Intro to Engineering II for ECE: Lab 3 Controlling Servo Motors Erin Webster and Dr. Jay Weitzen, c 2012 All rights reserved

Size: px
Start display at page:

Download "Intro to Engineering II for ECE: Lab 3 Controlling Servo Motors Erin Webster and Dr. Jay Weitzen, c 2012 All rights reserved"

Transcription

1 Lab 3: Controlling Servo Motors Laboratory Objectives: 1) To program the basic stamp to control the motion of a servo 2) To observe the control waveforms as the motion of the servo changes 3) To learn about the use of capacitors as a filtering device. Before You Come To Lab: Download and read chapter 4 in the WAM book. Caution Please Pay Attention to this Warning! DANGER Electrolytic Capacitors can explode if connected reverse polarity. Take Care when connecting and applying power. Wear Safety Glasses!

2 Section 1: Servo Rotation Intro to Engineering II for ECE: Lab 3 Controlling Servo Motors Build Circuit 4 12 shown below, and on p.112 in the textbook: Connect ADI pin 1+ here and 1 to ground The servo is controlled by bursts of signals spaced 20mS apart. A high signal can last between 1mS to 2mS. Changing the width of a pulse to control a servo is known as Pulse Width Modulation or PWM. The PULSOUT instruction is used to send the signals: PULSOUT pin, duration pin: Defines which I/O pin to use. duration: defines how long the pulse should last in 2 microsecond (us) increments. 1 S = seconds. 1 ms = 1000S For a command of: PULSOUT 14,750 This would be sending a pulse that lasts 750 x 2 S = 1500 S or 1.5mS on pin 14. Changing the width of a pulse to control a servo is known as Pulse Width Modulation or PWM.

3 Program the Basic Stamp, reference p. 115: Enter and Run Servo Test.bs2 shown below: ADI Discovery Module: Using Scope 1, record the signal at each position (Note: Adjust the scope s time division (you should be seeing square waves), if the time division is too coarse a square wave will appear distorted). Record each of the three sections of the code: First Section "Counter Clockwise 10 o'clock"

4 Second Section "Clockwise 2 o'clock" Third Section " Center 12 o'clock"

5 Section 2: Servo Velocities Program the Basic Stamp, reference p : Using the circuit from Section 1: enter and run ServoVelocities.bs2 Describe how incrementing an decrementing the counter effected the servo:

6 Section 3: Use Push Buttons to control speed and direction of the servo Add the Circuit 4 20 shown below, and on p.129 in the textbook: Program the Basic Stamp, reference p : Enter and Run ServoControlWithPushButtons.bs2

7 ADI Discovery Module: Observe the signal on pin 14 and record it below: Describe how this program works:

8 Section 4: Open Ended Design Project: Modify ServoControlWithDebug.bs2 so that it monitors a kill switch: If the Kill switch (P3 pushbutton) is pressed, the program should enter the Stop state. If the Start switch (P4 pushbutton) is pressed, the program should enter the Start state. In the Stop state, the Debug Terminal should not accept any commands. It should display: Press Start switch to start servo. In the Start state, the program should function normally. If power is disconnected and reconnected, the program should enter the Stop State. Hint: Think about adding a variable to keep track of your start and stop states. Hint: Use debug to see what your variables are seeing, and the ADI scope to see your voltages. Example Program: ServoControlWithDebug.bs2, reference p. 122: NOTE: You are MODIFYING this code, do NOT submit it as is!

9 List your code here: Intro to Engineering II for ECE: Lab 3 Controlling Servo Motors

Use and Copyright Microcontroller Motion Activity #1: Connecting and Testing the Servo Servo on Board of Education Rev. C Servo on Board of Education

Use and Copyright Microcontroller Motion Activity #1: Connecting and Testing the Servo Servo on Board of Education Rev. C Servo on Board of Education Chapter 4: Controlling Motion Presentation based on: "What's a Microcontroller?" By Andy Lindsay Parallax, Inc Presentation developed by: Martin A. Hebel Southern Illinois University Carbondale C ll College

More information

Chapter #4: Controlling Motion

Chapter #4: Controlling Motion Chapter #4: Controlling Motion Page 101 Chapter #4: Controlling Motion MICROCONTROLLED MOTION Microcontrollers make sure things move to the right place all around you every day. If you have an inkjet printer,

More information

Feed-back loop. open-loop. closed-loop

Feed-back loop. open-loop. closed-loop Servos AJLONTECH Overview Servo motors are used for angular positioning, such as in radio control airplanes. They typically have a movement range of 180 deg but can go up to 210 deg. The output shaft of

More information

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved.

Intro To Engineering II for ECE: Lab 7 The Op Amp Erin Webster and Dr. Jay Weitzen, c 2014 All rights reserved. Lab 7: The Op Amp Laboratory Objectives: 1) To introduce the operational amplifier or Op Amp 2) To learn the non-inverting mode 3) To learn the inverting mode 4) To learn the differential mode Before You

More information

Chapter #5: Measuring Rotation

Chapter #5: Measuring Rotation Chapter #5: Measuring Rotation Page 139 Chapter #5: Measuring Rotation ADJUSTING DIALS AND MONITORING MACHINES Many households have dials to control the lighting in a room. Twist the dial one direction,

More information

Experiment #3: Micro-controlled Movement

Experiment #3: Micro-controlled Movement Experiment #3: Micro-controlled Movement So we re already on Experiment #3 and all we ve done is blinked a few LED s on and off. Hang in there, something is about to move! As you know, an LED is an output

More information

HB-25 Motor Controller (#29144)

HB-25 Motor Controller (#29144) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot.

In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot. Week 3 - How servos work Testing the Servos Individually In this activity, you will program the BASIC Stamp to control the rotation of each of the Parallax pre-modified servos on the Boe-Bot. How Servos

More information

the Board of Education

the Board of Education the Board of Education Voltage regulator electrical power (V dd, V in, V ss ) breadboard (for building circuits) power jack digital input / output pins 0 to 15 reset button Three-position switch 0 = OFF

More information

DC motor control using arduino

DC motor control using arduino DC motor control using arduino 1) Introduction: First we need to differentiate between DC motor and DC generator and where we can use it in this experiment. What is the main different between the DC-motor,

More information

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore)

Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore) Laboratory 14 Pulse-Width-Modulation Motor Speed Control with a PIC (modified from lab text by Alciatore) Required Components: 1x PIC 16F88 18P-DIP microcontroller 3x 0.1 F capacitors 1x 12-button numeric

More information

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors

Assembly Language. Topic 14 Motion Control. Stepper and Servo Motors Assembly Language Topic 14 Motion Control Stepper and Servo Motors Objectives To gain an understanding of the operation of a stepper motor To develop a means to control a stepper motor To gain an understanding

More information

EECS 270: Lab 7. Real-World Interfacing with an Ultrasonic Sensor and a Servo

EECS 270: Lab 7. Real-World Interfacing with an Ultrasonic Sensor and a Servo EECS 270: Lab 7 Real-World Interfacing with an Ultrasonic Sensor and a Servo 1. Overview The purpose of this lab is to learn how to design, develop, and implement a sequential digital circuit whose purpose

More information

OLA2 Open Loop Amplifier. Installation and Operating Manual Release May 2013

OLA2 Open Loop Amplifier. Installation and Operating Manual Release May 2013 OLA2 Open Loop Amplifier Installation and Operating Manual Release May 2013 1 OLA2 - SAFETY INSTRUCTIONS Read this page carefully before installation and use of the instrument, and follow all instructions

More information

Introduction to project hardware

Introduction to project hardware ECE2883 HP: Lab 2- nonsme Introduction to project hardware Using the oscilloscope, solenoids, audio transducers, motors In the following exercises, you will use some of the project hardware devices, which

More information

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor

Parts to be supplied by the student: Breadboard and wires IRLZ34N N-channel enhancement-mode power MOSFET transistor University of Utah Electrical & Computer Engineering Department ECE 1250 Lab 3 Electronic Speed Control and Pulse Width Modulation A. Stolp, 12/31/12 Rev. Objectives 1 Introduce the Oscilloscope and learn

More information

SMART Funded by The National Science Foundation

SMART Funded by The National Science Foundation Lecture 5 Capacitors 1 Store electric charge Consists of two plates of a conducting material separated by a space filled by an insulator Measured in units called farads, F Capacitors 2 Mylar Ceramic Electrolytic

More information

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator

EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab Timer: Blinking LED Lights and Pulse Generator EE-110 Introduction to Engineering & Laboratory Experience Saeid Rahimi, Ph.D. Lab 9 555 Timer: Blinking LED Lights and Pulse Generator In many digital and analog circuits it is necessary to create a clock

More information

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM)

ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) ENGR 1110: Introduction to Engineering Lab 7 Pulse Width Modulation (PWM) Supplies Needed Motor control board, Transmitter (with good batteries), Receiver Equipment Used Oscilloscope, Function Generator,

More information

Tech Note #3: Setting up a Servo Axis For Closed Loop Position Control Application note by Tim McIntosh September 10, 2001

Tech Note #3: Setting up a Servo Axis For Closed Loop Position Control Application note by Tim McIntosh September 10, 2001 Tech Note #3: Setting up a Servo Axis For Closed Loop Position Control Application note by Tim McIntosh September 10, 2001 Abstract: In this Tech Note a procedure for setting up a servo axis for closed

More information

Feedback Devices. By John Mazurkiewicz. Baldor Electric

Feedback Devices. By John Mazurkiewicz. Baldor Electric Feedback Devices By John Mazurkiewicz Baldor Electric Closed loop systems use feedback signals for stabilization, speed and position information. There are a variety of devices to provide this data, such

More information

Chapter 2: Your Boe-Bot's Servo Motors

Chapter 2: Your Boe-Bot's Servo Motors Chapter 2: Your Boe-Bot's Servo Motors Vocabulary words used in this lesson. Argument in computer science is a value of data that is part of a command. Also data passed to a procedure or function at the

More information

PROGRAMMABLE CFE PULLER

PROGRAMMABLE CFE PULLER PROGRAMMABLE CFE PULLER Manual Pulling of PE tubing is a critical step in CFE fabrication. Getting constant shapes in CFE is difficult and to achieve a high success rate in pulling CFE requires patience

More information

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours)

Industrial Automation Training Academy. Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) nfi Industrial Automation Training Academy Presents Arduino, LabVIEW & PLC Training Programs Duration: 6 Months (180 ~ 240 Hours) For: Electronics & Communication Engineering Electrical Engineering Instrumentation

More information

Autonomous Refrigerator. Vinícius Bazan Adam Jerozolim Luiz Jollembeck

Autonomous Refrigerator. Vinícius Bazan Adam Jerozolim Luiz Jollembeck Autonomous Refrigerator Vinícius Bazan Adam Jerozolim Luiz Jollembeck Introduction Components Circuits Coding Marketing Conclusion Introduction Uses Specimen and Culture Refrigerators can be found in many

More information

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces.

Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. Diodes This week, we look at switching diodes, LEDs, and diode rectification. Be sure to bring a flash drive for recording oscilloscope traces. 1. Basic diode characteristics Build the circuit shown in

More information

Laboratory 11. Pulse-Width-Modulation Motor Speed Control with a PIC

Laboratory 11. Pulse-Width-Modulation Motor Speed Control with a PIC Laboratory 11 Pulse-Width-Modulation Motor Speed Control with a PIC Required Components: 1 PIC16F88 18P-DIP microcontroller 3 0.1 F capacitors 1 12-button numeric keypad 1 NO pushbutton switch 1 Radio

More information

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath

Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath Electronics I. laboratory measurement guide Andras Meszaros, Mark Horvath 3. Measurement: Diodes and rectifiers 2017.02.27. In this session we are going to measure forward and reverse characteristics of

More information

Jet Central Sequencer Plus

Jet Central Sequencer Plus Jet Central Sequencer Plus Features The Jet Central Sequencer Plus is a multipurpose electronic device, the capabilities of the unit include: Three part sequencer, operating landing gear and two independent

More information

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators

Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Mechatronics Engineering and Automation Faculty of Engineering, Ain Shams University MCT-151, Spring 2015 Lab-4: Electric Actuators Ahmed Okasha, Assistant Lecturer okasha1st@gmail.com Objective Have a

More information

Series 48 Water Cooled Laser & UC-2000 Quick Start Guide

Series 48 Water Cooled Laser & UC-2000 Quick Start Guide Important Read all Danger, Warning, Caution terms, symbols, and instructions located in the (Laser Safety Hazard information) sections in the Series 48 Laser Operation Manuals. http://www.synrad.com/synrad/docroot/resources/libraries/manuals

More information

Graphical Control Panel User Manual

Graphical Control Panel User Manual Graphical Control Panel User Manual DS-MPE-DAQ0804 PCIe Minicard Data Acquisition Module For Universal Driver Version 7.0.0 and later Revision A.0 March 2015 Revision Date Comment A.0 3/18/2015 Initial

More information

Week 12 Experiment 21. Design a Traffic Arrow

Week 12 Experiment 21. Design a Traffic Arrow Week 12 Experiment 21 Design a Traffic Arrow Just so it is clear This is it. Last official experiment for the semester. It is your option as to whether or not you do a make-up experiment. This is the last

More information

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd.

Controlling DC Brush Motor using MD10B or MD30B. Version 1.2. Aug Cytron Technologies Sdn. Bhd. PR10 Controlling DC Brush Motor using MD10B or MD30B Version 1.2 Aug 2008 Cytron Technologies Sdn. Bhd. Information contained in this publication regarding device applications and the like is intended

More information

ECE 5670/6670 Project. Brushless DC Motor Control with 6-Step Commutation. Objectives

ECE 5670/6670 Project. Brushless DC Motor Control with 6-Step Commutation. Objectives ECE 5670/6670 Project Brushless DC Motor Control with 6-Step Commutation Objectives The objective of the project is to build a circuit for 6-step commutation of a brushless DC motor and to implement control

More information

LV8716QAGEVK Evaluation Kit User Guide

LV8716QAGEVK Evaluation Kit User Guide LV8716QAGEVK Evaluation Kit User Guide NOTICE TO CUSTOMERS The LV8716QA Evaluation Kit is intended to be used for ENGINEERING DEVELOPMENT, DEMONSTRATION OR EVALUATION PURPOSES ONLY and is not considered

More information

Lab Exercise 9: Stepper and Servo Motors

Lab Exercise 9: Stepper and Servo Motors ME 3200 Mechatronics Laboratory Lab Exercise 9: Stepper and Servo Motors Introduction In this laboratory exercise, you will explore some of the properties of stepper and servomotors. These actuators are

More information

HT101V Reference Manual

HT101V Reference Manual HT101V Reference Manual Overview The HT101V from Ag-Tester is our handheld tester designed to diagnose valve components on agricultural machinery. Valves tested include: 1- Boom Control Valves 2- Servo

More information

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment

EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment EECS 318 Electronics Lab Laboratory #2 Electronic Test Equipment Objectives: The purpose of this laboratory is to acquaint you with the electronic sources and measuring equipment you will be using throughout

More information

Laboratory Seven Stepper Motor and Feedback Control

Laboratory Seven Stepper Motor and Feedback Control EE3940 Microprocessor Systems Laboratory Prof. Andrew Campbell Spring 2003 Groups Names Laboratory Seven Stepper Motor and Feedback Control In this experiment you will experiment with a stepper motor and

More information

Laboratory Assignment Number 3 for Mech 143. Pre-Lab: Part 1 Interfacing to a DC Motor and Potentiometer

Laboratory Assignment Number 3 for Mech 143. Pre-Lab: Part 1 Interfacing to a DC Motor and Potentiometer Purpose: Minimum Parts Required: Laboratory Assignment Number 3 for Mech 143 Due by 5:00 pm on Thursday, February 11, 1999 Pre-Lab Due by 5:00pm on Tuesday, February 9, 1999 This lab is intended to acquaint

More information

PAK-VIIIa Pulse Coprocessor Data Sheet by AWC

PAK-VIIIa Pulse Coprocessor Data Sheet by AWC PAK-VIIIa Pulse Coprocessor Data Sheet 2000-2003 by AWC AWC 310 Ivy Glen League City, TX 77573 (281) 334-4341 http://www.al-williams.com/awce.htm V1.6 30 Aug 2003 Table of Contents Overview...1 If You

More information

Chapter 3: Assemble and Test Your Boe-Bot

Chapter 3: Assemble and Test Your Boe-Bot Chapter 3: Assemble and Test Your Boe-Bot Page 91 Chapter 3: Assemble and Test Your Boe-Bot This chapter contains instructions for building and testing your Boe-Bot. It s especially important to complete

More information

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS

EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS EE 3101 ELECTRONICS I LABORATORY EXPERIMENT 9 LAB MANUAL APPLICATIONS OF IC BUILDING BLOCKS OBJECTIVES In this experiment you will Explore the use of a popular IC chip and its applications. Become more

More information

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION

Exercise 2-2. Antenna Driving System EXERCISE OBJECTIVE DISCUSSION OUTLINE DISCUSSION Exercise 2-2 Antenna Driving System EXERCISE OBJECTIVE When you have completed this exercise, you will be familiar with the mechanical aspects and control of a rotating or scanning radar antenna. DISCUSSION

More information

Introduction: Components used:

Introduction: Components used: Introduction: As, this robotic arm is automatic in a way that it can decides where to move and when to move, therefore it works in a closed loop system where sensor detects if there is any object in a

More information

Designing with a Microcontroller (v6)

Designing with a Microcontroller (v6) Designing with a Microcontroller (v6) Safety: In this lab, voltages are less than 15 volts and this is not normally dangerous to humans. However, you should assemble or modify a circuit when power is disconnected

More information

Electronic Speed Controls and RC Motors

Electronic Speed Controls and RC Motors Electronic Speed Controls and RC Motors ESC Power Control Modern electronic speed controls regulate the electric power applied to an electric motor by rapidly switching the power on and off using power

More information

Directions for Wiring and Using The GEARS II (2) Channel Combination Controllers

Directions for Wiring and Using The GEARS II (2) Channel Combination Controllers Directions for Wiring and Using The GEARS II (2) Channel Combination Controllers PWM Input Signal Cable for the Valve Controller Plugs into the RC Receiver or Microprocessor Signal line. White = PWM Input

More information

Yaskawa Electric America Unit Troubleshooting Manual Section Two: Power Checks GPD 506/P5 and GPD 515/G5 (0.4 ~ 160kW)

Yaskawa Electric America Unit Troubleshooting Manual Section Two: Power Checks GPD 506/P5 and GPD 515/G5 (0.4 ~ 160kW) Yaskawa Electric America Unit Troubleshooting Manual Section Two: Power Checks GPD 506/P5 and GPD 515/G5 (0.4 ~ 160kW) Page 1 Section Two: Power Checks Page 2 Check box when completed Power Checks TEST

More information

User guide. Revision 1 January MegaPoints Controllers

User guide. Revision 1 January MegaPoints Controllers MegaPoints Servo 4R Controller A flexible and modular device for controlling model railway points and semaphore signals using inexpensive R/C servos and relays. User guide Revision 1 January 2018 MegaPoints

More information

EE 314 Spring 2003 Microprocessor Systems

EE 314 Spring 2003 Microprocessor Systems EE 314 Spring 2003 Microprocessor Systems Laboratory Project #9 Closed Loop Control Overview and Introduction This project will bring together several pieces of software and draw on knowledge gained in

More information

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor

RC Servo Interface. Figure Bipolar amplifier connected to a large DC motor The bipolar amplifier is well suited for controlling motors for vehicle propulsion. Figure 12-45 shows a good-sized 24VDC motor that runs nicely on 13.8V from a lead acid battery based power supply. You

More information

ECE 2010 Laboratory # 5 J.P.O Rourke

ECE 2010 Laboratory # 5 J.P.O Rourke ECE 21 Laboratory # 5 J.P.O Rourke Prelab: Simulate the circuit used in parts 1 and 2 of the Lab and record the simulated results. Your Prelab is due at the beginning of lab and will be checked off by

More information

Direct Current Waveforms

Direct Current Waveforms Cornerstone Electronics Technology and Robotics I Week 20 DC and AC Administration: o Prayer o Turn in quiz Direct Current (dc): o Direct current moves in only one direction in a circuit. o Though dc must

More information

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN)

Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) Jaguar Motor Controller (Stellaris Brushed DC Motor Control Module with CAN) 217-3367 Ordering Information Product Number Description 217-3367 Stellaris Brushed DC Motor Control Module with CAN (217-3367)

More information

Controlling Your Robot

Controlling Your Robot Controlling Your Robot The activities on this week are about instructing the Boe-Bot where to go and how to get there. You will write programs to make the Boe-Bot perform a variety of maneuvers. You will

More information

COSC 3215 Embedded Systems Laboratory

COSC 3215 Embedded Systems Laboratory Introduction COSC 3215 Embedded Systems Laboratory Lab 5 Temperature Controller Your task will be to design a temperature controller using the Dragon12 board that will maintain the temperature of an object

More information

Module: Arduino as Signal Generator

Module: Arduino as Signal Generator Name/NetID: Teammate/NetID: Module: Laboratory Outline In our continuing quest to access the development and debugging capabilities of the equipment on your bench at home Arduino/RedBoard as signal generator.

More information

Input/Output Control Using Interrupt Service Routines to Establish a Time base

Input/Output Control Using Interrupt Service Routines to Establish a Time base CSUS EEE174 Lab Input/Output Control Using Interrupt Service Routines to Establish a Time base 599 Menlo Drive, Suite 100 Rocklin, California 95765, USA Office/Tech Support: (916) 624-8333 Fax: (916) 624-8003

More information

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1

Experiment 4.B. Position Control. ECEN 2270 Electronics Design Laboratory 1 Experiment 4.B Position Control Electronics Design Laboratory 1 Procedures 4.B.1 4.B.2 4.B.3 4.B.4 Read Encoder with Arduino Position Control by Counting Encoder Pulses Demo Setup Extra Credit Electronics

More information

FINAL DESIGN REPORT. Dodge This! DODGERS: Cristobal Rivero Derek Fairbanks 4/21/2009

FINAL DESIGN REPORT. Dodge This! DODGERS: Cristobal Rivero Derek Fairbanks 4/21/2009 FINAL DESIGN REPORT Dodge This! DODGERS: Cristobal Rivero Derek Fairbanks 4/21/2009 Abstract: Our project is to develop an automatic dodge ball game. It consists of an infrared video camera, computer,

More information

Lab 8. Stepper Motor Controller

Lab 8. Stepper Motor Controller Lab 8. Stepper Motor Controller Overview of this Session In this laboratory, you will learn: To continue to use an oscilloscope How to use a Step Motor driver chip. Introduction This lab is focused around

More information

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014

Advanced Mechatronics 1 st Mini Project. Remote Control Car. Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Advanced Mechatronics 1 st Mini Project Remote Control Car Jose Antonio De Gracia Gómez, Amartya Barua March, 25 th 2014 Remote Control Car Manual Control with the remote and direction buttons Automatic

More information

Chapter 2: DC Measurements

Chapter 2: DC Measurements DC Measurements Page 25 Chapter 2: DC Measurements ABOUT SUPPLY AND OTHER DC VOLTAGES Voltage is like a pressure that propels electrons through a circuit, and the resulting electron flow is called electric

More information

Lab 11: 555 Timer/Oscillator Circuits

Lab 11: 555 Timer/Oscillator Circuits Page 1 of 6 Laboratory Goals Familiarize students with the 555 IC and its uses Design a free-running oscillator Design a triggered one-shot circuit Compare actual to theoretical values for the circuits

More information

Bill of Materials: PWM Stepper Motor Driver PART NO

Bill of Materials: PWM Stepper Motor Driver PART NO PWM Stepper Motor Driver PART NO. 2183816 Control a stepper motor using this circuit and a servo PWM signal from an R/C controller, arduino, or microcontroller. Onboard circuitry limits winding current,

More information

DC Geared Motor with Encoder MO-SPG-30E-XXXK

DC Geared Motor with Encoder MO-SPG-30E-XXXK DC Geared Motor with Encoder MO-SPG-30E-XXXK USER S MANUAL V1.1 May 2011 Information contained in this publication regarding device applications and the like is intended through suggestion only and may

More information

The Allen-Bradley Servo Interface Module (Cat. No SF1) when used with the Micro Controller (Cat. No UC1) can control single axis

The Allen-Bradley Servo Interface Module (Cat. No SF1) when used with the Micro Controller (Cat. No UC1) can control single axis Table of Contents The Allen-Bradley Servo Interface Module (Cat. No. 1771-SF1) when used with the Micro Controller (Cat. No. 1771-UC1) can control single axis positioning systems such as found in machine

More information

IME-100 ECE. Lab 1. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE,

IME-100 ECE. Lab 1. Electrical and Computer Engineering Department Kettering University. G. Tewolde, IME100-ECE, IME-100 ECE Lab 1 Electrical and Computer Engineering Department Kettering University 1-1 IME-100, ECE Lab1 Circuit Design, Simulation, and Layout In this laboratory exercise, you will do the following:

More information

ME 461 Laboratory #5 Characterization and Control of PMDC Motors

ME 461 Laboratory #5 Characterization and Control of PMDC Motors ME 461 Laboratory #5 Characterization and Control of PMDC Motors Goals: 1. Build an op-amp circuit and use it to scale and shift an analog voltage. 2. Calibrate a tachometer and use it to determine motor

More information

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin

2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control. October 5, 2009 Dr. Harrison H. Chin 2.017 DESIGN OF ELECTROMECHANICAL ROBOTIC SYSTEMS Fall 2009 Lab 4: Motor Control October 5, 2009 Dr. Harrison H. Chin Formal Labs 1. Microcontrollers Introduction to microcontrollers Arduino microcontroller

More information

Lab 5. Binary Counter

Lab 5. Binary Counter Lab. Binary Counter Overview of this Session In this laboratory, you will learn: Continue to use the scope to characterize frequencies How to count in binary How to use an MC counter Introduction The TA

More information

PWM System. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff

PWM System. Microcomputer Architecture and Interfacing Colorado School of Mines Professor William Hoff PWM System 1 Pulse Width Modulation (PWM) Pulses are continuously generated which have different widths but the same period between leading edges Duty cycle (% high) controls the average analog voltage

More information

Exercise 10. Linear Slides EXERCISE OBJECTIVE

Exercise 10. Linear Slides EXERCISE OBJECTIVE Exercise 10 Linear Slides EXERCISE OBJECTIVE In this exercise, you will learn to use a linear slide. You will learn how to use the Linear Slide, Model 5209, to extend the work envelope of the Servo Robot.

More information

Lab 6. Binary Counter

Lab 6. Binary Counter Lab 6. Binary Counter Overview of this Session In this laboratory, you will learn: Continue to use the scope to characterize frequencies How to count in binary How to use an MC14161 or CD40161BE counter

More information

Thinking Robotics: Teaching Robots to Make Decisions. Jeffrey R. Peters and Rushabh Patel

Thinking Robotics: Teaching Robots to Make Decisions. Jeffrey R. Peters and Rushabh Patel Thinking Robotics: Teaching Robots to Make Decisions Jeffrey R. Peters and Rushabh Patel Adapted From Robotics with the Boe-Bot by Andy Lindsay, Parallax, inc., 2010 Preface This manual was developed as

More information

EDC Quick Start Guide

EDC Quick Start Guide EDC Quick Start Guide BASIC FUNCTIONS This guide will familiarize the user with the basic functions of the EDC Servo Drive and assist with start up. The guide will cover the following: 1. Restoring Parameters

More information

Operator Manual 1.4 FRACSIM MINI

Operator Manual 1.4 FRACSIM MINI FracSim Meters FracSim Meters was founded with the intention of providing specifically designed tools for the well service industry. Our goal is to provide quality tools with a robust design to meet the

More information

Lab 6: Exploring the Servomotor Controller Circuit

Lab 6: Exploring the Servomotor Controller Circuit Lab 6: Exploring the Servomotor Controller Circuit By: Gary A. Ybarra Christopher E. Cramer Duke University Department of Electrical and Computer Engineering Durham, NC 1. Purpose: The purpose of this

More information

40 Amp Digital Bidirectional PWM Motor Controller with Regenerative Braking BIDIR-340-DR

40 Amp Digital Bidirectional PWM Motor Controller with Regenerative Braking BIDIR-340-DR 40 Amp Digital Bidirectional PWM Motor Controller with Regenerative Braking BIDIR-340-DR The BIDIR-340-DR is a fully solid-state motor controller that allows you to control the speed and direction of a

More information

ME 2110 Controller Box Manual. Version 2.3

ME 2110 Controller Box Manual. Version 2.3 ME 2110 Controller Box Manual Version 2.3 I. Introduction to the ME 2110 Controller Box A. The Controller Box B. The Programming Editor & Writing PBASIC Programs C. Debugging Controller Box Problems II.

More information

Figure 1. DMC 60 components.

Figure 1. DMC 60 components. 1300 Henley Court Pullman, WA 99163 509.334.6306 www.digilentinc.com DMC 60 Reference Manual Revised November 15, 2016 This manual applies to the DMC 60 rev. A Overview The DMC 60 is an electronic speed

More information

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1

Sensor and. Motor Control Lab. Abhishek Bhatia. Individual Lab Report #1 Sensor and 10/16/2015 Motor Control Lab Individual Lab Report #1 Abhishek Bhatia Team D: Team HARP (Human Assistive Robotic Picker) Teammates: Alex Brinkman, Feroze Naina, Lekha Mohan, Rick Shanor I. Individual

More information

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.

1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e. Name: Multiple Choice 1.) If a 3 input NOR gate has eight input possibilities, how many of those possibilities result in a HIGH output? (a.) 1 (b.) 2 (c.) 3 (d.) 7 (e.) 8 2.) The output of an OR gate with

More information

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches

o What happens if S1 and S2 or S3 and S4 are closed simultaneously? o Perform Motor Control, H-Bridges LAB 2 H-Bridges with SPST Switches Cornerstone Electronics Technology and Robotics II H-Bridges and Electronic Motor Control 4 Hour Class Administration: o Prayer o Debriefing Botball competition Four States of a DC Motor with Terminals

More information

EC Declaration of Conformity

EC Declaration of Conformity EC Declaration of Conformity TABLE OF CONTENTS 1. SAFETY SUMMARY.. 1 2. INTRODUCTION 5 3. SPECIFICATION 7 EN 61326-1: Electrical equipment for measurement, control and laboratory use EMC requirements (1997+A1:

More information

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1

Experiment 1.A. Working with Lab Equipment. ECEN 2270 Electronics Design Laboratory 1 .A Working with Lab Equipment Electronics Design Laboratory 1 1.A.0 1.A.1 3 1.A.4 Procedures Turn in your Pre Lab before doing anything else Setup the lab waveform generator to output desired test waveforms,

More information

M302RM OPERATING MANUAL

M302RM OPERATING MANUAL M302RM OPERATING MANUAL The Model 302RM is a Linear, high voltage, differential amplifier designed to drive a capacitive load such as Conoptics 350, 360, 370 series E.O. modulators. The amplifier is DC

More information

BFS / BFSM SERIES Installation & Maintenance Manual

BFS / BFSM SERIES Installation & Maintenance Manual Introduction: The BFS / BFSM series electric actuators have battery backup modules for fail safe operation. The BFS series is for two position control and the BFSM series is for proportional control, both

More information

GE 320: Introduction to Control Systems

GE 320: Introduction to Control Systems GE 320: Introduction to Control Systems Laboratory Section Manual 1 Welcome to GE 320.. 1 www.softbankrobotics.com 1 1 Introduction This section summarizes the course content and outlines the general procedure

More information

815-BR SERVO AMPLIFIER FOR BRUSH SERVOMOTORS

815-BR SERVO AMPLIFIER FOR BRUSH SERVOMOTORS 815-BR SERVO AMPLIFIER FOR BRUSH SERVOMOTORS USER GUIDE September 2004 Important Notice This document is subject to the following conditions and restrictions: This document contains proprietary information

More information

Rangefinder Servo and LED Controller Board Hyperdyne Labs, 2001

Rangefinder Servo and LED Controller Board Hyperdyne Labs, 2001 Rangefinder Servo and LED Controller Board Hyperdyne Labs, 2001 http://www.hyperdynelabs.com *** DO NOT HOOK UP THE SERVO INCORRECTLY. READ BELOW FIRST *** Overview The rangefinder servo and LED board

More information

Lecture 6. Interfacing Digital and Analog Devices to Arduino. Intro to Arduino

Lecture 6. Interfacing Digital and Analog Devices to Arduino. Intro to Arduino Lecture 6 Interfacing Digital and Analog Devices to Arduino. Intro to Arduino PWR IN USB (to Computer) RESET SCL\SDA (I2C Bus) POWER 5V / 3.3V / GND Analog INPUTS Digital I\O PWM(3, 5, 6, 9, 10, 11) Components

More information

B Robo Claw 2 Channel 25A Motor Controller Data Sheet

B Robo Claw 2 Channel 25A Motor Controller Data Sheet B0098 - Robo Claw 2 Channel 25A Motor Controller Feature Overview: 2 Channel at 25A, Peak 30A Hobby RC Radio Compatible Serial Mode TTL Input Analog Mode 2 Channel Quadrature Decoding Thermal Protection

More information

Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim

Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim Lock Cracker S. Lust, E. Skjel, R. LeBlanc, C. Kim Abstract - This project utilized Eleven Engineering s XInC2 development board to control several peripheral devices to open a standard 40 digit combination

More information

DLVP A OPERATOR S MANUAL

DLVP A OPERATOR S MANUAL DLVP-50-300-3000A OPERATOR S MANUAL DYNALOAD DIVISION 36 NEWBURGH RD. HACKETTSTOWN, NJ 07840 PHONE (908) 850-5088 FAX (908) 908-0679 TABLE OF CONTENTS INTRODUCTION...3 SPECIFICATIONS...5 MODE SELECTOR

More information

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page!

ECE3204 D2015 Lab 1. See suggested breadboard configuration on following page! ECE3204 D2015 Lab 1 The Operational Amplifier: Inverting and Non-inverting Gain Configurations Gain-Bandwidth Product Relationship Frequency Response Limitation Transfer Function Measurement DC Errors

More information

High Speed Continuous Rotation Servo (# )

High Speed Continuous Rotation Servo (# ) Web Site: www.parallax.com Forums: forums.parallax.com Sales: sales@parallax.com Technical: support@parallax.com Office: (916) 624-8333 Fax: (916) 624-8003 Sales: (888) 512-1024 Tech Support: (888) 997-8267

More information

Mini Hexapodinno. 18-DOF Robot

Mini Hexapodinno. 18-DOF Robot Mini Hexapodinno 18-DOF Robot Instruction Manual Version 1.11 Trademark Innovati,, and BASIC Commander, are registered trademarks of Innovati Inc. InnoBASIC and cmdbus are trademarks of Innovati Inc. Copyright

More information