Flip-Flopping Fractional Flux Quanta

Size: px
Start display at page:

Download "Flip-Flopping Fractional Flux Quanta"

Transcription

1 Flip-Flopping Fractional Flux Quanta Th. Ortlepp 1, Ariando 2, O. Mielke, 1 C. J. M. Verwijs 2, K. Foo 2, H. Rogalla 2, F. H. Uhlmann 1, H. Hilgenkamp 2 1 Institute of Information Technology, RSFQ design group, University of Technology Ilmenau, P.O. Box , D Ilmenau, Germany, 2 Faculty of Science and Technology and MESA + Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE Enschede, The Netherlands thomas.ortlepp@tu-ilmenau.de. The d-wave pairing symmetry in high-t c superconductors provides the possibility to realize superconducting rings with built-in π-phase shifts. Such rings have a two-fold degenerate ground state characterized by the spontaneous generation of fractional magnetic flux quanta with either up- or down-polarity. We have incorporated π-phase biased superconducting rings in a logic circuit, a Flip-Flop, in which the fractional flux polarity is controllably toggled by applying single flux quantum pulses at the input channel. Integration into conventional Rapid Single Flux Quantum-logic as natural two-state devices should alleviate the need for bias current lines, improve device symmetry, and enhance the operation margins. 1

2 Superconducting Josephson electronics is based on the storage and transmission of magnetic flux quanta, and makes use of one of the unique aspects of superconductivity, its macroscopic phase coherence. To comply with the requirement that the superconducting wave function is single valued, its phase ϕ can only vary by multiples of 2π when going around a closed superconducting ring structure. In the standard case, contributions to phase variations ϕ can arise from magnetic flux Φ enclosed by the ring, through ϕ = 2πΦ/Φ 0, and from the phase drop over Josephson junctions incorporated in the ring, through ϕ = arcsin(i J /I c ), with I J and I c the supercurrent and the critical current of the junction, respectively, and Φ 0 = Wb the magnetic flux quantum. The resulting periodic dependence of the maximum supercurrent that can pass through the ring on the applied magnetic flux forms the basis for the Superconducting Quantum Interference Device (SQUID), the prime building block for superconducting electronics and sensors. The introduction of additional phase-shifting elements in such superconducting loops leads to remarkable effects. For example, by incorporating a π-phase shift the ring is set to the twofold degenerate state that otherwise would be obtained by the application of a magnetic flux of exactly 1 Φ 2 0 (1, 2), see Fig. 1. To compensate for this built-in π-phase shift a spontaneous circulating current flows in the ring, in either the clockwise or counter-clockwise direction. The magnetic flux associated with this persistent circulating current is a fraction of a flux quantum, growing asymptotically to a half flux quantum in the large inductance limit (3). The polarity of this spontaneous flux can be used to store information. In isolated π-rings, fabricated with high-t c grain boundaries (4) or with connections between high-t c and low-t c superconductors (5), the generation and manipulation of fractional flux quanta has already been demonstrated using scanning SQUID microscopy. An important step towards its application in electronic circuitry is the incorporation of π-loops in superconducting logic gates, in which a controlled operation on an electronically applied input signal 2

3 leads to a predefined output signal (6, 7). Here, we report on the realization of a Toggle Flip-Flop (TFF) based on Josephson contacts between high-t c and low-t c superconductors, in which the polarity of the fractional flux quantum provides the internal memory, and discuss the benefits of incorporating such elements in Rapid Single Flux Quantum (RSFQ) superconducting electronic circuitry (8). Figure 2 shows a schematic of the device and an optical micrograph of the chip taken just before the deposition of a Nb ground plane. The state of the Flip-Flop is represented by polarity of the flux in the storage-loop with an inductance of L store 10 ph and junctions J 2 and J 3 with a critical current of I c = 90 µa. The ring with junctions J 4 and J 5 will carry a current in the opposite direction to L store, and its main role is to enhance the stability of the device. In the initial state, one of the stable flux states is generated by the built-in π-phase shifts. The Flip- Flop toggles between both stable states when a Single Flux Quantum (SFQ)-pulse is applied through it. These pulses are generated by a dc/sfq converter on the rising ramp of an input current I in and transferred via a Josephson Transmission Line (JTL) to the input junction J 1 of the Flip-Flop. To clarify the device operation, let us presume that the Flip-Flop is in the state with a clockwise current in the storage loop. The Flip-Flop is designed such that when an SFQpulse enters through J 1, the associated currents give rise to a switching of J 3 and J 4, causing the flux state in L store to reverse. If a second pulse arrives at the input, it causes a switching of J 2 and J 5, which toggles the Flip-Flop back to the original state. The Flip-Flop internal state can be read out with a two-junction SQUID loop, as a sensitive sensor for magnetic fields, nested in the middle of the storing loop. Its operating point can be adjusted to create a voltage signal for an upward fractional flux and no voltage for a downward fractional flux inside the loop. The Flip-Flop is fabricated by connecting the d-wave superconductor YBa 2 Cu 3 O 7 δ and the s-wave superconductor Nb separated by a Au barrier layer in a thin-film ramp-type Josephson junction configuration (9, 10). The measurements have been performed in a well-shielded flow 3

4 cryostat at a temperature of T = 5.3 K. To demonstrate the correct operation, SFQ-pulses are generated in a standard dc/sfqconverter and are fed to the Flip-Flop via a Josephson Transmission Line. An SFQ-pulse will be generated by the dc/sfq circuit every time the current in the input loop is increased exceeding a value corresponding to a flux quantum Φ 0 in the dc/sfq inductance. Figure 3A shows the triangular input signal to the dc/sfq converter and the output voltage over the read-out SQUID as a function of time, clearly demonstrating the toggling of the Flip-Flop at every incoming single flux quantum pulse generated at the rising edge of the periodic input signal. Several experiments with the generation of multiple input pulses at any ramp of an enlarged input signal confirm the correct operation with the corresponding number of output switchings as shown in Fig. 3B. In this figure, the amplitude of the input current is increased to generate three SFQ pulses on the rising ramp. By switching the TFF for each of these pulses the output shows a transition between its voltage states. Small deviations in the voltage level in this oversteered mode of operation are caused by a parasitic coupling between adjacent lines in the experimental setup. The maximum frequency of the circuit is similar to conventional RSFQ circuits with a comparable characteristic voltage I c R n. This specific sample shows an I c R n of about 110 µv, which limits the output voltage to 55 µv. In this sample, an extra groundplane layer was introduced for the first time to the standard fabrication process, which may influence the I c R n products and still needs to be optimized. Nevertheless, I c R n values up to 0.7 mv have been shown using a similar fabrication process (9). This corresponds to a Josephson frequency of 340 GHz, which sets the scale for the speed of digital operation. The operation of RSFQ circuits is based on three different elementary blocks, for transport, decision, and storage of information bits (11). In the design process, the mode of RSFQ digital operation is defined by creating topological schemes with the three mentioned functional ele- 4

5 ments and a specification of their parameters. A complication in standard RSFQ is the fact that superconducting ring structures without built-in π-phase shifts have one lowest energy state, i.e. the zero-flux state, and a degenerate first order state with a flux of ±Φ 0 (see Fig. 1). To reach an operating-point with a two-fold degenerate lowest energy state, a bias current is asymmetrically injected (Fig. 1B). However, this requires additional bias lines and control over these currents. In principle, the Flip-Flop can work without this bias current (12), but this requires an even higher asymmetry in the critical currents of the junctions. This asymmetry imposes strict margins on the design-parameters, such as the junction critical currents and the inductance values. These factors have until now strongly hampered the development of large-scale RSFQ logic circuits. The spontaneous generation of fractional flux in the π-shift device eliminates the need for the asymmetrically injected bias current, which reduces the amount of connections to external control-electronics and allows for symmetry in the design parameters. This is illustrated in Fig. 4 showing an exemplary π-tff configuration with improved parameters, a design based on the initial experimental results presented above. This is of great benefit in the design-process and fabrication, and also leads to denser circuitry; our first realization needed only a quarter of the size of a standard Toggle Flip-Flop in established Niobium technology with the same feature size of 2.5 µm. To study the influence of parameter variations on the circuit performance, a Monte Carlo yield analysis was performed. Several thousand parameter-sets having normally distributed random values for all adjustable parameters (critical currents, inductances and bias currents) were assigned to the π-shift circuit, and its operation was checked by automatic circuit simulation runs. The π-shift devices show a strongly improved stability against possible parameter variations. This was also observed experimentally: the TFF showed correct operation even when the bias current I b4 was varied by ±18% from its operation point. By further optimizing 5

6 critical currents and inductances, this operation range can be increased to ±55% deviation from the mean value. The bistability of π-phase shift devices is of relevance for all logic cells with internal states. This also includes all Boolean operations (AND, OR, etc.) as, due to the fact that RSFQ is a pulse driven logic, input- and sometimes output-buffer stages are required for the temporary storage of information. There is no strong advantage in using π-loops in a JTL, splitter or confluence buffer, because these cells do not have an internal state and therefore the bistable character of π-loops is dispensable. The results above are obtained by exploiting the π-phase shift associated with the d x 2 y 2- symmetry in the high-t c superconductors. However, it can easily be adapted to other technologies providing the π-phase shift, such as superconductor-ferromagnet-superconductor Josephson junctions (13, 14). In conclusion, we realized Single Flux Quantum operation of a logic circuit with a twofold degenerate ground state created by using intrinsic π-phase shifts. Incorporating π-phase shifters in RSFQ circuits, we found a strongly improved stability against spread, a compact circuit realization due to the decreased size of large inductances and a reduction in bias current supplies. This enables a simplification in the RSFQ circuit design with relaxed requirements to the fabrication process. The realization of a natural bistable system addresses one of the most challenging tasks for the superconducting electronics; the setting up of memory. Our TFF realization needs only a quarter of the size of a typical TFF in established Niobium technology with the same feature size of about 2.5 µm. 6

7 References and Notes 1. C. C. Tsuei and J. R. Kirtley, Rev. Mod. Phys. 72, 969 (2000). 2. R. R. Schulz et al., Appl. Phys. Lett. 76, 912 (2000). 3. J. R. Kirtley, K. A. Moler, D. J. Scalapino, Phys. Rev. B 56, 886 (1997). 4. C. C. Tsuei et al., Phys. Rev. Lett. 73, 593 (1994). 5. H. Hilgenkamp et al., Nature 422, 50 (2003). 6. E. Terzioglu and M. R. Beasley, IEEE Trans. Appl. Supercond. 8, 48 (1998). 7. A. V. Ustinov and V. K. Kaplunenko, J. Appl. Phys. 94, 5405 (2003). 8. K. K. Likharev and V. K. Semenov, IEEE Trans. Appl. Supercond. 1, 3 (1991). 9. H. J. H. Smilde, H. Hilgenkamp, G. Rijnders, H. Rogalla, D. H. A. Blank, Appl. Phys. Lett. 80, 4579 (2002). 10. More information on the fabrication methods are available as supporting material on Science Online. 11. D. K. Brock, E. K. Track, J. M. Rowell, IEEE Spectrum 37, 40 (2000). 12. S. V. Polonsky et al., IEEE Trans. Appl. Supercond. 3, 2566 (1993). 13. V. V. Ryazanov et al., Phys. Rev. Lett. 86, 2427 (2001). 14. T. Kontos et al., Phys. Rev. Lett. 89, (2002). 15. This work has been supported by the Netherlands Organization for Scientific Research (NWO), the Dutch Foundation for Research on Matter (FOM), the Dutch STW NanoNed 7

8 programme, the European Science Foundation ESF PiShift programme, and the University of Technology Ilmenau Promotion of Excellency. Helpful discussions with S. Karthikeyan are gratefully acknowledged. 8

9 Fig. 1. Potential energy U as a function of enclosed magnetic flux for three different superconducting loop configurations; (A) a standard two-junction SQUID loop, (B) a conventional RSFQ storing loop, comprising of a SQUID with an external current source, and (C) the new configuration with an intrinsic π-phase shift. Fig. 2. (A) Schematic and (B) optical micrograph of the π-shift Toggle Flip-Flop. The Josephson junctions have designed critical currents between 90 and 130 µa controlled by the width between 7.5 and 11 µm. All lines to ground are connected in a phase-coherent manner by a superconducting ground plane, not shown in this photograph. Fig. 3. Measurement results for: (A) a triangular input current of about 1 ma amplitude. On each rising ramp of this input signal an SFQ pulse is generated, transferred to the TFF and toggling its internal state, and (B) a triangular input current of about 4 ma amplitude with three SFQ pulses generated on each rising ramp of the input signal. Fig. 4. Comparison of the circuit parameters for (A) a conventional and (B) an exemplary symmetric π-shift Toggle-Flip-Flop. 9

10 A 2 B B 1 A C 2 LU / C -1/2 1/2 0 E b

11 A dc/sfq converter JTL Iin Ib1 Ib2 Ib3 Ib4 J1 Jp1 B Iin Ib1 Ib2 Ib3 Ib4 Out Ib5 Ib6 YBCO Nb 80 m J2 J4 Ib5 Ib6 J3 Lstore J5 Out Jp2 Toggle Flip-Flop read-out SQUID

12 A I (ma) V ( V) Time (ms) B I (ma) V ( V) Time (ms)

13 A B Input 1pH 250 A 1pH 270 A Input 3pH 1.5pH 150 A 145 A 1.5pH 300 A 0.8pH 0.6pH 1.4pH 1.8pH 1.8pH 200 A 250 A 6pH 150 A 2pH 150 A 9pH 150 A 3pH 300 A 225 A Out 150 A 150 A Out

14 For the sample fabrication, first a 150 nm [001]-oriented YBa 2 Cu 3 O 7-δ and 70 nm SrTiO 3 bilayer is epitaxially grown by pulsed-laser deposition (PLD) on an edge-aligned [001]- oriented SrTiO 3 single crystal substrate. Then the Flip-Flop leads and junction ramps are structured using optical lithography and Ar-ion milling. To ensure a uniform ramp for both junction directions, the samples are rotated during ion-milling at an angle of 45 with respect to the Ar-beam. To achieve a high-quality interface, a 7 nm YBa 2 Cu 3 O 7- δ interlayer is deposited. This is followed by the in-situ PLD deposition of a 25 nm Au barrier layer. The 160 nm Nb counter-electrode is defined by optical lithography and sputtering using a lift-off mask, followed by the removal of the redundant Au layer by Ar-ion milling. After this, a 200 nm SiO 2 insulating layer is dc-sputtered before the definition of via holes by optical lithography and Ar-ion milling. Finally a 200 nm Nb groundplane is fabricated by optical lithography and sputtering using a lift-off mask. This defines the self inductances per square of the YBa 2 Cu 3 O 7- δ base-electrode and Nb counter-electrode with respect to ground to be approximately 2 ph and 1 ph, respectively. The YBa 2 Cu 3 O 7- δ and Nb films fabricated using this procedure have a typical critical temperature T c of 90 and 8.9 K, respectively.

RSFQ DC to SFQ Converter with Reduced Josephson Current Density

RSFQ DC to SFQ Converter with Reduced Josephson Current Density Proceedings of the th WSEAS International Conference on CIRCUITS, Agios Nikolaos, Crete Island, Greece, July 3-5, 7 8 RSFQ DC to SFQ Converter with Reduced Josephson Current Density VALERI MLADENOV Department

More information

THE Josephson junction based digital superconducting

THE Josephson junction based digital superconducting IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 26, NO. 3, APRIL 2016 1300205 Investigation of Readout Cell Configuration and Parameters on Functionality and Stability of Bi-Directional RSFQ TFF Tahereh

More information

Multi-Channel Time Digitizing Systems

Multi-Channel Time Digitizing Systems 454 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 13, NO. 2, JUNE 2003 Multi-Channel Time Digitizing Systems Alex Kirichenko, Saad Sarwana, Deep Gupta, Irwin Rochwarger, and Oleg Mukhanov Abstract

More information

Measurement and noise performance of nano-superconducting-quantuminterference devices fabricated by focused ion beam

Measurement and noise performance of nano-superconducting-quantuminterference devices fabricated by focused ion beam Measurement and noise performance of nano-superconducting-quantuminterference devices fabricated by focused ion beam L. Hao,1,a_ J. C. Macfarlane,1 J. C. Gallop,1 D. Cox,1 J. Beyer,2 D. Drung,2 and T.

More information

Engineering and Measurement of nsquid Circuits

Engineering and Measurement of nsquid Circuits Engineering and Measurement of nsquid Circuits Jie Ren Stony Brook University Now with, Inc. Big Issue: power efficiency! New Hero: http://sealer.myconferencehost.com/ Reversible Computer No dissipation

More information

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head

Magnetic and Electromagnetic Microsystems. 4. Example: magnetic read/write head Magnetic and Electromagnetic Microsystems 1. Magnetic Sensors 2. Magnetic Actuators 3. Electromagnetic Sensors 4. Example: magnetic read/write head (C) Andrei Sazonov 2005, 2006 1 Magnetic microsystems

More information

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM

IEEE/CSC & ESAS SUPERCONDUCTIVITY NEWS FORUM Kryo 2013 Modern AC Josephson voltage standards at PTB J. Kohlmann, F. Müller, O. Kieler, Th. Scheller, R. Wendisch, B. Egeling, L. Palafox, J. Lee, and R. Behr Physikalisch-Technische Bundesanstalt Φ

More information

Digital Circuits Using Self-Shunted Nb/NbxSi1-x/Nb Josephson Junctions

Digital Circuits Using Self-Shunted Nb/NbxSi1-x/Nb Josephson Junctions This paper was accepted by Appl. Phys. Lett. (2010). The final version was published in vol. 96, issue No. 21: http://apl.aip.org/applab/v96/i21/p213510_s1?isauthorized=no Digital Circuits Using Self-Shunted

More information

Multi-J c (Josephson Critical Current Density) Process for Superconductor Integrated Circuits Daniel T. Yohannes, Amol Inamdar, and Sergey K.

Multi-J c (Josephson Critical Current Density) Process for Superconductor Integrated Circuits Daniel T. Yohannes, Amol Inamdar, and Sergey K. IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 3, JUNE 2009 149 Multi-J c (Josephson Critical Current Density) Process for Superconductor Integrated Circuits Daniel T. Yohannes, Amol Inamdar,

More information

Novel Josephson Junction Geometries in NbCu bilayers fabricated by Focused Ion Beam Microscope

Novel Josephson Junction Geometries in NbCu bilayers fabricated by Focused Ion Beam Microscope Novel Josephson Junction Geometries in NbCu bilayers fabricated by Focused Ion Beam Microscope R. H. HADFIELD, G. BURNELL, P. K. GRIMES, D.-J. KANG, M. G. BLAMIRE IRC in Superconductivity and Department

More information

A Prescaler Circuit for a Superconductive Time-to-Digital Converter

A Prescaler Circuit for a Superconductive Time-to-Digital Converter IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 11, No. 1, MARCH 2001 513 A Prescaler Circuit for a Superconductive Time-to-Digital Converter Steven B. Kaplan, Alex F. Kirichenko, Oleg A. Mukhanov,

More information

Quarter-rate Superconducting Modulator for Improved High Resolution Analog-to-Digital Converter

Quarter-rate Superconducting Modulator for Improved High Resolution Analog-to-Digital Converter 1 Quarter-rate Superconducting Modulator for Improved High Resolution Analog-to-Digital Converter Amol Inamdar, Sergey Rylov, Anubhav Sahu, Saad Sarwana, and Deepnarayan Gupta Abstract We describe the

More information

Sub-micron SNIS Josephson junctions for metrological application

Sub-micron SNIS Josephson junctions for metrological application Available online at www.sciencedirect.com Physics Procedia 36 (2012 ) 105 109 Superconductivity Centennial Conference Sub-micron SNIS Josephson junctions for metrological application N. De Leoa*, M. Fretto,

More information

Direct measurements of propagation delay of single-flux-quantum circuits by time-to-digital converters

Direct measurements of propagation delay of single-flux-quantum circuits by time-to-digital converters Direct measurements of propagation delay of single-flux-quantum circuits by time-to-digital converters Kazunori Nakamiya 1a), Nobuyuki Yoshikawa 1, Akira Fujimaki 2, Hirotaka Terai 3, and Yoshihito Hashimoto

More information

SINGLE FLUX QUANTUM ONE-DECIMAL-DIGIT RNS ADDER

SINGLE FLUX QUANTUM ONE-DECIMAL-DIGIT RNS ADDER Applied Superconductivity Vol. 6, Nos 10±12, pp. 609±614, 1998 # 1999 Published by Elsevier Science Ltd. All rights reserved Printed in Great Britain PII: S0964-1807(99)00018-6 0964-1807/99 $ - see front

More information

CONVENTIONAL design of RSFQ integrated circuits

CONVENTIONAL design of RSFQ integrated circuits IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 19, NO. 3, JUNE 2009 1 Serially Biased Components for Digital-RF Receiver Timur V. Filippov, Anubhav Sahu, Saad Sarwana, Deepnarayan Gupta, and Vasili

More information

Integrated Circuit Design 813 Stellenbosch University Dept. E&E Engineering

Integrated Circuit Design 813 Stellenbosch University Dept. E&E Engineering ICD 813 Lecture 1 p.1 Integrated Circuit Design 813 Stellenbosch University Dept. E&E Engineering 2013 Course contents Lecture 1: GHz digital electronics: RSFQ logic family Introduction to fast digital

More information

54. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium

54. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium 7-1 September 29 PROCEEDINGS 54. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium Information Technology and Electrical Engineering - Devices and Systems, Materials

More information

REVISION #25, 12/12/2012

REVISION #25, 12/12/2012 HYPRES NIOBIUM INTEGRATED CIRCUIT FABRICATION PROCESS #03-10-45 DESIGN RULES REVISION #25, 12/12/2012 Direct all inquiries, questions, comments and suggestions concerning these design rules and/or HYPRES

More information

2 SQUID. (Superconductive QUantum Interference Device) SQUID 2. ( 0 = Wb) SQUID SQUID SQUID SQUID Wb ( ) SQUID SQUID SQUID

2 SQUID. (Superconductive QUantum Interference Device) SQUID 2. ( 0 = Wb) SQUID SQUID SQUID SQUID Wb ( ) SQUID SQUID SQUID SQUID (Superconductive QUantum Interference Device) SQUID ( 0 = 2.07 10-15 Wb) SQUID SQUID SQUID SQUID 10-20 Wb (10-5 0 ) SQUID SQUID ( 0 ) SQUID 0 [1, 2] SQUID 0.1 0 SQUID SQUID 10-4 0 1 1 1 SQUID 2 SQUID

More information

Digital Encoder for RF Transmit Waveform Synthesizer Amol Inamdar, Deepnarayan Gupta, Saad Sarwana, Anubhav Sahu, and Alan M.

Digital Encoder for RF Transmit Waveform Synthesizer Amol Inamdar, Deepnarayan Gupta, Saad Sarwana, Anubhav Sahu, and Alan M. 556 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 17, NO. 2, JUNE 2007 Digital Encoder for RF Transmit Waveform Synthesizer Amol Inamdar, Deepnarayan Gupta, Saad Sarwana, Anubhav Sahu, and Alan

More information

Low Temperature Superconductor Electronics. H.-G. Meyer, Institute of Photonic Technology Albert Einstein Strasse Jena, Germany

Low Temperature Superconductor Electronics. H.-G. Meyer, Institute of Photonic Technology Albert Einstein Strasse Jena, Germany 1 Low Temperature Superconductor Electronics H.-G. Meyer, Institute of Photonic Technology Albert Einstein Strasse 9 07745 Jena, Germany 2 Outline Status of Semiconductor Technology Introduction to Superconductor

More information

Supplementary Figure 1 High-resolution transmission electron micrograph of the

Supplementary Figure 1 High-resolution transmission electron micrograph of the Supplementary Figure 1 High-resolution transmission electron micrograph of the LAO/STO structure. LAO/STO interface indicated by the dotted line was atomically sharp and dislocation-free. Supplementary

More information

Voltage Biased Superconducting Quantum Interference Device Bootstrap Circuit

Voltage Biased Superconducting Quantum Interference Device Bootstrap Circuit Voltage Biased Superconducting Quantum Interference Device Bootstrap Circuit Xiaoming Xie 1, Yi Zhang 2, Huiwu Wang 1, Yongliang Wang 1, Michael Mück 3, Hui Dong 1,2, Hans-Joachim Krause 2, Alex I. Braginski

More information

IN the past few years, superconductor-based logic families

IN the past few years, superconductor-based logic families 1 Synthesis Flow for Cell-Based Adiabatic Quantum-Flux-Parametron Structural Circuit Generation with HDL Backend Verification Qiuyun Xu, Christopher L. Ayala, Member, IEEE, Naoki Takeuchi, Member, IEEE,

More information

A Superconductive Flash Digitizer with On-Chip Memory

A Superconductive Flash Digitizer with On-Chip Memory 32 IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, VOL. 9, No. 2, JUNE 1999 A Superconductive Flash Digitizer with On-Chip Memory Steven B. Kaplan, Paul D. Bradley*, Darren K. Brock, Dmitri Gaidarenko,

More information

Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by

Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by Superconducting quantum interference device (SQUID) and its application in science and engineering. A presentation Submitted by S.Srikamal Jaganraj Department of Physics, University of Alaska, Fairbanks,

More information

Two-stage SQUID systems and transducers development for MiniGRAIL

Two-stage SQUID systems and transducers development for MiniGRAIL INSTITUTE OF PHYSICS PUBLISHING Class. Quantum Grav. 21 (2004) S1191 S1196 CLASSICAL AND QUANTUM GRAVITY PII: S0264-9381(04)69116-7 Two-stage SQUID systems and transducers development for MiniGRAIL L Gottardi

More information

54. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium

54. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium 07-10 September 2009 PROCEEDINGS 54. IWK Internationales Wissenschaftliches Kolloquium International Scientific Colloquium Information Technology and Electrical Engineering - Devices and Systems, Materials

More information

Edge-mode superconductivity in a two-dimensional topological insulator

Edge-mode superconductivity in a two-dimensional topological insulator SUPPLEMENTARY INFORMATION DOI: 10.1038/NNANO.2015.86 Edge-mode superconductivity in a two-dimensional topological insulator Vlad S. Pribiag, Arjan J.A. Beukman, Fanming Qu, Maja C. Cassidy, Christophe

More information

Observation of Andreev bound states in YBa 2 Cu 3 O 7-x /Au/Nb ramp-type Josephson junctions

Observation of Andreev bound states in YBa 2 Cu 3 O 7-x /Au/Nb ramp-type Josephson junctions SUBMITTED FOR PUBLICATION IN PHYSICAL REVIEW B (JUNE 2005) Observation of Andreev bound states in YBa 2 Cu 3 O 7-x /Au/Nb ramp-type Josephson junctions B. Chesca 1*, D. Doenitz 1, T. Dahm 2, R. P. Huebener

More information

High-Speed Rapid-Single-Flux-Quantum Multiplexer and Demultiplexer Design and Testing

High-Speed Rapid-Single-Flux-Quantum Multiplexer and Demultiplexer Design and Testing High-Speed Rapid-Single-Flux-Quantum Multiplexer and Demultiplexer Design and Testing Lizhen Zheng Electrical Engineering and Computer Sciences University of California at Berkeley Technical Report No.

More information

United States Patent [19]

United States Patent [19] United States Patent [19] Simmonds et al. [54] APPARATUS FOR REDUCING LOW FREQUENCY NOISE IN DC BIASED SQUIDS [75] Inventors: Michael B. Simmonds, Del Mar; Robin P. Giffard, Palo Alto, both of Calif. [73]

More information

ExperimentswithaunSQUIDbasedintegrated magnetometer.

ExperimentswithaunSQUIDbasedintegrated magnetometer. ExperimentswithaunSQUIDbasedintegrated magnetometer. Heikki Seppä, Mikko Kiviranta and Vesa Virkki, VTT Automation, Measurement Technology, P.O. Box 1304, 02044 VTT, Finland Leif Grönberg, Jaakko Salonen,

More information

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation Low Thermal Resistance Flip-Chip Bonding of 85nm -D VCSEL Arrays Capable of 1 Gbit/s/ch Operation Hendrik Roscher In 3, our well established technology of flip-chip mounted -D 85 nm backside-emitting VCSEL

More information

Bias reversal technique in SQUID Bootstrap Circuit (SBC) scheme

Bias reversal technique in SQUID Bootstrap Circuit (SBC) scheme Available online at www.sciencedirect.com Physics Procedia 36 (2012 ) 441 446 Superconductivity Centennial Conference Bias reversal technique in SQUID Bootstrap Circuit (SBC) scheme Liangliang Rong b,c*,

More information

MAGNETORESISTIVE random access memory

MAGNETORESISTIVE random access memory 132 IEEE TRANSACTIONS ON MAGNETICS, VOL. 41, NO. 1, JANUARY 2005 A 4-Mb Toggle MRAM Based on a Novel Bit and Switching Method B. N. Engel, J. Åkerman, B. Butcher, R. W. Dave, M. DeHerrera, M. Durlam, G.

More information

ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band

ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band ALMA MEMO #360 Design of Sideband Separation SIS Mixer for 3 mm Band V. Vassilev and V. Belitsky Onsala Space Observatory, Chalmers University of Technology ABSTRACT As a part of Onsala development of

More information

SQUID Test Structures Presented by Makoto Ishikawa

SQUID Test Structures Presented by Makoto Ishikawa SQUID Test Structures Presented by Makoto Ishikawa We need to optimize the microfabrication process for making an SIS tunnel junction because it is such an important structure in a SQUID. Figure 1 is a

More information

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene

Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene Gigahertz Ambipolar Frequency Multiplier Based on Cvd Graphene The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

A two-stage shift register for clocked Quantum-dot Cellular Automata

A two-stage shift register for clocked Quantum-dot Cellular Automata A two-stage shift register for clocked Quantum-dot Cellular Automata Alexei O. Orlov, Ravi Kummamuru, R. Ramasubramaniam, Craig S. Lent, Gary H. Bernstein, and Gregory L. Snider. Dept. of Electrical Engineering,

More information

First Observation of Stimulated Coherent Transition Radiation

First Observation of Stimulated Coherent Transition Radiation SLAC 95 6913 June 1995 First Observation of Stimulated Coherent Transition Radiation Hung-chi Lihn, Pamela Kung, Chitrlada Settakorn, and Helmut Wiedemann Applied Physics Department and Stanford Linear

More information

Josephson Circuits I. JJ RCSJ Model as Circuit Element

Josephson Circuits I. JJ RCSJ Model as Circuit Element Josephson Circuits I. Outline 1. RCSJ Model Review 2. Response to DC and AC Drives Voltage standard 3. The DC SQUID 4. Tunable Josephson Junction October 27, 2005 JJ RCSJ Model as Circuit Element Please

More information

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects

Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Indian Journal of Pure & Applied Physics Vol. 55, May 2017, pp. 363-367 Performance of silicon micro ring modulator with an interleaved p-n junction for optical interconnects Priyanka Goyal* & Gurjit Kaur

More information

Chapter 6. The Josephson Voltage Standard

Chapter 6. The Josephson Voltage Standard Chapter 6 The Josephson Voltage Standard 6.1 Voltage Standards History: 1800: Alessandro Volta developed the so-called Voltaic pile - forerunner of the battery (produced a steady electric current) - effective

More information

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate

4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate 22 Annual Report 2010 - Solid-State Electronics Department 4.1.2 InAs nanowire circuits fabricated by field-assisted selfassembly on a host substrate Student Scientist in collaboration with R. Richter

More information

arxiv: v1 [physics.ins-det] 19 Sep

arxiv: v1 [physics.ins-det] 19 Sep Journal of Low Temperature Physics manuscript No. (will be inserted by the editor) S. Kempf M. Wegner L. Gastaldo A. Fleischmann C. Enss Multiplexed readout of MMC detector arrays using non-hysteretic

More information

Josephson supercurrent through a topological insulator surface state. Nb/Bi 2 Te 3 /Nb junctions. A.A. Golubov University of Twente, The Netherlands

Josephson supercurrent through a topological insulator surface state. Nb/Bi 2 Te 3 /Nb junctions. A.A. Golubov University of Twente, The Netherlands Josephson supercurrent through a topological insulator surface state Nb/Bi 2 Te 3 /Nb junctions A.A. Golubov University of Twente, The Netherlands Acknowledgements MESA+ Institute for Nanotechnology, University

More information

Design and demonstration of a 5-bit flash-type SFQ A/D converter integrated with error correction and interleaving circuits

Design and demonstration of a 5-bit flash-type SFQ A/D converter integrated with error correction and interleaving circuits & ESAS European Superconductivity News Forum (ESNF), No. 14, October 21 The published version of this manuscript appeared in IEEE Transactions on Applied Superconductivity 21, Issue 3, 671-676 (211) 2EB-1,

More information

TERAHERTZ NbN/A1N/NbN MIXERS WITH Al/SiO/NbN MICROSTRIP TUNING CIRCUITS

TERAHERTZ NbN/A1N/NbN MIXERS WITH Al/SiO/NbN MICROSTRIP TUNING CIRCUITS TERAHERTZ NbN/A1N/NbN MIXERS WITH Al/SiO/NbN MICROSTRIP TUNING CIRCUITS Yoshinori UZAWA, Zhen WANG, and Akira KAWAKAMI Kansai Advanced Research Center, Communications Research Laboratory, Ministry of Posts

More information

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors

New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors Chapter 4 New Pixel Circuits for Driving Organic Light Emitting Diodes Using Low-Temperature Polycrystalline Silicon Thin Film Transistors ---------------------------------------------------------------------------------------------------------------

More information

SQUID Basics. Dietmar Drung Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany

SQUID Basics. Dietmar Drung Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany SQUID Basics Dietmar Drung Physikalisch-Technische Bundesanstalt (PTB) Berlin, Germany Outline: - Introduction - Low-Tc versus high-tc technology - SQUID fundamentals and performance - Readout electronics

More information

YBa 2 Cu 3 O 7-δ Hot-Electron Bolometer Mixer at 0.6 THz

YBa 2 Cu 3 O 7-δ Hot-Electron Bolometer Mixer at 0.6 THz YBa 2 Cu 3 O 7-δ Hot-Electron Bolometer Mixer at 0.6 THz S.Cherednichenko 1, F.Rönnung 2, G.Gol tsman 3, E.Kollberg 1 and D.Winkler 2 1 Department of Microelectronics, Chalmers University of Technology,

More information

Bistability in Bipolar Cascade VCSELs

Bistability in Bipolar Cascade VCSELs Bistability in Bipolar Cascade VCSELs Thomas Knödl Measurement results on the formation of bistability loops in the light versus current and current versus voltage characteristics of two-stage bipolar

More information

Design and operation of a rapid single flux quantum demultiplexer

Design and operation of a rapid single flux quantum demultiplexer INIUE OF PHYIC PUBLIHING upercond. ci. echnol. 15 (2002) 1744 1748 UPECONDUCO CIENCE AND ECHNOLOGY PII: 0953-2048(02)38552-X Design and operation of a rapid single flux quantum demultiplexer Masaaki Maezawa,

More information

S1. Current-induced switching in the magnetic tunnel junction.

S1. Current-induced switching in the magnetic tunnel junction. S1. Current-induced switching in the magnetic tunnel junction. Current-induced switching was observed at room temperature at various external fields. The sample is prepared on the same chip as that used

More information

Possibility of macroscopic resonant tunneling near the superconductor-insulator transition in YBa 2 Cu 3 O 7 δ thin films

Possibility of macroscopic resonant tunneling near the superconductor-insulator transition in YBa 2 Cu 3 O 7 δ thin films EUROPHYSICS LETTERS 15 February 1998 Europhys. Lett., 41 (4), pp. 425-429 (1998) Possibility of macroscopic resonant tunneling near the superconductor-insulator transition in YBa 2 Cu 3 O 7 δ thin films

More information

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices

Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices Waveguide superconducting single-photon detectors for Integrated Quantum Photonic devices KOBIT- 1 Izmir Yuksek Teknoloji Enstitusu Döndü Sahin QET Labs, d.sahin@bristol.ac.uk EU-FP7 Implementing QNIX

More information

Zero-Bias Resonant Sensor with an Oxide-Nitride Layer as Charge Trap

Zero-Bias Resonant Sensor with an Oxide-Nitride Layer as Charge Trap Zero-Bias Resonant Sensor with an Oxide-Nitride Layer as Charge Trap Kwan Kyu Park, Mario Kupnik, Hyunjoo J. Lee, Ömer Oralkan, and Butrus T. Khuri-Yakub Edward L. Ginzton Laboratory, Stanford University

More information

rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706

rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 (revised 3/9/07) rf SQUID Advanced Laboratory, Physics 407 University of Wisconsin Madison, Wisconsin 53706 Abstract The Superconducting QUantum Interference Device (SQUID) is the most sensitive detector

More information

A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect

A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect A scanning tunneling microscopy based potentiometry technique and its application to the local sensing of the spin Hall effect Ting Xie 1, a), Michael Dreyer 2, David Bowen 3, Dan Hinkel 3, R. E. Butera

More information

Riccardo Arpaia. MC2- Quantum Device Physics Laboratory Chalmers University of Technology Göteborg - Sweden. ASC Charlotte August 11,

Riccardo Arpaia. MC2- Quantum Device Physics Laboratory Chalmers University of Technology Göteborg - Sweden. ASC Charlotte August 11, Riccardo Arpaia MC2- Quantum Device Physics Laboratory Chalmers University of Technology Göteborg - Sweden 1 Marco Reza Sophie Shahid Thilo Floriana Arzeo Baghdadi Charpentier Nawaz Bauch Lombardi Phd

More information

Nano-structured superconducting single-photon detector

Nano-structured superconducting single-photon detector Nano-structured superconducting single-photon detector G. Gol'tsman *a, A. Korneev a,v. Izbenko a, K. Smirnov a, P. Kouminov a, B. Voronov a, A. Verevkin b, J. Zhang b, A. Pearlman b, W. Slysz b, and R.

More information

The Original SQUID. Arnold H. Silver. Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012

The Original SQUID. Arnold H. Silver. Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012 The Original SQUID Arnold H. Silver Josephson Symposium Applied Superconductivity Conference Portland, OR October 9, 2012 Two Part Presentation Phase One: 1963 1964 Jaklevic, Lambe, Mercereau, Silver Microwave

More information

(2017) (4). ISSN

(2017) (4). ISSN Du, Jia and Pegrum, Colin and Gao, Xiang and Weily, Andrew R. and Zhang, Ting and Guo, Yingjie Jay and Foley, Cathy P. (2017) Harmonic mixing using a HTS step-edge Josephson junction at 0.6 THz frequency.

More information

Design and Simulation of Multiplexer using Josephson junction using OrCAD Capture

Design and Simulation of Multiplexer using Josephson junction using OrCAD Capture Design and Simulation of Multiplexer using Josephson junction using OrCAD Capture Abhishek Chauhan 1, Kunj Vashishtha 2 1 Asst. Professor, Department of Electronics, SRM University, NCR Campus, Ghaziabad

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Room-temperature continuous-wave electrically injected InGaN-based laser directly grown on Si Authors: Yi Sun 1,2, Kun Zhou 1, Qian Sun 1 *, Jianping Liu 1, Meixin Feng 1, Zengcheng Li 1, Yu Zhou 1, Liqun

More information

HfO 2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its Potential for Embedded Applications

HfO 2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its Potential for Embedded Applications 2012 International Conference on Solid-State and Integrated Circuit (ICSIC 2012) IPCSIT vol. 32 (2012) (2012) IACSIT Press, Singapore HfO 2 Based Resistive Switching Non-Volatile Memory (RRAM) and Its

More information

Multi-format all-optical-3r-regeneration technology

Multi-format all-optical-3r-regeneration technology Multi-format all-optical-3r-regeneration technology Masatoshi Kagawa Hitoshi Murai Amount of information flowing through the Internet is growing by about 40% per year. In Japan, the monthly average has

More information

Machine-Aligned Fabrication of Submicron SIS Tunnel Junctions Using a Focused Ion Beam

Machine-Aligned Fabrication of Submicron SIS Tunnel Junctions Using a Focused Ion Beam Machine-Aligned Fabrication of Submicron SIS Tunnel Junctions Using a Focused Ion Beam Robert. B. Bass, Jian. Z. Zhang and Aurthur. W. Lichtenberger Department of Electrical Engineering, University of

More information

A novel tunable diode laser using volume holographic gratings

A novel tunable diode laser using volume holographic gratings A novel tunable diode laser using volume holographic gratings Christophe Moser *, Lawrence Ho and Frank Havermeyer Ondax, Inc. 85 E. Duarte Road, Monrovia, CA 9116, USA ABSTRACT We have developed a self-aligned

More information

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers Wafer-scale integration of silicon-on-insulator RF amplifiers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Key Questions. ECE 340 Lecture 39 : Introduction to the BJT-II 4/28/14. Class Outline: Fabrication of BJTs BJT Operation

Key Questions. ECE 340 Lecture 39 : Introduction to the BJT-II 4/28/14. Class Outline: Fabrication of BJTs BJT Operation Things you should know when you leave ECE 340 Lecture 39 : Introduction to the BJT-II Fabrication of BJTs Class Outline: Key Questions What elements make up the base current? What do the carrier distributions

More information

H»-/9l <M- Form Approved OMB No

H»-/9l <M- Form Approved OMB No REPORT DOCUMENTATION PAGE H»-/9l

More information

Fabrication of a submicron patterned using an electrospun single fiber as mask. Author(s)Ishii, Yuya; Sakai, Heisuke; Murata,

Fabrication of a submicron patterned using an electrospun single fiber as mask. Author(s)Ishii, Yuya; Sakai, Heisuke; Murata, JAIST Reposi https://dspace.j Title Fabrication of a submicron patterned using an electrospun single fiber as mask Author(s)Ishii, Yuya; Sakai, Heisuke; Murata, Citation Thin Solid Films, 518(2): 647-650

More information

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor

Supporting Information. Vertical Graphene-Base Hot-Electron Transistor Supporting Information Vertical Graphene-Base Hot-Electron Transistor Caifu Zeng, Emil B. Song, Minsheng Wang, Sejoon Lee, Carlos M. Torres Jr., Jianshi Tang, Bruce H. Weiller, and Kang L. Wang Department

More information

Overview. Tasks: 1.1. Realization of a direct coherent microwave-to-optical link

Overview. Tasks: 1.1. Realization of a direct coherent microwave-to-optical link Overview Optical cavity Microwave cavity Mechanical resonator Tasks: 1.1. Realization of a direct coherent microwave-to-optical link 1.2 Development of large gain-bandwidth product microwave amplifiers

More information

Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers

Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers Influence of dielectric substrate on the responsivity of microstrip dipole-antenna-coupled infrared microbolometers Iulian Codreanu and Glenn D. Boreman We report on the influence of the dielectric substrate

More information

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors

High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors High-Speed Scalable Silicon-MoS 2 P-N Heterojunction Photodetectors Veerendra Dhyani 1, and Samaresh Das 1* 1 Centre for Applied Research in Electronics, Indian Institute of Technology Delhi, New Delhi-110016,

More information

Slot Lens Antenna Based on Thin Nb Films for the Wideband Josephson Terahertz Oscillator

Slot Lens Antenna Based on Thin Nb Films for the Wideband Josephson Terahertz Oscillator ISSN 63-7834, Physics of the Solid State, 28, Vol. 6, No., pp. 273 277. Pleiades Publishing, Ltd., 28. Original Russian Text N.V. Kinev, K.I. Rudakov, A.M. Baryshev, V.P. Koshelets, 28, published in Fizika

More information

Magnetic field penetration in a long Josephson junction imbedded in a wide stripline

Magnetic field penetration in a long Josephson junction imbedded in a wide stripline JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 1 1 JANUARY 2001 Magnetic field penetration in a long Josephson junction imbedded in a wide stripline Andreas Franz, a) Andreas Wallraff, and Alexey V. Ustinov

More information

Phase Locked Loops, Report Writing, Layout Tuesday, April 5th, 9:15 11:00

Phase Locked Loops, Report Writing, Layout Tuesday, April 5th, 9:15 11:00 Phase Locked Loops, Report Writing, Layout Tuesday, April 5th, 9:15 11:00 Snorre Aunet (sa@ifi.uio.no) Nanoelectronics group Department of Informatics University of Oslo Last time and today, Tuesday 5th

More information

Secure Communication Application of Josephson Tetrode in THz Region

Secure Communication Application of Josephson Tetrode in THz Region Available online at www.sciencedirect.com Physics Procedia 36 (2012 ) 435 440 Superconductivity Centennial Conference Secure Communication Application of Josephson Tetrode in THz Region Nurliyana Bte Mohd

More information

Quantum frequency standard Priority: Filing: Grant: Publication: Description

Quantum frequency standard Priority: Filing: Grant: Publication: Description C Quantum frequency standard Inventors: A.K.Dmitriev, M.G.Gurov, S.M.Kobtsev, A.V.Ivanenko. Priority: 2010-01-11 Filing: 2010-01-11 Grant: 2011-08-10 Publication: 2011-08-10 Description The present invention

More information

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes

Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Fabrication of High-Speed Resonant Cavity Enhanced Schottky Photodiodes Abstract We report the fabrication and testing of a GaAs-based high-speed resonant cavity enhanced (RCE) Schottky photodiode. The

More information

A compact superconducting nanowire memory element operated by nanowire cryotrons

A compact superconducting nanowire memory element operated by nanowire cryotrons A compact superconducting nanowire memory element operated by nanowire cryotrons Qing-Yuan Zhao 1, Emily A. Toomey 1, Brenden A. Butters 1, Adam N. McCaughan 2, Andrew E. Dane 1, Sae-Woo Nam 2, Karl K.

More information

Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of

Detection Beyond 100µm Photon detectors no longer work (shallow, i.e. low excitation energy, impurities only go out to equivalent of Detection Beyond 100µm Photon detectors no longer work ("shallow", i.e. low excitation energy, impurities only go out to equivalent of 100µm) A few tricks let them stretch a little further (like stressing)

More information

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 23 Mar 2001

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 23 Mar 2001 Coulomb Blockade and Coherent Single-Cooper-Pair Tunneling arxiv:cond-mat/0103502v1 [cond-mat.mes-hall] 23 Mar 2001 in Single Josephson Junctions Michio Watanabe and David B. Haviland Nanostructure Physics,

More information

High dynamic range SQUID readout for frequencydomain

High dynamic range SQUID readout for frequencydomain High dynamic range SQUID readout for frequencydomain multiplexers * VTT, Tietotie 3, 215 Espoo, Finland A 16-SQUID array has been designed and fabricated, which shows.12 µφ Hz -1/2 flux noise at 4.2K.

More information

Interaction of magnetic-dipolar modes with microwave-cavity. electromagnetic fields

Interaction of magnetic-dipolar modes with microwave-cavity. electromagnetic fields Interaction of magnetic-dipolar modes with microwave-cavity electromagnetic fields E.O. Kamenetskii 1 *, A.K. Saha 2, and I. Awai 3 1 Department of Electrical and Computer Engineering, Ben Gurion University

More information

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation

Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation 238 Hitachi Review Vol. 65 (2016), No. 7 Featured Articles Measurement of Microscopic Three-dimensional Profiles with High Accuracy and Simple Operation AFM5500M Scanning Probe Microscope Satoshi Hasumura

More information

Nano Josephson Superconducting Tunnel Junctions in Y-Ba-Cu-O Direct- Patterned with a Focused Helium Ion Beam

Nano Josephson Superconducting Tunnel Junctions in Y-Ba-Cu-O Direct- Patterned with a Focused Helium Ion Beam Nano Josephson Superconducting Tunnel Junctions in Y-Ba-Cu-O Direct- Patterned with a Focused Helium Ion Beam Authors: Shane A. Cybart, 1,2,* E. Y. Cho, 1 T. J. Wong, 1 Björn H. Wehlin, 1 Meng K. Ma, 1

More information

An SIS-based Sideband-Separating Heterodyne Mixer Optimized for the 600 to 720 GHz Band.

An SIS-based Sideband-Separating Heterodyne Mixer Optimized for the 600 to 720 GHz Band. An SIS-based Sideband-Separating Heterodyne Mixer Optimized for the 6 to 72 GHz Band. F. P. Mena (1), J. W. Kooi (2), A. M. Baryshev (1), C. F. J. Lodewijk (3), R. Hesper (2), W. Wild (2), and T. M. Klapwijk

More information

BRIDGE VOLTAGE SOURCE

BRIDGE VOLTAGE SOURCE Instruments and Experimental Techniques, Vol. 38, No. 3, Part 2, 1995 BRIDGE VOLTAGE SOURCE D. L. Danyuk and G. V. Pil'ko UDC 621.311.6+539.107.8 This voltage source is designed to bias superconducting

More information

SUPERCONDUCTOR DIGITAL-RF TRANSCEIVER COMPONENTS

SUPERCONDUCTOR DIGITAL-RF TRANSCEIVER COMPONENTS SUPERCONDUCTOR DIGITAL-RF TRANSCEIVER COMPONENTS O. Mukhanov (mukhanov@hypres.com), D. Gupta, A. Kadin, J. Rosa (HYPRES, Inc., Elmsford, 175 Clearbrook Rd., NY 10523), V. Semenov, T. Filippov (SUNY at

More information

High-resolution ADC operation up to 19.6 GHz clock frequency

High-resolution ADC operation up to 19.6 GHz clock frequency INSTITUTE OF PHYSICS PUBLISHING Supercond. Sci. Technol. 14 (2001) 1065 1070 High-resolution ADC operation up to 19.6 GHz clock frequency SUPERCONDUCTOR SCIENCE AND TECHNOLOGY PII: S0953-2048(01)27387-4

More information

Josephson junction and SQUID based technology

Josephson junction and SQUID based technology VTT TECHNICAL RESEARCH CENTRE OF FINLAND LTD Josephson junction and SQUID based technology Cryocourse 2016: Aalto School and Workshop in Cryogenics and Quantum Engineering Juha Hassel 2.10.2016 Outline

More information

Resonant Tunneling Device. Kalpesh Raval

Resonant Tunneling Device. Kalpesh Raval Resonant Tunneling Device Kalpesh Raval Outline Diode basics History of Tunnel diode RTD Characteristics & Operation Tunneling Requirements Various Heterostructures Fabrication Technique Challenges Application

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

Quasi-Phase-Matched Faraday Rotation in Semiconductor Waveguides with a Magneto-Optic Cladding for Monolithically Integrated Optical Isolators

Quasi-Phase-Matched Faraday Rotation in Semiconductor Waveguides with a Magneto-Optic Cladding for Monolithically Integrated Optical Isolators Quasi-Phase-Matched Faraday Rotation in Semiconductor Waveguides with a Magneto-Optic Cladding for Monolithically Integrated Optical Isolators Prof. David C. Hutchings, Barry M. Holmes and Cui Zhang, Acknowledgements

More information