current in secondary circuit (I = ) V o I V I R jl jl R I jm jm jm M I V primary current I independent of core position output voltage V o proportional to core position V o j M M jl R V M M k V o jk I jk jl V R M M v i L R L R L v L M 3 R L L M M

18 8 Linear Variable Differential Transformer output voltage (no load connected to secondary winding) V o jk sensitivity V o jk k k k S jl R R R L L R j j L sensitivity increases with increasing frequency phase shift output voltage 9 out of phase with primary current phase shift between V and V 9 V I jk jl L arctan R V R consider phase shift when recovering position v M R L i L M 3 M L R R

5. Transducers Definition and General Concept of Transducer Classification of Transducers

5. Transducers Definition and General Concept of Transducer Classification of Transducers 5.1. Definition and General Concept of Definition The transducer is a device which converts one form of energy into another form. Examples: Mechanical transducer and Electrical transducer Electrical A

More information

Sensors and Actuators Introduction to sensors

Sensors and Actuators Introduction to sensors Sensors and Actuators Introduction to sensors Sander Stuijk (s.stuijk@tue.nl) Department of Electrical Engineering Electronic Systems 2 5ES00 = 5CI30 + 5CI31 3 ECTS awarded for each CI course passed 3

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x)

Inductive sensors. The operating principle is based on the following relationship: L=f(x) M=g(x) Inductive sensors The operating principle is based on the following relationship: L=f(x) M=g(x) High robusteness against influencing quantities (environmental) 1 L variation based Inductive Sensors Basics

More information

PHYS 1442 Section 004 Lecture #15

PHYS 1442 Section 004 Lecture #15 PHYS 1442 Section 004 Lecture #15 Monday March 17, 2014 Dr. Andrew Brandt Chapter 21 Generator Transformer Inductance 3/17/2014 1 PHYS 1442-004, Dr. Andrew Brandt Announcements HW8 on Ch 21-22 will be

More information

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017

PHYS 1441 Section 001 Lecture #22 Wednesday, Nov. 29, 2017 PHYS 1441 Section 001 Lecture #22 Chapter 29:EM Induction & Faraday s Law Transformer Electric Field Due to Changing Magnetic Flux Chapter 30: Inductance Mutual and Self Inductance Energy Stored in Magnetic

More information

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon:

In this lecture. Electromagnetism. Electromagnetism. Oersted s Experiment. Electricity & magnetism are different aspects of the same basic phenomenon: In this lecture Electromagnetism Electromagnetic Effect Electromagnets Electromechanical Devices Transformers Electromagnetic Effect Electricity & magnetism are different aspects of the same basic phenomenon:

More information

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1

Sensors. Chapter 3. Storey: Electrical & Electronic Systems Pearson Education Limited 2004 OHT 3.1 Sensors Chapter 3 Introduction Describing Sensor Performance Temperature Sensors Light Sensors Force Sensors Displacement Sensors Motion Sensors Sound Sensors Sensor Interfacing Storey: Electrical & Electronic

More information

Sensors for Mechatronics

Sensors for Mechatronics Sensors for Mechatronics Paul P.L Regtien Hertgelo The Netherlands AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK' OXFORD ELSEVIER PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO Contents Preface xi

More information

VARIABLE INDUCTANCE TRANSDUCER

VARIABLE INDUCTANCE TRANSDUCER VARIABLE INDUCTANCE TRANSDUCER These are based on a change in the magnetic characteristic of an electrical circuit in response to a measurand which may be displacement, velocity, acceleration, etc. 1.

More information

Sensors (Transducer) Introduction By Sintayehu Challa

Sensors (Transducer) Introduction By Sintayehu Challa Sensors (Transducer) Introduction What are Sensors? Basically the quantities to be measured are Non-Electrical quantities such as temperature, pressure,displacement,humidity, fluid flow, speed etc, but

More information

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1

Electromagnetic Oscillations and Currents. March 23, 2014 Chapter 30 1 Electromagnetic Oscillations and Currents March 23, 2014 Chapter 30 1 Driven LC Circuit! The voltage V can be thought of as the projection of the vertical axis of the phasor V m representing the time-varying

More information

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current

PHYSICS WORKSHEET CLASS : XII. Topic: Alternating current PHYSICS WORKSHEET CLASS : XII Topic: Alternating current 1. What is mean by root mean square value of alternating current? 2. Distinguish between the terms effective value and peak value of an alternating

More information

Electrical Theory 2 Lessons for Fall Semester:

Electrical Theory 2 Lessons for Fall Semester: Electrical Theory 2 Lessons for Fall Semester: Lesson 1 Magnetism Lesson 2 Introduction to AC Theory Lesson 3 Lesson 4 Capacitance and Capacitive Reactance Lesson 5 Impedance and AC Circuits Lesson 6 AC

More information

IE1206 Embedded Electronics

IE1206 Embedded Electronics E06 Embedded Electronics Le Le3 Le4 Le Ex Ex PC-block Documentation, Seriecom Pulse sensors,, R, P, serial and parallel KC LAB Pulse sensors, Menu program Start of programing task Kirchhoffs laws ode analysis

More information

Spring 2000 EE361: MIDTERM EXAM 1

Spring 2000 EE361: MIDTERM EXAM 1 NAME: STUDENT NUMBER: Spring 2000 EE361: MIDTERM EXAM 1 This exam is open book and closed notes. Assume f=60 hz and use the constant µ o =4π 10-7 wherever necessary. Be sure to show all work clearly. 1.

More information

Transformers. Dr. Gamal Sowilam

Transformers. Dr. Gamal Sowilam Transformers Dr. Gamal Sowilam OBJECTIVES Become familiar with the flux linkages that exist between the coils of a transformer and how the voltages across the primary and secondary are established. Understand

More information

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits

QUESTION BANK ETE (17331) CM/IF. Chapter1: DC Circuits QUESTION BANK ETE (17331) CM/IF Chapter1: DC Circuits Q1. State & explain Ohms law. Also explain concept of series & parallel circuit with the help of diagram. 3M Q2. Find the value of resistor in fig.

More information

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc.

Chapter 30 Inductance, Electromagnetic. Copyright 2009 Pearson Education, Inc. Chapter 30 Inductance, Electromagnetic Oscillations, and AC Circuits 30-7 AC Circuits with AC Source Resistors, capacitors, and inductors have different phase relationships between current and voltage

More information

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND

CH 1. Large coil. Small coil. red. Function generator GND CH 2. black GND Experiment 6 Electromagnetic Induction "Concepts without factual content are empty; sense data without concepts are blind... The understanding cannot see. The senses cannot think. By their union only can

More information

Ultrasonic. Advantages

Ultrasonic. Advantages Ultrasonic Advantages Non-Contact: Nothing touches the target object Measures Distance: The distance to the target is measured, not just its presence Long and Short Range: Objects can be sensed from 2

More information

PHYS 1444 Section 501 Lecture #20

PHYS 1444 Section 501 Lecture #20 PHYS 1444 Section 501 Lecture #0 Monday, Apr. 17, 006 Transformer Generalized Faraday s Law Inductance Mutual Inductance Self Inductance Inductor Energy Stored in the Magnetic Field 1 Announcements Quiz

More information

1. A transducer converts

1. A transducer converts 1. A transducer converts a. temperature to resistance b. force into current c. position into voltage d. one form of energy to another 2. Whose of the following transducers the output is a change in resistance?

More information

Electromagnetic Induction

Electromagnetic Induction Chapter 16 Electromagnetic Induction In This Chapter: Electromagnetic Induction Faraday s Law Lenz s Law The Transformer Self-Inductance Inductors in Combination Energy of a Current-Carrying Inductor Electromagnetic

More information

Chapter 11. Alternating Current

Chapter 11. Alternating Current Unit-2 ECE131 BEEE Chapter 11 Alternating Current Objectives After completing this chapter, you will be able to: Describe how an AC voltage is produced with an AC generator (alternator) Define alternation,

More information

An Instrumentation System

An Instrumentation System Transducer As Input Elements to Instrumentation System An Instrumentation System Input signal (measurand) electrical or non-electrical Input Device Signal Conditioning Circuit Output Device? -amplifier

More information

13 th Asian Physics Olympiad India Experimental Competition Wednesday, 2 nd May 2012

13 th Asian Physics Olympiad India Experimental Competition Wednesday, 2 nd May 2012 13 th Asian Physics Olympiad India Experimental Competition Wednesday, nd May 01 Please first read the following instructions carefully: 1. The time available is ½ hours for each of the two experimental

More information

13. Magnetically Coupled Circuits

13. Magnetically Coupled Circuits 13. Magnetically Coupled Circuits The change in the current flowing through an inductor induces (creates) a voltage in the conductor itself (self-inductance) and in any nearby conductors (mutual inductance)

More information

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112

Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8. Look over Chapter 21 sections Examples PHYS 2212 PHYS 1112 PHYS 2212 Look over Chapter 31 sections 1-4, 6, 8, 9, 10, 11 Examples 1-8 PHYS 1112 Look over Chapter 21 sections 11-14 Examples 16-18 Good Things To Know 1) How AC generators work. 2) How to find the

More information

PHYS 1444 Section 003 Lecture #19

PHYS 1444 Section 003 Lecture #19 PHYS 1444 Section 003 Lecture #19 Monday, Nov. 14, 2005 Electric Generators DC Generator Eddy Currents Transformer Mutual Inductance Today s homework is homework #10, due noon, next Tuesday!! 1 Announcements

More information

Sensors. Signal Source Sensors Transducer

Sensors. Signal Source Sensors Transducer Sensors Signal Source Sensors Transducer Introduction Measuring System Sections Sensor-detector stage Signal conditioning stage Terminating readout stage Information I = out f ( I ) in Introduction Transfer

More information

Length and Position Measurement

Length and Position Measurement Length and Position Measurement Primary standards were once based on the length of a bar of metal at a given temperature. The present standard is: 1 meter = distance traveled by light in a vacuum in 3.335641

More information

EE T55 MEASUREMENTS AND INSTRUMENTATION

EE T55 MEASUREMENTS AND INSTRUMENTATION EE T55 MEASUREMENTS AND INSTRUMENTATION UNIT V: TRANSDUCERS Temperature transducers-rtd, thermistor, Thermocouple-Displacement transducer-inductive, capacitive, LVDT, Pressure transducer Bourdon tube,

More information

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by

An induced emf is the negative of a changing magnetic field. Similarly, a self-induced emf would be found by This is a study guide for Exam 4. You are expected to understand and be able to answer mathematical questions on the following topics. Chapter 32 Self-Induction and Induction While a battery creates an

More information

1. Explain in detail the constructional details and working of DC motor.

1. Explain in detail the constructional details and working of DC motor. DHANALAKSHMI SRINIVASAN INSTITUTE OF RESEARCH AND TECHNOLOGY, PERAMBALUR DEPT OF ECE EC6352-ELECTRICAL ENGINEERING AND INSTRUMENTATION UNIT 1 PART B 1. Explain in detail the constructional details and

More information

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2

Electronic Systems - B1 23/04/ /04/ SisElnB DDC. Chapter 2 Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction

ELECTRONIC SYSTEMS. Introduction. B1 - Sensors and actuators. Introduction Politecnico di Torino - ICT school Goup B - goals ELECTRONIC SYSTEMS B INFORMATION PROCESSING B.1 Systems, sensors, and actuators» System block diagram» Analog and digital signals» Examples of sensors»

More information

Electronic Instrumentation and Measurements

Electronic Instrumentation and Measurements Electronic Instrumentation and Measurements A fundamental part of many electromechanical systems is a measurement system that composed of four basic parts: Sensors Signal Conditioning Analog-to-Digital-Conversion

More information

Figure 1.1 Mechatronic system components (p. 3)

Figure 1.1 Mechatronic system components (p. 3) Figure 1.1 Mechatronic system components (p. 3) Example 1.2 Measurement System Digital Thermometer (p. 5) Figure 2.2 Electric circuit terminology (p. 13) Table 2.2 Resistor color band codes (p. 18) Figure

More information

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem

Lesson Plan. Week Theory Practical Lecture Day. Topic (including assignment / test) Day. Thevenin s theorem, Norton s theorem Name of the faculty: GYANENDRA KUMAR YADAV Discipline: APPLIED SCIENCE(C.S.E,E.E.ECE) Year : 1st Subject: FEEE Lesson Plan Lesson Plan Duration: 31 weeks (from July, 2018 to April, 2019) Week Theory Practical

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits Alternating Current Circuits Electrical appliances in the house use alternating current (AC) circuits. If an AC source applies an alternating voltage to a series

More information

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF

Alternating Current. Slide 1 / 69. Slide 2 / 69. Slide 3 / 69. Topics to be covered. Sources of Alternating EMF. Sources of alternating EMF Slide 1 / 69 lternating urrent Sources of alternating EMF Transformers ircuits and Impedance Topics to be covered Slide 2 / 69 LR Series ircuits Resonance in ircuit Oscillations Sources of lternating EMF

More information

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered

Alternating Current. Slide 2 / 69. Slide 1 / 69. Slide 3 / 69. Slide 4 / 69. Slide 6 / 69. Slide 5 / 69. Topics to be covered Slide 1 / 69 lternating urrent Sources of alternating EMF ircuits and Impedance Slide 2 / 69 Topics to be covered LR Series ircuits Resonance in ircuit Oscillations Slide 3 / 69 Sources of lternating EMF

More information

MECE 3320 Measurements & Instrumentation. Data Acquisition

MECE 3320 Measurements & Instrumentation. Data Acquisition MECE 3320 Measurements & Instrumentation Data Acquisition Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Sampling Concepts 1 f s t Sampling Rate f s 2 f m or

More information

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is

1. If the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1. f the flux associated with a coil varies at the rate of 1 weber/min,the induced emf is 1 1. 1V 2. V 60 3. 60V 4. Zero 2. Lenz s law is the consequence of the law of conservation of 1. Charge 2. Mass

More information

Part 10: Transducers

Part 10: Transducers Part 10: Transducers 10.1: Classification of Transducers An instrument may be defined as a device or a system which is designed to maintain a functional relationship between prescribed properties of physical

More information

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg.

Aligarh College of Engineering & Technology (College Code: 109) Affiliated to UPTU, Approved by AICTE Electrical Engg. Aligarh College of Engineering & Technology (College Code: 19) Electrical Engg. (EE-11/21) Unit-I DC Network Theory 1. Distinguish the following terms: (a) Active and passive elements (b) Linearity and

More information

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF

AP Physics C. Alternating Current. Chapter Problems. Sources of Alternating EMF AP Physics C Alternating Current Chapter Problems Sources of Alternating EMF 1. A 10 cm diameter loop of wire is oriented perpendicular to a 2.5 T magnetic field. What is the magnetic flux through the

More information

Chapter 33. Alternating Current Circuits

Chapter 33. Alternating Current Circuits Chapter 33 Alternating Current Circuits C HAP T E O UTLI N E 33 1 AC Sources 33 2 esistors in an AC Circuit 33 3 Inductors in an AC Circuit 33 4 Capacitors in an AC Circuit 33 5 The L Series Circuit 33

More information

09-2 EE 4770 Lecture Transparency. Formatted 12:49, 19 February 1998 from lsli

09-2 EE 4770 Lecture Transparency. Formatted 12:49, 19 February 1998 from lsli 09-1 09-1 Displacement and Proximity Displacement transducers measure the location of an object. Proximity transducers determine when an object is near. Criteria Used in Selection of Transducer How much

More information

UNIT 10 INTRODUCTION TO TRANSDUCERS AND SENSORS

UNIT 10 INTRODUCTION TO TRANSDUCERS AND SENSORS UNIT 10 INTRODUCTION TO TRANSDUCERS AND SENSORS Structure 10.1 Introduction Objectives 10.2 Active and Passive Sensors 10.3 Basic Requirements of a Sensor/Transducer 10.4 Discrete Event Sensors 10.4.1

More information

Course Plan Overview January 2015

Course Plan Overview January 2015 Course Plan Overview January 2015 Page- 1 Impedance: Traditional electrical sense - as generalized resistance: Simple & Complex!! In the mechanical sense, or in a general sense with regard to other domains

More information

How to Select the Right Positioning Sensor Solution A WHITE PAPER

How to Select the Right Positioning Sensor Solution A WHITE PAPER How to Select the Right Positioning Sensor Solution A WHITE PAPER Published 10/1/2012 Today s machinery and equipment are continuously evolving, designed to enhance efficiency and built to withstand harsher

More information

Position Sensors. The Potentiometer.

Position Sensors. The Potentiometer. Position Sensors In this tutorial we will look at a variety of devices which are classed as Input Devices and are therefore called "Sensors" and in particular those sensors which are Positional in nature

More information

Energy efficient active vibration control strategies using electromagnetic linear actuators

Energy efficient active vibration control strategies using electromagnetic linear actuators Journal of Physics: Conference Series PAPER OPEN ACCESS Energy efficient active vibration control strategies using electromagnetic linear actuators To cite this article: Angel Torres-Perez et al 2018 J.

More information

PVA Sensor Specifications

PVA Sensor Specifications Position, Velocity, and Acceleration Sensors 24.1 Sections 8.2-8.5 Position, Velocity, and Acceleration (PVA) Sensors PVA Sensor Specifications Good website to start your search for sensor specifications:

More information

9/28/2010. Chapter , The McGraw-Hill Companies, Inc.

9/28/2010. Chapter , The McGraw-Hill Companies, Inc. Chapter 4 Sensors are are used to detect, and often to measure, the magnitude of something. They basically operate by converting mechanical, magnetic, thermal, optical, and chemical variations into electric

More information

Walchand Institute of Technology. Basic Electrical and Electronics Engineering. Transformer

Walchand Institute of Technology. Basic Electrical and Electronics Engineering. Transformer Walchand Institute of Technology Basic Electrical and Electronics Engineering Transformer 1. What is transformer? explain working principle of transformer. Electrical power transformer is a static device

More information

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos "t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E

Physics for Scientists & Engineers 2 2 = 1 LC. Review ( ) Review (2) Review (3) e! Rt. cos t + # ( ) q = q max. Spring Semester 2005 Lecture 30 U E Review hysics for Scientists & Engineers Spring Semester 005 Lecture 30! If we have a single loop RLC circuit, the charge in the circuit as a function of time is given by! Where q = q max e! Rt L cos "t

More information

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer:

Biomedical Electrodes, Sensors, and Transducers. Definition of Biomedical Electrodes, Sensors, and Transducers. Electrode: Sensor: Transducer: Biomedical Electrodes, Sensors, and Transducers from: Chaterjee, Biomedical Instrumentation, chapter 6 Key Points Electrodes, Sensors, and Transducers: - types of electrodes - voltaic - electrolytic -

More information

Sensors and Transducers

Sensors and Transducers Sensors and Transducers Transducers-Transducer is a device which converts one form of energy into another form of energy. Electrical transducers are those which convert one form of energy into electrical

More information

Sensors & transducers

Sensors & transducers Sensors & transducers Prof. H. Arya DEPT. OF AEROSPACE ENGINEERING IIT BOMBAY Sensors Sensors - A device that produces an output signal for the purpose of sensing a physical phenomenon. Sensors are also

More information

Chapter 8. Digital and Analog Interfacing Methods

Chapter 8. Digital and Analog Interfacing Methods Chapter 8 Digital and Analog Interfacing Methods Lesson 16 MCU Based Instrumentation Outline Resistance and Capacitance based Sensor Interface Inductance based Sensor (LVDT) Interface Current based (Light

More information

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits

EE 221 Circuits II. Chapter 13 Magnetically Coupled Circuits EE Circuits II Chapter 3 Magnetically Coupled Circuits Magnetically Coupled Circuits 3. What is a transformer? 3. Mutual Inductance 3.3 Energy in a Coupled Circuit 3.4 inear Transformers 3.5 Ideal Transformers

More information

M.D. Singh J.G. Joshi MECHATRONICS

M.D. Singh J.G. Joshi MECHATRONICS M.D. Singh J.G. Joshi MECHATRONICS MECHATRONICS MECHATRONICS M.D. SINGH Formerly Principal Sagar Institute of Technology and Research Bhopal J.G. JOSHI Lecturer Department of Electronics and Telecommunication

More information

BASIC ELECTRICITY/ APPLIED ELECTRICITY

BASIC ELECTRICITY/ APPLIED ELECTRICITY BASIC ELECTRICITY/ APPLIED ELECTRICITY PREAMBLE This examination syllabus has been evolved from the Senior Secondary School Electricity curriculum. It is designed to test candidates knowledge and understanding

More information

BASIC ELECTRICITY/ APPLIED ELECTRICITY

BASIC ELECTRICITY/ APPLIED ELECTRICITY BASIC ELECTRICITY/ APPLIED ELECTRICITY PREAMBLE This examination syllabus has been evolved from the Senior Secondary School Electricity curriculum. It is designed to test candidates knowledge and understanding

More information

1. (a) Determine the value of Resistance R and current in each branch when the total current taken by the curcuit in figure 1a is 6 Amps.

1. (a) Determine the value of Resistance R and current in each branch when the total current taken by the curcuit in figure 1a is 6 Amps. Code No: 07A3EC01 Set No. 1 II B.Tech I Semester Regular Examinations, November 2008 ELECTRICAL AND ELECTRONICS ENGINEERING ( Common to Civil Engineering, Mechanical Engineering, Mechatronics, Production

More information

29 th International Physics Olympiad

29 th International Physics Olympiad 29 th International Physics Olympiad Reykjavik, Iceland Experimental competition Monday, July 6th, 1998 Time available: 5 hours Read this first: Use only the pen provided. 1. Use only the front side of

More information

Mechatronics Chapter Sensors 9-1

Mechatronics Chapter Sensors 9-1 MEMS1049 Mechatronics Chapter Sensors 9-1 Proximity sensors and Switches Proximity sensor o o o A proximity sensor is a sensor able to detect the presence of nearby objects without any physical contact.

More information

Hours / 100 Marks Seat No.

Hours / 100 Marks Seat No. 17215 16117 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Illustrate your answers with neat sketches wherever necessary. (3) Figures to the right indicate full marks. (4) Use

More information

RLC-circuits TEP. f res. = 1 2 π L C.

RLC-circuits TEP. f res. = 1 2 π L C. RLC-circuits TEP Keywords Damped and forced oscillations, Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, reactance, impedance, phase displacement, Q-factor, band-width

More information

Synchronous Machines Study Material

Synchronous Machines Study Material Synchronous machines: The machines generating alternating emf from the mechanical input are called alternators or synchronous generators. They are also known as AC generators. All modern power stations

More information

Inductive Sensors. Fig. 1: Geophone

Inductive Sensors. Fig. 1: Geophone Inductive Sensors A voltage is induced in the loop whenever it moves laterally. In this case, we assume it is confined to motion left and right in the figure, and that the flux at any moment is given by

More information

Chapter Moving Charges and Magnetism

Chapter Moving Charges and Magnetism 100 Chapter Moving Charges and Magnetism 1. The power factor of an AC circuit having resistance (R) and inductance (L) connected in series and an angular velocity ω is [2013] 2. [2002] zero RvB vbl/r vbl

More information

Chapter 16: Mutual Inductance

Chapter 16: Mutual Inductance Chapter 16: Mutual Inductance Instructor: Jean-François MILLITHALER http://faculty.uml.edu/jeanfrancois_millithaler/funelec/spring2017 Slide 1 Mutual Inductance When two coils are placed close to each

More information

VIDYARTHIPLUS - ANNA UNIVERSITY ONLINE STUDENTS COMMUNITY UNIT 1 DC MACHINES PART A 1. State Faraday s law of Electro magnetic induction and Lenz law. 2. Mention the following functions in DC Machine (i)

More information

Electrical Engineering / Electromagnetics

Electrical Engineering / Electromagnetics Electrical Engineering / Electromagnetics. Plot voltage versus time and current versus time for the circuit with the following substitutions: A. esistor B. Capacitor C. Inductor t = 0 A/B/C A. I t t B.

More information

Inductive versus magnetic position sensors

Inductive versus magnetic position sensors T E C H N I C A L W H I T E P A P E R Inductive versus magnetic position sensors Author: Mark Howard, General Manager, Zettlex UK Ltd File ref: technical articles/inductive vs. magnetic_rev_2.0 w w w.

More information

Practical Transformer on Load

Practical Transformer on Load Practical Transformer on Load We now consider the deviations from the last two ideality conditions : 1. The resistance of its windings is zero. 2. There is no leakage flux. The effects of these deviations

More information

CHAPTER 9. Sinusoidal Steady-State Analysis

CHAPTER 9. Sinusoidal Steady-State Analysis CHAPTER 9 Sinusoidal Steady-State Analysis 9.1 The Sinusoidal Source A sinusoidal voltage source (independent or dependent) produces a voltage that varies sinusoidally with time. A sinusoidal current source

More information

Direct Current Waveforms

Direct Current Waveforms Cornerstone Electronics Technology and Robotics I Week 20 DC and AC Administration: o Prayer o Turn in quiz Direct Current (dc): o Direct current moves in only one direction in a circuit. o Though dc must

More information

Load Cells, LVDTs and Thermocouples

Load Cells, LVDTs and Thermocouples Load Cells, LVDTs and Thermocouples Introduction Load cells are utilized in nearly every electronic weighing system while LVDTs are used to measure the displacement of a moving object. Thermocouples have

More information

Simple AC Circuits. Introduction

Simple AC Circuits. Introduction Simple AC Circuits Introduction Each problem in this problem set involves the steady state response of a linear, time-invariant circuit to a single sinusoidal input. Such a response is known to be sinusoidal

More information

Signal Conditioning Systems

Signal Conditioning Systems Note-13 1 Signal Conditioning Systems 2 Generalized Measurement System: The output signal from a sensor has generally to be processed or conditioned to make it suitable for the next stage Signal conditioning

More information

MECHANICAL ENGINEERING SYSTEMS LABORATORY

MECHANICAL ENGINEERING SYSTEMS LABORATORY MECHANICAL ENGINEERING SYSTEMS LABORATORY Group 02 Asst. Prof. Dr. E. İlhan KONUKSEVEN FUNDAMENTAL CONCEPTS IN MEASUREMENT AND EXPERIMENTATION HOW TO MEASURE? BY MEANS OF SENSING DEVICES OFTEN CALLED:

More information

ni.com Sensor Measurement Fundamentals Series

ni.com Sensor Measurement Fundamentals Series Sensor Measurement Fundamentals Series Introduction to Data Acquisition Basics and Terminology Litkei Márton District Sales Manager National Instruments What Is Data Acquisition (DAQ)? 3 Why Measure? Engineers

More information

Chapter 31 Alternating Current

Chapter 31 Alternating Current Chapter 31 Alternating Current In this chapter we will learn how resistors, inductors, and capacitors behave in circuits with sinusoidally vary voltages and currents. We will define the relationship between

More information

Chapt ha e pt r e r 11 Inductors

Chapt ha e pt r e r 11 Inductors Chapter 11 Inductors The Basic Inductor When a length of wire is formed onto a coil, it becomes a basic inductor Magnetic lines of force around each loop in the winding of the coil effectively add to the

More information

LEP RLC Circuit

LEP RLC Circuit RLC Circuit LEP Related topics Kirchhoff s laws, series and parallel tuned circuit, resistance, capacitance, inductance, phase displacement, Q-factor, band-width, loss resistance, damping Principle The

More information

Sensors DR. GYURCSEK ISTVÁN

Sensors DR. GYURCSEK ISTVÁN DR. GYURCSEK ISTVÁN Sensors Sources and additional materials (recommended) Lambert Miklós: Szenzorok elmélet (ISBN 978-963-874001-1-3) Bp. 2009 Jacob Fraden: Handbook of Modern Sensors (ISBN 978-1-4419-6465-6)

More information

11. AC-resistances of capacitor and inductors: Reactances.

11. AC-resistances of capacitor and inductors: Reactances. 11. AC-resistances of capacitor and inductors: Reactances. Purpose: To study the behavior of the AC voltage signals across elements in a simple series connection of a resistor with an inductor and with

More information

Design on LVDT Displacement Sensor Based on AD598

Design on LVDT Displacement Sensor Based on AD598 Sensors & Transducers 2013 by IFSA http://www.sensorsportal.com Design on LDT Displacement Sensor Based on AD598 Ran LIU, Hui BU North China University of Water Resources and Electric Power, 450045, China

More information

Experiment 4: Grounding and Shielding

Experiment 4: Grounding and Shielding 4-1 Experiment 4: Grounding and Shielding Power System Hot (ed) Neutral (White) Hot (Black) 115V 115V 230V Ground (Green) Service Entrance Load Enclosure Figure 1 Typical residential or commercial AC power

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 3: Position, Displacement, and Level Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty

More information

Physics 132 Quiz # 23

Physics 132 Quiz # 23 Name (please (please print) print) Physics 132 Quiz # 23 I. I. The The current in in an an ac ac circuit is is represented by by a phasor.the value of of the the current at at some time time t t is is

More information

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB

Bakiss Hiyana binti Abu Bakar JKE, POLISAS BHAB 1 Bakiss Hiyana binti Abu Bakar JKE, POLISAS 1. Explain AC circuit concept and their analysis using AC circuit law. 2. Apply the knowledge of AC circuit in solving problem related to AC electrical circuit.

More information

DSC Lab 2: Force and Displacement Measurement Page 1

DSC Lab 2: Force and Displacement Measurement Page 1 DSC Lab 2: Force and Displacement Measurement Page 1 Overview of Laboratory on Force and Displacement Measurement This lab course introduces concepts in force and motion measurement using strain-gauge

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 5: Displacement measurement Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty of Engineering

More information