Control of the Robot, Using the Teach Pendant

Size: px
Start display at page:

Download "Control of the Robot, Using the Teach Pendant"

Transcription

1 Exercise 1-2 Control of the Robot, Using the Teach Pendant EXERCISE OBJECTIVE In the first part of this exercise, you will use the optional Teach Pendant to change the coordinates of each robot's articulation, while observing the motions performed by the robot. In the second part of the exercise, you will experiment further with control of the robot motions by having the robot grip, move, and rotate objects. DISCUSSION Refer to the introductory section DISCUSSION OF FUNDAMENTALS of Unit 1 to review the principles for performing this exercise. Appendix C of this manual lists the Teach Pendant's commands used to make the robot perform actions. For detailed information on the Teach Pendant's menus and commands, refer to Section 3 of the Lab-Volt User Guide Robot System Model 5150 (part number E). EQUIPMENT REQUIRED Refer to the Equipment Utilization Chart in Appendix A of the manual to obtain the list of equipment required to perform this exercise. Procedure Summary In the first part of this exercise, you will use the optional Teach Pendant to experiment with control of the robot's articulations. In the second part of the exercise, you will experiment further with control of the robot's articulation with the Teach Pendant by having the robot grip, move, and rotate objects. PROCEDURE CAUTION! When you are working with moving equipment, make sure you are not wearing anything that might get caught in the equipment, such as a tie or jewelry. If your hair is long, tie it out of the way. Pay particular attention to keeping your hands, other body parts, or anything attached to your body out of the mechanisms of the robot while the robot is moving. 1-15

2 Setting Up the System G 1. On the Work Surface, position the robot as indicated in Figure 1-3 (position R0,C7). Do not position the accessories yet. This will be done later in the exercise. Note: Figure 1-3 is in the introductory section DISCUSSION OF FUNDAMENTALS of Unit 1. G 2. Connect the equipment as shown in Figure B-2 of Appendix B. This figure shows the connections to make between the robot, the Teach Pendant, and the Power Supply. Note: For detailed information on the system connections to make when the optional Teach Pendant is used, refer to Section 2 of the Lab-Volt User Guide "Robot System Model 5150", part number E. Control of the Robot's Articulations, Using the Teach Pendant G 3. Turn on the Power Supply. Perform a hard home positioning of the robot: a. On the Teach Pendant, press the Main Menu key to access this menu. b. Press key 3 to access the Initialize Menu. c. Press key 1 to initiate the hard home positioning. The message Reset Home? will appear, prompting you to reset the system settings. Press key 1 to accept and perform the hard home positioning. d. Once the hard home positioning has been performed, press the ESC key to return to the Main Menu. Accessing the Teach Menu G 4. On the Teach Pendant, press the Teach Menu key to display this menu. This will cause the Teach LED of the Teach Pendant to become lit, and will activate the keys required to move the robot's articulations. Table 1-2 lists these keys, as well as their action on the robot's articulations. Note: In the following steps, you will experiment with control of each robot's articulation, using the keys listed in Table 1-2. While doing this, you can modify the speed at which each articulation moves, as indicated below. a. On the Teach Pendant, press the Set Speed key to access the Set Speed menu. 1-16

3 b. Enter the desired speed value (0 through 99). High speeds (50 or higher) are normally used for long moves and for opening or closing the gripper. Slower speeds (lower than 50) are normally used for precise approach moves. It is recommended that you use a speed of 50 or lower when you begin experimenting with the robot's articulations. c. Once the speed value is entered, the Teach Pendant's display will automatically return to the Teach Menu. KEYSTROKE OF THE TEACH PENDANT (ENABLED WHEN THE TEACH MENU IS DISPLAYED) Base + and Base Shdr + and Shdr Arm + and Arm Pitch + and Pitch Roll + and Roll Grip + and Grip Set Speed (01-99) ARTICULATION MOTION Rotates the shoulder Raises and lowers the upper arm Raises and lowers the forearm Raises and lowers the gripper Rotates the gripper Opens and closes the gripper Provides control of the speed of motion Table 1-2. Keys of the Teach Pendant used to move the robot's articulations. Control of the robot's articulations G 5. Experiment with rotation of the robot shoulder in the clockwise and counterclockwise directions: Press the Base + and Base keys to rotate the shoulder to different positions. Taking care not to exceed the mechanical limits, determine the motion range of the shoulder, then return the shoulder to its initial position. G 6. Experiment with moving the forearm of the robot up and down. Press the Arm + and Arm keys to move the forearm to different positions, taking care not to exceed the mechanical limits. Determine the motion range of the forearm, then return the forearm arm to its initial position. Note: If you continue pressing on the Arm + or Arm key after the forearm has reached an extremity of its motion range, the elbow stepper motor will miss steps and the gripper will start to move up or down. Should this occur, perform a hard home positioning before you continue. G 7. Experiment with moving the upper arm of the robot up and down. 1-17

4 Press the Shdr + and Shdr keys to move the upper arm to different positions, taking care not to exceed the mechanical limits. Determine the motion range of the upper arm, which will probably require you to move the arm articulation in order to avoid collisions. Then, return the upper arm to its initial position. Note: If you continue pressing on the Shdr + or Shdr key after the upper arm has reached an extremity of its motion range, the shoulder stepper motor will miss steps and the forearm will start to move. It you further continue pressing on the Shdr + or Shdr key until the forearm reaches an extremity of its motion range, the elbow stepper motor will miss steps too and the gripper will start to move up or down. In any case, you will have to perform a hard home positioning before you continue. G 8. Experiment with moving the gripper of the robot up and down. Press the Pitch + and Pitch keys to move the gripper to different positions. Taking care not to exceed the mechanical limits, determine the motion range of the gripper, then return the gripper to its initial position. G 9. Experiment with rotation of the robot gripper in the clockwise and counterclockwise directions. Press the Roll + and Roll keys to rotate the gripper to different angular positions. Observe that the gripper can be rotated over 360 in either direction. Return the gripper to its initial position. G 10. Experiment with opening and closing the robot gripper. a. Press the Grip + and Grip keys to open and then close the gripper fully. b. Return the gripper to the fully closed condition. Note: A speed of 90 or higher is normally used to open and close the gripper. To set the speed to this value, press the key Set Speed of the Teach Pendant to access the Set Speed menu, then enter the desired speed. The Teach Pendant's display will then return automatically to the Teach Menu. Control of the Robot's Articulations to Grip, Move, and Rotate Objects G 11. Put the objects shown on the Work Surface, as shown in Figure 1-3 (square part, film canister, and metallic can), making sure to position them as indicated in the figure. Note: The dashed lines in Figure 1-3 indicate how the objects will be moved by the robot in the steps to follow. Do not take these lines into account for now. 1-18

5 G 12. With the Teach Menu of the Teach Pendant still displayed, use the motion keys of the robot articulations to make the robot grasp the film canister at position (R7,C6) and move it right over the metallic can without colliding into it, as shown in Figure 1-3. Note: To do this, it is recommended that you use speeds of 50 or faster for long moves, or for opening and closing the gripper, and to use slower speeds of 20 or 30 for precise approach moves. Once the film canister is over the can, open the gripper in order for the canister to be dropped into the can. G 13. Now, use the motion keys of the robot articulations to make the robot grasp the square part and move it to position (R2,C2) of the Work Surface, as shown in Figure 1-3. G 14. If time permits, experiment further with moving the robot articulations by making the robot grasp the square part and move it to several locations on the Work Surface. Shutdown Procedure G 15. Perform the following shutdown procedure. a. Make sure there is nothing inside the robot gripper (if an object is present within the gripper, open the gripper to release this object.) b. Clear the area around the robot, so that it will not hit anything when it moves. c. Perform a soft home positioning. On the Teach Pendant, press the key Main Menu, then press key 3 (Initialize Menu), and then press key 2 (Move Home). d. Turn off the Power Supply. e. Disconnect the system and return the equipment to its storage location. CONCLUSION In this exercise, you were introduced to the installation and connection of the robot training system. You learned how to control the various articulations of the robot, using the optional Teach Pendant. You then experimented further with control of the robot motions by having the robot grip, move, and rotate objects. 1-19

6 REVIEW QUESTIONS 1. List examples of operations performed by robots in industry, that can be hazardous or repetitive for humans. 2. Give some examples of applications in which robots are used. 3. Name three parts of the Lab-Volt 5150 Robot that can move up and down. 4. Name two parts of the Lab-Volt 5150 Robot than can rotate. 5. Which part of the robot can be opened or closed to pick up items before moving them to another location? 1-20

Exercise 1-1. Control of the Robot, Using RoboCIM EXERCISE OBJECTIVE

Exercise 1-1. Control of the Robot, Using RoboCIM EXERCISE OBJECTIVE Exercise 1-1 Control of the Robot, Using RoboCIM EXERCISE OBJECTIVE In the first part of this exercise, you will use the RoboCIM software in the Simulation mode. You will change the coordinates of each

More information

Familiarization with the Servo Robot System

Familiarization with the Servo Robot System Exercise 1 Familiarization with the Servo Robot System EXERCISE OBJECTIVE In this exercise, you will be introduced to the Lab-Volt Servo Robot System. In the Procedure section, you will install and connect

More information

Exercise 2. Point-to-Point Programs EXERCISE OBJECTIVE

Exercise 2. Point-to-Point Programs EXERCISE OBJECTIVE Exercise 2 Point-to-Point Programs EXERCISE OBJECTIVE In this exercise, you will learn various important terms used in the robotics field. You will also be introduced to position and control points, and

More information

Exercise 10. Linear Slides EXERCISE OBJECTIVE

Exercise 10. Linear Slides EXERCISE OBJECTIVE Exercise 10 Linear Slides EXERCISE OBJECTIVE In this exercise, you will learn to use a linear slide. You will learn how to use the Linear Slide, Model 5209, to extend the work envelope of the Servo Robot.

More information

Introduction to Robotics

Introduction to Robotics Mechatronics Introduction to Robotics Courseware Sample 39411-F0 Order no.: 39411-00 First Edition Revision level: 02/2015 By the staff of Festo Didactic Festo Didactic Ltée/Ltd, Quebec, Canada 2007 Internet:

More information

ME Advanced Manufacturing Technologies Robot Usage and Commands Summary

ME Advanced Manufacturing Technologies Robot Usage and Commands Summary ME 447 - Advanced Manufacturing Technologies Robot Usage and Commands Summary Start-up and Safety This guide is written to help you safely and effectively utilize the CRS robots to complete your labs and

More information

THESE ARE NOT TOYS!! IF YOU CAN NOT FOLLOW THE DIRECTIONS, YOU WILL NOT USE THEM!!

THESE ARE NOT TOYS!! IF YOU CAN NOT FOLLOW THE DIRECTIONS, YOU WILL NOT USE THEM!! ROBOTICS If you were to walk into any major manufacturing plant today, you would see robots hard at work. Businesses have used robots for many reasons. Robots do not take coffee breaks, vacations, call

More information

2 Robot Pick and Place

2 Robot Pick and Place 2 Robot Pick and Place NAME: Date: Section: INTRODUCTION Robotic arms are excellent for performing pick and place operations such as placing small electronic components on circuit boards, as well as large

More information

Job Sheet 2 Servo Control

Job Sheet 2 Servo Control Job Sheet 2 Servo Control Electrical actuators are replacing hydraulic actuators in many industrial applications. Electric servomotors and linear actuators can perform many of the same physical displacement

More information

KORE: Basic Course KUKA Official Robot Education

KORE: Basic Course KUKA Official Robot Education Training KUKAKA Robotics USA KORE: Basic Course KUKA Official Robot Education Target Group: School and College Students Issued: 19.09.2014 Version: KORE: Basic Course V1.1 Contents 1 Introduction to robotics...

More information

Lab Design of FANUC Robot Operation for Engineering Technology Major Students

Lab Design of FANUC Robot Operation for Engineering Technology Major Students Paper ID #21185 Lab Design of FANUC Robot Operation for Engineering Technology Major Students Dr. Maged Mikhail, Purdue University Northwest Dr. Maged B.Mikhail, Assistant Professor, Mechatronics Engineering

More information

1 Robot Axis and Movement

1 Robot Axis and Movement 1 Robot Axis and Movement NAME: Date: Section: INTRODUCTION Jointed arm robots are useful for many different tasks because of its range of motion and degrees of freedom. In this activity you will learn

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

Note: Objective: Prelab: ME 5286 Robotics Labs Lab 1: Hello Cobot World Duration: 2 Weeks (1/28/2019 2/08/2019)

Note: Objective: Prelab: ME 5286 Robotics Labs Lab 1: Hello Cobot World Duration: 2 Weeks (1/28/2019 2/08/2019) ME 5286 Robotics Labs Lab 1: Hello Cobot World Duration: 2 Weeks (1/28/2019 2/08/2019) Note: At least two people must be present in the lab when operating the UR5 robot. Upload a selfie of you, your partner,

More information

Introduction: Components used:

Introduction: Components used: Introduction: As, this robotic arm is automatic in a way that it can decides where to move and when to move, therefore it works in a closed loop system where sensor detects if there is any object in a

More information

LAB 5: Mobile robots -- Modeling, control and tracking

LAB 5: Mobile robots -- Modeling, control and tracking LAB 5: Mobile robots -- Modeling, control and tracking Overview In this laboratory experiment, a wheeled mobile robot will be used to illustrate Modeling Independent speed control and steering Longitudinal

More information

Powermatic Model 31A Combination Belt-Disk Sander

Powermatic Model 31A Combination Belt-Disk Sander OPERATING PROCEDURE FOR: Powermatic Model 31A Combination Belt-Disk Sander INTRODUCTION: The combination belt-disk sander is used to sand the edges of boards. It can be used to smooth the edge or to remove

More information

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST

Introduction to robotics. Md. Ferdous Alam, Lecturer, MEE, SUST Introduction to robotics Md. Ferdous Alam, Lecturer, MEE, SUST Hello class! Let s watch a video! So, what do you think? It s cool, isn t it? The dedication is not! A brief history The first digital and

More information

Note: Objective: Prelab: ME 5286 Robotics Labs Lab 1: Hello Cobot World Duration: 2 Weeks (1/22/2018 2/02/2018)

Note: Objective: Prelab: ME 5286 Robotics Labs Lab 1: Hello Cobot World Duration: 2 Weeks (1/22/2018 2/02/2018) ME 5286 Robotics Labs Lab 1: Hello Cobot World Duration: 2 Weeks (1/22/2018 2/02/2018) Note: At least two people must be present in the lab when operating the UR5 robot. Upload a selfie of you, your partner,

More information

INDUSTRIAL ROBOTS AND ROBOT SYSTEM SAFETY

INDUSTRIAL ROBOTS AND ROBOT SYSTEM SAFETY INDUSTRIAL ROBOTS AND ROBOT SYSTEM SAFETY I. INTRODUCTION. Industrial robots are programmable multifunctional mechanical devices designed to move material, parts, tools, or specialized devices through

More information

Easy Robot Programming for Industrial Manipulators by Manual Volume Sweeping

Easy Robot Programming for Industrial Manipulators by Manual Volume Sweeping Easy Robot Programming for Industrial Manipulators by Manual Volume Sweeping *Yusuke MAEDA, Tatsuya USHIODA and Satoshi MAKITA (Yokohama National University) MAEDA Lab INTELLIGENT & INDUSTRIAL ROBOTICS

More information

DPC-10. DPC-10 Software Operating Manual. Table of Contents. Section 1. Section 2. Section 3. Section 4. Section 5

DPC-10. DPC-10 Software Operating Manual. Table of Contents. Section 1. Section 2. Section 3. Section 4. Section 5 Table of Contents Section 1 Section 2 Section 3 Section 4 Section 5 About the Software Test Function Programming Functions Connections Basic Mode Connection RC Mode Connection Using the DPC-10 Test Functions

More information

Shop Fox Oscillating Spindle Sander

Shop Fox Oscillating Spindle Sander OPERATING PROCEDURE FOR: Shop Fox Oscillating Spindle Sander INTRODUCTION: The oscillating spindle sander is used to sand the edges of boards. It can be used to smooth the edge or to remove material to

More information

Term Paper: Robot Arm Modeling

Term Paper: Robot Arm Modeling Term Paper: Robot Arm Modeling Akul Penugonda December 10, 2014 1 Abstract This project attempts to model and verify the motion of a robot arm. The two joints used in robot arms - prismatic and rotational.

More information

Worksheet Answer Key: Tree Measurer Projects > Tree Measurer

Worksheet Answer Key: Tree Measurer Projects > Tree Measurer Worksheet Answer Key: Tree Measurer Projects > Tree Measurer Maroon = exact answers Magenta = sample answers Construct: Test Questions: Caliper Reading Reading #1 Reading #2 1492 1236 1. Subtract to find

More information

Manual Control Pendant

Manual Control Pendant Manual Control Pendant User's Guide EDI DISP - + USER CLR ERR CMD PROG SE WORLD OOL JOIN FREE DEV MAN HAL RUN HOLD SEP COMP PWR SLOW REC DONE NO ES R F F DEV F 7 8 9 0 DEL R R Part Number 000-0000 Rev

More information

Programming Design ROBOTC Software

Programming Design ROBOTC Software Programming Design ROBOTC Software Computer Integrated Manufacturing 2013 Project Lead The Way, Inc. Behavior-Based Programming A behavior is anything your robot does Example: Turn on a single motor or

More information

HOLE CUTTER SHARPENER ASSEMBLY & SERVICE MANUAL

HOLE CUTTER SHARPENER ASSEMBLY & SERVICE MANUAL HOLE CUTTER SHARPENER ASSEMBLY & SERVICE MANUAL WARNING You must thoroughly read and understand this manual before operating the equipment, paying particular attention to the Warning & Safety instructions.

More information

Physically Changing Glass

Physically Changing Glass Physically Changing Glass Part A: Notes I. States of Matter a. There are four states of matter on Earth: i. ii. iii. iv. (Circle the states above that we can easily observe in our science lab.) b. Matter

More information

MODEL C-71-5 TWO-MAN EARTH DRILL

MODEL C-71-5 TWO-MAN EARTH DRILL DO NOT THROW AWAY IMPORTANT MANUAL MODEL TWO-MAN EARTH DRILL Operator s Manual P.O.BOX 290 San Bernardino, CA. 92402 Phone (909) 478-5700 Fax (909) 478-5710 (800) 922-4680 E-mail: sales@groundhoginc.com

More information

ROTARY HAMMER OWNER'S MANUAL

ROTARY HAMMER OWNER'S MANUAL ROTARY HAMMER OWNER'S MANUAL WARNING: Read carefully and understand all INSTRUCTIONS before operating. Failure to follow the safety rules and other basic safety precautions may result in serious personal

More information

CHAPTER 5 INDUSTRIAL ROBOTICS

CHAPTER 5 INDUSTRIAL ROBOTICS CHAPTER 5 INDUSTRIAL ROBOTICS 5.1 Basic of Robotics 5.1.1 Introduction There are two widely used definitions of industrial robots : i) An industrial robot is a reprogrammable, multifunctional manipulator

More information

lab assistant guide (this means for parents!) how does this grab you? robotic arm 50 % KID ADULT experience interaction ages science

lab assistant guide (this means for parents!) how does this grab you? robotic arm 50 % KID ADULT experience interaction ages science lab assistant guide (this means for parents!) how does this grab you? robotic arm 50 % KID 5 + 50 % ADULT experience interaction ages science introduction SPARK THE DISCOVERY Spark is an exciting new synthesis

More information

Hydraulics are AMAZING! Use the power of water to control a machine. This guide will help you create your own Advanced Hydraulic Arm.

Hydraulics are AMAZING! Use the power of water to control a machine. This guide will help you create your own Advanced Hydraulic Arm. Hydraulics are AMAZING! Use the power of water to control a machine. This guide will help you create your own Advanced Hydraulic Arm. Perfect for Grades: 7+ Difficulty: Advanced Download Documents at teachergeek.com

More information

Model 204B-EM Elbow Mandrels Rev TABLE OF CONTENTS

Model 204B-EM Elbow Mandrels Rev TABLE OF CONTENTS 92-0697 Rev. 970131 Model 204B-EM Elbow Mandrels TABLE OF CONTENTS CUSTOMER MESSAGE Inside Front Cover SAFETY PRECAUTIONS 3 GENERAL DESCRIPTION 6 MAINTENANCE 7 OPERATION 8 TROUBLE SHOOTING 11 ACCESSORIES

More information

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor The bipolar amplifier is well suited for controlling motors for vehicle propulsion. Figure 12-45 shows a good-sized 24VDC motor that runs nicely on 13.8V from a lead acid battery based power supply. You

More information

Prof. Ciro Natale. Francesco Castaldo Andrea Cirillo Pasquale Cirillo Umberto Ferrara Luigi Palmieri

Prof. Ciro Natale. Francesco Castaldo Andrea Cirillo Pasquale Cirillo Umberto Ferrara Luigi Palmieri Real Time Control of an Anthropomorphic Robotic Arm using FPGA Advisor: Prof. Ciro Natale Students: Francesco Castaldo Andrea Cirillo Pasquale Cirillo Umberto Ferrara Luigi Palmieri Objective Introduction

More information

1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE

1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE 1-2 VOLTS PER HERTZ CHARACTERISTICS EXERCISE OBJECTIVE Set the rotation direction of the motor. Understand the V/f (volts per hertz) characteristics. Learn how to use an analog voltage to assign the frequency

More information

3-Degrees of Freedom Robotic ARM Controller for Various Applications

3-Degrees of Freedom Robotic ARM Controller for Various Applications 3-Degrees of Freedom Robotic ARM Controller for Various Applications Mohd.Maqsood Ali M.Tech Student Department of Electronics and Instrumentation Engineering, VNR Vignana Jyothi Institute of Engineering

More information

Low cost bench-top 5/6 axis general purpose articulated robot arm

Low cost bench-top 5/6 axis general purpose articulated robot arm Low cost bench-top 5/6 axis general purpose articulated robot arm Description R17 (Deucaleon) is a low cost entry to robotics, fast, accurate and reliable and easy to program. It has a long reach and therefore

More information

DXXX Series Servo Programming...9 Introduction...9 Connections HSB-9XXX Series Servo Programming...19 Introduction...19 Connections...

DXXX Series Servo Programming...9 Introduction...9 Connections HSB-9XXX Series Servo Programming...19 Introduction...19 Connections... DPC-11 Operation Manual Table of Contents Section 1 Introduction...2 Section 2 Installation...4 Software Installation...4 Driver Installastion...7 Section 3 Operation...9 D Series Servo Programming...9

More information

Six-degree-of-freedom robot design

Six-degree-of-freedom robot design Six-degree-of-freedom robot design Zhendong Guan a, Xiaobin Gong b, Shichang Yan c School of Shandong University of Science and Technology, Qingdao 266590, China a654201141@qq.com, b 528173250@qq.com,

More information

Head Tracker Range Checking

Head Tracker Range Checking Head Tracker Range Checking System Components Haptic Arm IR Transmitter Transmitter Screen Keyboard & Mouse 3D Glasses Remote Control Logitech Hardware Haptic Arm Power Supply Stand By button Procedure

More information

Robotic Navigation Distance Control Platform

Robotic Navigation Distance Control Platform Robotic Navigation Distance Control Platform System Block Diagram Student: Scott Sendra Project Advisors: Dr. Schertz Dr. Malinowski Date: November 18, 2003 Objective The objective of the Robotic Navigation

More information

Tele-Operated Anthropomorphic Arm and Hand Design

Tele-Operated Anthropomorphic Arm and Hand Design Tele-Operated Anthropomorphic Arm and Hand Design Namal A. Senanayake, Khoo B. How, and Quah W. Wai Abstract In this project, a tele-operated anthropomorphic robotic arm and hand is designed and built

More information

General Description. The TETRIX MAX Servo Motor Expansion Controller features the following:

General Description. The TETRIX MAX Servo Motor Expansion Controller features the following: General Description The TETRIX MAX Servo Motor Expansion Controller is a servo motor expansion peripheral designed to allow the addition of multiple servo motors to the PRIZM Robotics Controller. The device

More information

Megamark Arduino Library Documentation

Megamark Arduino Library Documentation Megamark Arduino Library Documentation The Choitek Megamark is an advanced full-size multipurpose mobile manipulator robotics platform for students, artists, educators and researchers alike. In our mission

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

Running the PR2. Chapter Getting set up Out of the box Batteries and power

Running the PR2. Chapter Getting set up Out of the box Batteries and power Chapter 5 Running the PR2 Running the PR2 requires a basic understanding of ROS (http://www.ros.org), the BSD-licensed Robot Operating System. A ROS system consists of multiple processes running on multiple

More information

Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1 Student of MTECH CAD/CAM, Department of Mechanical Engineering, GHRCE Nagpur, MH, India

Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1 Student of MTECH CAD/CAM, Department of Mechanical Engineering, GHRCE Nagpur, MH, India Design and simulation of robotic arm for loading and unloading of work piece on lathe machine by using workspace simulation software: A Review Milind R. Shinde #1, V. N. Bhaiswar *2, B. G. Achmare #3 1

More information

Arduino Control of Tetrix Prizm Robotics. Motors and Servos Introduction to Robotics and Engineering Marist School

Arduino Control of Tetrix Prizm Robotics. Motors and Servos Introduction to Robotics and Engineering Marist School Arduino Control of Tetrix Prizm Robotics Motors and Servos Introduction to Robotics and Engineering Marist School Motor or Servo? Motor Faster revolution but less Power Tetrix 12 Volt DC motors have a

More information

Parametric Drawing Using Constraints

Parametric Drawing Using Constraints CHAPTER 10 Parametric Drawing Using Constraints PROJECT EXERCISE This project exercise provides point-by-point instructions for creating the objects shown in Figure P10 1. In this exercise, you will apply

More information

Chapter #4: Controlling Motion

Chapter #4: Controlling Motion Chapter #4: Controlling Motion Page 101 Chapter #4: Controlling Motion MICROCONTROLLED MOTION Microcontrollers make sure things move to the right place all around you every day. If you have an inkjet printer,

More information

ROBOT DESIGN AND DIGITAL CONTROL

ROBOT DESIGN AND DIGITAL CONTROL Revista Mecanisme şi Manipulatoare Vol. 5, Nr. 1, 2006, pp. 57-62 ARoTMM - IFToMM ROBOT DESIGN AND DIGITAL CONTROL Ovidiu ANTONESCU Lecturer dr. ing., University Politehnica of Bucharest, Mechanism and

More information

Operating Guide. HT25 Multi Side Tabber & Stamp Affixer. HASLER America s better choice. Mailing Systems And Solutions

Operating Guide. HT25 Multi Side Tabber & Stamp Affixer. HASLER America s better choice. Mailing Systems And Solutions Operating Guide Mailing Systems And Solutions HASLER America s better choice HT25 Multi Side Tabber & Stamp Affixer An ISO 9001 Quality System Certified company Rev. 8/25/2010 Please record the following

More information

VARIABLE SPEED WOOD LATHE. Model DB900 INSTRUCTION MANUAL

VARIABLE SPEED WOOD LATHE. Model DB900 INSTRUCTION MANUAL VARIABLE SPEED WOOD LATHE Model DB900 INSTRUCTION MANUAL 1007 TABLE OF CONTENTS SECTION...PAGE Technical data.. 1 General safety rules....1-3 Specific safety rules for wood lathe.....3 Electrical information.4

More information

Design Experience in a Laboratory Environment

Design Experience in a Laboratory Environment Session 1626 Design Experience in a Laboratory Environment Nagy N. Bengiamin Electrical Engineering Department University of North Dakota Grand Forks, ND Abstract - This paper addresses enhancing engineering

More information

PARTS. W1669 & W1670 Parts PARTS. Model W1669/W1670 (For Machines Mfd. Since 04/18) 66V A A A 28A

PARTS. W1669 & W1670 Parts PARTS. Model W1669/W1670 (For Machines Mfd. Since 04/18) 66V A A A 28A W1669 & W1670 Parts 23 66V2 22 21 25 26 53A 62 63 89 64 9 65 24 20 15 16A 54 93 10 16A-1 81 77 94 53 79 102 103 28 36 8 30 19 31 32 32-1 109 28A 28 27 34 33 56 49 76 76 19-3 19-1 19-2 38-1 89 35 60 59

More information

Learn about the RoboMind programming environment

Learn about the RoboMind programming environment RoboMind Challenges Getting Started Learn about the RoboMind programming environment Difficulty: (Easy), Expected duration: an afternoon Description This activity uses RoboMind, a robot simulation environment,

More information

Intro to Engineering II for ECE: Lab 3 Controlling Servo Motors Erin Webster and Dr. Jay Weitzen, c 2012 All rights reserved

Intro to Engineering II for ECE: Lab 3 Controlling Servo Motors Erin Webster and Dr. Jay Weitzen, c 2012 All rights reserved Lab 3: Controlling Servo Motors Laboratory Objectives: 1) To program the basic stamp to control the motion of a servo 2) To observe the control waveforms as the motion of the servo changes 3) To learn

More information

Trautman Carvers. Product Manual

Trautman Carvers. Product Manual Trautman Carvers Product Manual Contents Product Specifications.... 4 Operating Precautions.... 6 Floor Carver Use.... 7 Floor Carver Diagram.... 10 Trautman Motor Lift Assist.... 11 Use of the Lift Assist....

More information

Massachusetts Institute of Technology

Massachusetts Institute of Technology Objectives and Lab Overview Massachusetts Institute of Technology Robotics: Science and Systems I Lab 7: Grasping and Object Transport Distributed: Wednesday, 3/31/2010, 3pm Checkpoint: Monday, 4/5/2010,

More information

INDEX A FAGOR. 1. MC Training Manual. 2. Additional Simple Cycles. 3. USB Interface. 4. Installation. 5. Electrical Drawings

INDEX A FAGOR. 1. MC Training Manual. 2. Additional Simple Cycles. 3. USB Interface. 4. Installation. 5. Electrical Drawings KNEE MILL PACKAGE INDEX 1. MC Training Manual 2. Additional Simple Cycles 3. USB Interface 4. Installation 5. Electrical Drawings 1 800 4A FAGOR * This information package also includes 8055 CNC Training

More information

Robotic modeling and simulation of palletizer robot using Workspace5

Robotic modeling and simulation of palletizer robot using Workspace5 Robotic modeling and simulation of palletizer robot using Workspace5 Nory Afzan Mohd Johari, Habibollah Haron, Abdul Syukor Mohamad Jaya Department of Modeling and Industrial Computing Faculty of Computer

More information

DEVELOPMENT OF ROBOT CELL FOR INTERACTIVE CATAPULT

DEVELOPMENT OF ROBOT CELL FOR INTERACTIVE CATAPULT Frederick Adotey Ofei Issah Musah DEVELOPMENT OF ROBOT CELL FOR INTERACTIVE CATAPULT Technology and Communication 2012 VAASAN AMMATTIKORKEAKOULU UNIVERSITY OF APPLIED SCIENCES Mechanical and Production

More information

Simulating the Arm Movements of a Stepper Motor Controlled Pickand-Place Robot Using the Stepper Motor Model

Simulating the Arm Movements of a Stepper Motor Controlled Pickand-Place Robot Using the Stepper Motor Model , pp.59-66 http://dx.doi.org/10.14257/ijast.2013.60.06 Simulating the Arm Movements of a Stepper Motor Controlled Pickand-Place Robot Using the Stepper Motor Model R. V. Sharan 1 and G. C. Onwubolu 2 1

More information

Human-to-Human Interface

Human-to-Human Interface iworx Physiology Lab Experiment Experiment HN-8 Human-to-Human Interface Introduction to Neuroprosthetics and Human-to-Human Muscle Control Background Set-up Lab Note: The lab presented here is intended

More information

Servo Robot Training Systems

Servo Robot Training Systems Servo Robot Training Systems LabVolt Series Datasheet Festo Didactic en 220 V - 50 Hz 07/2018 Table of Contents General Description 2 Robot Controller Module 3 Servo Robot Software 3 Location Pins 4 Included

More information

Assignment 5 CAD Mechanical Part 1

Assignment 5 CAD Mechanical Part 1 Assignment 5 CAD Mechanical Part 1 Objectives In this assignment you will apply polyline, offset, copy, move, and rotated dimension commands, as well as skills learned in earlier assignments. Getting Started

More information

Low cost robotic arm and cobotic

Low cost robotic arm and cobotic Low cost robotic arm and cobotic Autofina and University of Le Havre Autofina Session Agenda Introduction to Autofina Paresh Parekh, CEO Introduction to GREAH, University of Le Havre Jean-Francois Brethe

More information

Laboratory Seven Stepper Motor and Feedback Control

Laboratory Seven Stepper Motor and Feedback Control EE3940 Microprocessor Systems Laboratory Prof. Andrew Campbell Spring 2003 Groups Names Laboratory Seven Stepper Motor and Feedback Control In this experiment you will experiment with a stepper motor and

More information

Lab 5: Inverted Pendulum PID Control

Lab 5: Inverted Pendulum PID Control Lab 5: Inverted Pendulum PID Control In this lab we will be learning about PID (Proportional Integral Derivative) control and using it to keep an inverted pendulum system upright. We chose an inverted

More information

9.07 KINEMATICS KIT USERS MANUAL

9.07 KINEMATICS KIT USERS MANUAL 9.07 KINEMATICS KIT USERS MANUAL INCLUDED PARTS LIST Standard parts - 1. ground plane enclosure which includes stepper motor with control circuits, press fit motor shaft adaptor, and link attachment plate.

More information

Servo Indexer Reference Guide

Servo Indexer Reference Guide Servo Indexer Reference Guide Generation 2 - Released 1/08 Table of Contents General Description...... 3 Installation...... 4 Getting Started (Quick Start)....... 5 Jog Functions..... 8 Home Utilities......

More information

The Robot Program Episode 002: Building JD

The Robot Program Episode 002: Building JD www.ez-robot.com The Robot Program Episode 002: Building JD This lesson will demonstrate how to build the [b]revolution JD[/b] robot. Follow along with [b]the Robot Program Episode 002: Building JD[/b].

More information

DICOM Correction Item

DICOM Correction Item DICOM Correction Item Correction Number CP- 617 Log Summary: Type of Modification Addition Name of Standard PS 3.3 2006 Rationale for Correction: The motion of modern patient support devices is no longer

More information

FLEXIBLE MANUFACTURING SYSTEM. Teacher's Guide. SCORBOT-ER 4u and spectralight 200

FLEXIBLE MANUFACTURING SYSTEM. Teacher's Guide. SCORBOT-ER 4u and spectralight 200 teklink FLEXIBLE MANUFACTURING SYSTEM SCORBOT-ER 4u and spectralight 200 Teacher's Guide Catalog # 100351 Rev.A March 2002 Copyright 2002 Intelitek Inc. Catalog No. 100351 Rev. A March 2002 Flexible Manufacturing

More information

855 Smart Bender INSTRUCTION MANUAL. and Optional Deluxe Pendant. Serial No. ZW ZW1999

855 Smart Bender INSTRUCTION MANUAL. and Optional Deluxe Pendant. Serial No. ZW ZW1999 INSTRUCTION MANUAL 855 Smart Bender and 38650 Optional Deluxe Pendant Serial No. ZW0001 - ZW1999 Read and understand all of the instructions and safety information in this manual before operating or servicing

More information

you can recover TRI with TARGETED REHABILITATION IMPROVED OUTCOMES Home Programme

you can recover TRI with TARGETED REHABILITATION IMPROVED OUTCOMES Home Programme you can recover with TRI TARGETED Home Programme REHABILITATION IMPROVED OUTCOMES YOUR RECOVERY starts HERE ii Give yourself the best chance Please contact your GP or therapist if: -Pain - stops you from

More information

Index. Page (s) 1 4. Features

Index. Page (s) 1 4. Features Instruction Manual Index Features Page (s) 1 4 LCD Monitor Load Design USB & USB Disk Drive Design Rotation/Scaling Thread Break Detect Work Sequence Frame protection Auto Origin Return Idle (Float) Mode

More information

Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing

Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing Wireless Master-Slave Embedded Controller for a Teleoperated Anthropomorphic Robotic Arm with Gripping Force Sensing Presented by: Benjamin B. Rhoades ECGR 6185 Adv. Embedded Systems January 16 th 2013

More information

Note: Objective: Prelab: ME 5286 Robotics Labs Lab 1: Hello World Duration: 1 Week

Note: Objective: Prelab: ME 5286 Robotics Labs Lab 1: Hello World Duration: 1 Week ME 5286 Robotics Labs Lab 1: Hello World Duration: 1 Week Note: Two people must be present in the lab when operating the UR5 robot. Upload a selfie of you, your partner, and the robot to the Moodle submission

More information

2-1 DC DRIVE OVERVIEW EXERCISE OBJECTIVE. Familiarize yourself with the DC Drive. Set the DC Drive parameters to control the DC Motor.

2-1 DC DRIVE OVERVIEW EXERCISE OBJECTIVE. Familiarize yourself with the DC Drive. Set the DC Drive parameters to control the DC Motor. 2-1 DC DRIVE OVERVIEW EXERCISE OBJECTIVE Familiarize yourself with the DC Drive. Set the DC Drive parameters to control the DC Motor. DISCUSSION The DC Drive of your training system is shown in Figure

More information

VARIABLE SPEED WOOD LATHE

VARIABLE SPEED WOOD LATHE MODEL MC1100B VARIABLE SPEED WOOD LATHE INSTRUCTION MANUAL Please read and fully understand the instructions in this manual before operation. Keep this manual safe for future reference. Version: 2015.02.02

More information

Expanding Your Horizons, 1993 Mechanical Dissection Professor Sheri Sheppard Stanford University SAFETY!!

Expanding Your Horizons, 1993 Mechanical Dissection Professor Sheri Sheppard Stanford University SAFETY!! Expanding Your Horizons, 1993 Mechanical Dissection Professor Sheri Sheppard Stanford University SAFETY!! 1. KEEP WORK AREA CLEAN 2. DRESS PROPERLY -- Secure loose clothing, jewelry and hair 3. USE SAFETY

More information

5250 Servo Robot Training Systems

5250 Servo Robot Training Systems 5250 Servo Robot Training Systems LabVolt Series Datasheet Festo Didactic en 120 V - 60 Hz 02/2018 Table of Contents General Description 2 Robot Controller Module 3 Servo Robot Software 3 Location Pins

More information

VOICE CONTROL BASED PROSTHETIC HUMAN ARM

VOICE CONTROL BASED PROSTHETIC HUMAN ARM VOICE CONTROL BASED PROSTHETIC HUMAN ARM Ujwal R 1, Rakshith Narun 2, Harshell Surana 3, Naga Surya S 4, Ch Preetham Dheeraj 5 1.2.3.4.5. Student, Department of Electronics and Communication Engineering,

More information

Parts List. Robotic Arm segments ¼ inch screws Cable XBEE module or Wifi module

Parts List. Robotic Arm segments ¼ inch screws Cable XBEE module or Wifi module Robotic Arm 1 Legal Stuff Stensat Group LLC assumes no responsibility and/or liability for the use of the kit and documentation. There is a 90 day warranty for the Sten-Bot kit against component defects.

More information

Application Tooling Specification Sheet

Application Tooling Specification Sheet HAND CRIMP TOOL Application Tooling Specification Sheet TYPE 4D Order No. 63819-0400 FEATURES A full cycle ratcheting hand tool ensures complete crimps Ergonomic soft grip handles for comfortable crimping

More information

North Dakota State University Power Tool Operations and Maintenance

North Dakota State University Power Tool Operations and Maintenance North Dakota State University Power Tool Operations and Maintenance I. Introduction This NDSU procedure provides guidelines for the use of power tools. The intent is to establish proper safety procedures

More information

RPLIDAR A1. Introduction and Datasheet. Low Cost 360 Degree Laser Range Scanner rev.2.1. Model: A1M8. Shanghai Slamtec.Co.

RPLIDAR A1. Introduction and Datasheet. Low Cost 360 Degree Laser Range Scanner rev.2.1. Model: A1M8. Shanghai Slamtec.Co. www.slamtec.com 2018-02-05 rev.2.1 RPLIDAR A1 Low Cost 360 Degree Laser Range Scanner Introduction and Datasheet Model: A1M8 Shanghai Slamtec.Co.,Ltd Contents CONTENTS... 1 INTRODUCTION... 3 SYSTEM CONNECTION...

More information

SALES CUSTOMER SERVICE TECHNICAL ASSISTANCE CALL TOLL-FREE:

SALES CUSTOMER SERVICE TECHNICAL ASSISTANCE CALL TOLL-FREE: DENTAL, INC. TECHNICAL BULLETIN U802-022510 5860 FLYNN CREEK ROAD READ ALL INSTRUCTIONS P.O. BOX 106 BEFORE PROCEEDING COMPTCHE, CALIFORNIA, U.S.A. 95427 SAVE THIS FOR FUTURE REFERENCE THIS PRODUCT IS

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

DISCUSSION OF FUNDAMENTALS

DISCUSSION OF FUNDAMENTALS Unit 4 AC s UNIT OBJECTIVE After completing this unit, you will be able to demonstrate and explain the operation of ac induction motors using the Squirrel-Cage module and the Capacitor-Start Motor module.

More information

BEATS AND MODULATION ABSTRACT GENERAL APPLICATIONS BEATS MODULATION TUNING HETRODYNING

BEATS AND MODULATION ABSTRACT GENERAL APPLICATIONS BEATS MODULATION TUNING HETRODYNING ABSTRACT The theory of beats is investigated experimentally with sound and is compared with amplitude modulation using electronic signal generators and modulators. Observations are made by ear, by oscilloscope

More information

Urbani School Health Kit. Games. Urbani School Health Kit. World Health Organization. Western Pacific Region

Urbani School Health Kit. Games. Urbani School Health Kit. World Health Organization. Western Pacific Region Urbani School Health Kit Games Urbani School Health Kit World Health Organization Western Pacific Region Journey to Good Health 1. Floor mats 2. Game cards 3. Number die (with numbers 1 to 6) Safety notes

More information

(Refer Slide Time: 01:19)

(Refer Slide Time: 01:19) Computer Numerical Control of Machine Tools and Processes Professor A Roy Choudhury Department of Mechanical Engineering Indian Institute of Technology Kharagpur Lecture 06 Questions MCQ Discussion on

More information

Introduction to Robotics

Introduction to Robotics Introduction to Robotics Analysis, systems, Applications Saeed B. Niku Chapter 1 Fundamentals 1. Introduction Fig. 1.1 (a) A Kuhnezug truck-mounted crane Reprinted with permission from Kuhnezug Fordertechnik

More information

Rhino Packing Gland Tool

Rhino Packing Gland Tool Instruction Sheet P/N Rhino Packing Gland Tool 1. Description See Figure 1. The Rhino packing gland tool is used to remove the packing gland from Rhino bulk unloader pumps. The tool consists of two components,

More information

SECTION 9: PARTS. Headstock

SECTION 9: PARTS. Headstock SECTION 9: PARTS We do our best to stock replacement parts when possible, but we cannot guarantee that all parts shown are available for purchase. Call (800) 52-4777 or visit www.grizzly.com/parts to check

More information