A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer

Size: px
Start display at page:

Download "A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer"

Transcription

1 A low-power, high-speed, 9-channel germaniumsilicon electro-absorption modulator array integrated with digital CMOS driver and wavelength multiplexer A. V. Krishnamoorthy, 1* X. Zheng, 1 D. Feng, 3 J. Lexau, 2 J. F. Buckwalter, 1 H. D. Thacker, 1 F. Liu, 2 Y. Luo, 1 E. Chang, 2 P. Amberg, 1 I. Shubin, 1 S. S. Djordjevic, 1 J. H. Lee, 1 S. Lin, 1 H. Liang, 3 A. Abed, 3 R. Shafiiha, 3 K. Raj, 1 R. Ho, 2 M. Asghari, 3 and J. E. Cunningham 1 1 Oracle Netra Systems & Networking, San Diego CA 92121, USA 2 Oracle Labs, Redwood Shores, CA USA 3 Mellanox Technologies, 2630 Corporate Place, Monterey Park, CA USA * ashok.krishnamoorthy@oracle.com Abstract: We demonstrate the first germanium-silicon C-band electroabsorption based waveguide modulator array and echelle-grating-based silicon wavelength multiplexer integrated with a digital CMOS driver circuit. A 9-channel, 10Gbps SiGe electro-absorption wavelengthmultiplexed modulator array consumed a power of 5.8mW per channel while being modulated at 10.25Gbps by 40nm CMOS drivers delivering peak-to-peak voltage swings of 2V, achieving a modulation energyefficiency of ~570fJ/bit including drivers. Performance up to 25Gbps on a single-channel SiGe modulator and CMOS driver is also reported Optical Society of America OCIS codes: ( ) Optical interconnects; ( ) Waveguide modulators; ( ) Photonic integrated circuits. References and links 1. A. V. Krishnamoorthy, K. W. Goossen, W. Jan, X. Zheng, R. Ho, G. Li, R. Rozier, F. Liu, D. Patil, J. Lexau, H. Schwetman, D. Feng, M. Asghari, T. Pinguet, and J. E. Cunningham, Progress in low-power switched optical interconnects, IEEE J. Sel. Top. Quantum Electron. 17(2), (2011). 2. M. Asghari and A. V. Krishnamoorthy, Energy-efficient communication, Nat. Photonics 5(5), (2011). 3. J. F. Liu, M. Beals, A. Pomerene, S. Bernardis, R. Sun, J. Cheng, L. C. Kimerling, and J. Michel, Waveguideintegrated, ultralow-energy GeSi electro-absorption modulators, Nat. Photonics 2(7), (2008). 4. A. E.-J. Lim, T.-Y. Liow, F. Qing, N. Duan, L. Ding, M. Yu, G.-Q. Lo, and D.-L. Kwong, Novel evanescentcoupled germanium electro-absorption modulator featuring monolithic integration with germanium p-i-n photodetector, Opt. Express 19(6), (2011). 5. P. Chaisakul, D. Marris-Morini, M. S. Rouifed, G. Isella, D. Chrastina, J. Frigerio, X. Le Roux, S. Edmond, J. R. Coudevylle, and L. Vivien, 23 GHz Ge/SiGe multiple quantum well electro-absorption modulator, Opt. Express 20(3), (2012). 6. N. N. Feng, D. Feng, S. Liao, X. Wang, P. Dong, H. Liang, C.-C. Kung, W. Qian, J. Fong, R. Shafiiha, Y. Luo, J. Cunningham, A. V. Krishnamoorthy, and M. Asghari, 30GHz Ge electro-absorption modulator integrated with 3 μm silicon-on-insulator waveguide, Opt. Express 19(8), (2011). 7. D. Feng, S. Liao, H. Liang, J. Fong, B. Bijlani, R. Shafiiha, B. J. Luff, Y. Luo, J. E. Cunningham, A. V. Krishnamoorthy, and M. Asghari, High speed GeSi electro-absorption modulator at 1550 nm wavelength on SOI waveguide, Opt. Express 20(20), (2012). 8. D. Feng, W. Qian, H. Liang, C.-C. Kung, Z. Zhou, Z. Li, J. Levy, R. Shafiiha, J. Fong, B. J. Luff, and M. Asghari, High-speed GeSi electro-absorption modulator on the SOI waveguide platform, IEEE J. Sel. Top. Quantum Electron. 19(6), (2013). 9. G. Li, A. V. Krishnamoorthy, I. Shubin, J. Yao, Y. Luo, H. Thacker, X. Zheng, K. Raj, and J. E. Cunningham, Ring resonator modulators in silicon for interchip photonic links, IEEE J. Sel. Top. Quantum Electron. 19(6), (2013). (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12289

2 10. F. Liu, D. Patil, J. Lexau, P. Amberg, M. Dayringer, J. Gainsley, H. Moghadam, X. Zheng, J. E. Cunningham, A. V. Krishnamoorthy, E. Alon, and R. Ho, 10Gbps, 5.3mW optical transceiver circuits in 40nm CMOS, in Proceedings of IEEE Symp. VLSI Circuits (Institute of Electrical and Electronics Engineers, Honolulu, HI, 2011), pp A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D Asaro, S. P. Hui, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, and D. A. B. Miller, 3-D integration of MQW modulators over submicron CMOS circuits: 375Mb/s transimpedancereceiver-transmitter circuit, IEEE Photon. Technol. Lett. 7(11), (1995). 12. J. F. Buckwalter, X. Zheng, G. Li, K. Raj, and A. V. Krishnamoorthy, A Monolithic 25-Gb/s Transceiver With Photonic Ring Modulators and Ge Detectors in a 130-nm CMOS SOI Process, IEEE J. Solid-State Circuits 47(6), (2012). 1. Introduction The gradual adoption of optical interconnects into computing and switching systems over the last decade has paved the way for new photonic technologies to be incorporated into the computing system hierarchy. We will soon witness ubiquitous incorporation of optical interconnect technologies at the board, backplane, and rack level server systems at 25Gbps and beyond [1]. Parallel silicon-based photonic links will naturally replace other optical solutions for applications that require a combination of high-speed, high-density, and tight integration to VLSI application specific integrated circuits including switches, processors, gate arrays, and memory modules. Both WDM and multi-core fiber techniques are being investigated for further density improvements, and it is possible that one or both of these technologies will ultimately see wide-spread use in commercial systems. Regardless of the multiplexing method, it is critical to achieve low-power, high-density silicon transmitters and associated receivers to support the ever-growing bandwidth demand to bandwidth-hungry chips including switches, processors, and field-programmable gate arrays. A germanium-silicon (GeSi) Franz-Keldysh Effect (FKE) electro-absorption (EA) waveguide modulator is expected to become an integral part of a high-speed energy-efficient multi-wavelength interconnect platform [2]. In earlier work, GeSi EA modulators were originally designed and operated with sub-micron-thick silicon-on-insulator (SOI) waveguides [3 5], and subsequently fabricated with an optimized 3-micron-thick, large-core SOI waveguides in the L-band [6] and C-band [7] wavelength ranges. A 4-channel modulator array based on this platform was recently reported in [8]. In this letter, we present a compact, broad-band 9-channel 10Gbps/channel GeSi waveguide modulator array with a monolithically integrated echelle-based wavelength multiplexer hybrid integrated to a lowpower CMOS driver circuit designed in a 40nm CMOS process. We also present a singlechannel GeSi FKE modulator with CMOS driver at 25Gbps. Fig. 1. (a) Insertion loss and extinction ratio vs wavelength and reverse-bias voltages (b) total equivalent modulator link power penalty showing that a bandwidth of 30nm obtained at approx. 9.5dB total penalty. (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12290

3 2. Multi-wavelength modulators and multiplexers The GeSi EA modulator array based on the FKE is fully integrated with 3µm thick rib waveguides on a high-resistivity SOI substrate with an operational wavelength in the C-band. The insertion loss and extinction ratio of an FKE modulator versus reverse-bias voltage is shown in Fig. 1(a). The equivalent modulator link power penalty [9] is plotted in Fig. 1(b). With an applied peak-to-peak swing of 2V, each modulator in the array has an operating wavelength range in excess of 30nm for a modulator optical power penalty of ~10dB. Assuming the total modulator power penalty should be controlled to within a fixed range (e.g. <10dB for 30nm), the working wavelength range can, to an extent, be traded for a working temperature range. The rate of the band edge shift is ~0.8nm/ C [7]. Consequently, the insertion loss and extinction ratio curves in Fig. 1(a) shift to longer wavelengths, but no modulation performance degradation is observed. Hence, we can use this modulator at elevated temperatures without closed-loop temperature control (see Section 3). Practical limits to temperature excursions potentially arise due to fiber-to-chip packaging and the WDM mux/demux - which moves only at ~0.1nm/ C. For instance, as temperature ranges across 40 C, the band edge will shift ~32nm while the operating wavelength (to align with the mux) will likewise shift ~4nm to keep total modulator penalty below 10dB. Figures 2(a) and 2(b) show the device before and after integration with the VLSI circuit. Each device has a size of approximately 20µm 40µm, including contacts. Each modulator is electrically isolated and has two 15µm 15µm flip-chip pads to connect to the driver circuit. Edge-coupled waveguides (one per modulator) provide external laser input (Fig. 2(c)). The EA modulator array is monolithically integrated with an echelle-grating-based multiplexer to achieve a 9-channel WDM transmitter chip with one output waveguide. The area of the echelle grating (bounding box) is approx. 1.7mm 2.6mm. Two additional waveguides are used for optical alignment and one additional input port not attached to a driver is used to test the echelle multiplexer. The WDM transmitter assembly (Figs. 2(d) and 2(e)) has a footprint of ~5mm 14mm and an aggregate bandwidth of over 100 Gbps when operated at its maximum speed of 12Gbps per channel. The clocked driver array circuit was fabricated in a 40nm TSMC CMOS process and is based on a pulsed cascode-design [10]. An external clock at half the data rate is provided to the CMOS driver chip. Each driver cell incorporates a level-shifter to create a 1-2V swing that is complemented to a 0-1V swing to create an effective 2V peak-to-peak modulation signal followed by the final cascaded driver. Each modulator driver cell has a size of approximately 15µm x 15µm and additionally incorporates two 15µm x 15µm pads with a center-to-center spacing of ~48µm to connect to the corresponding modulator. The combined minimum footprint of a modulator plus associated driver circuit was approximately 30µm 100µm. Although not done in this case, the circuits can be placed underneath the flip-chip pads for 3-D photonics-on-cmos integration [11] to achieve even higher density. Small-signal measurements were performed on a representative device on an unpackaged chip to measure the electro-optic response of the FKE modulators (Fig. 3(a)) at bias voltages of 0V, 1V, and 2V. At zero bias, the modulator bandwidth was 20GHz. At a reverse-bias voltage between 1V and 2V, a 3dB bandwidth in excess of 40GHz was measured. To model the device, s 11 parameter measurements were taken, and a circuit model made (Fig. 3(b)). With the circuit diagram and extracted parasitics, excellent fitting was obtained at all voltages. The extracted values (Table in Fig. 3(c)) indicate a modulator device capacitance (junction plus parasitic) of ~50fF at 1V. The substrate capacitance does not significantly affect device performance because of the high-resistivity SOI substrate. (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12291

4 Fig. 2. (a) GeSi modulator micrograph; (b) infrared micrograph of the modulator array after bonding to CMOS chip showing flip-chip pads and I/O waveguides; (c) Micrograph of the 3µm GeSi EA WDM modulator array (face-up) integrated with the 40nm TSMC driver chip (face-down); (d) Schematic of the driver chip integrated to the 3-micron silicon-on-insulator chip containing the Si/Ge FKE electro-absorption modulators array and the echelle multiplexer; (e) After fiber attach on packaged system test board. Fig. 3. (a) Small-signal bandwidth of the GeSi FKE modulator (b) equivalent circuit based on S11 measurements and parameter fitting (c) Table of extracted values of junction, parasitic, and substrate capacitance and series resistance. 3. WDM transmitter array testing The CMOS-FKE EA WDM transmitter assembly is packaged into a fixture that provides heat spreading, mechanical stability, and support for edge-coupled fiber attach (Fig. 2(e)). Figure 4 shows the transmission of the unpackaged 10-channel modulator with echelle mux normalized to the fiber-coupling loss. This is a representation of the loss and non-uniformity (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12292

5 of the array before fiber-coupling and packaging. The non-uniformity is primarily due to the modulator array insertion loss variation across the wavelength range (~1.8dB) and variation due to echelle mux and wafer non-uniformity ( 1dB). Ten channels separated by ~200GHz spacing (~1.6nm) were provisioned, of which nine channels around 1535nm were connected to modulator devices. The fiber-attached array is mounted on a custom printed circuit board and wire-bonded for power and control. The chip-assembly was thermally-imaged (Fig. 5(a)) and a temperature scan (Fig. 5(b)) shows that the temperature of the VLSI chip and attached photonic chip rises 7-8 C, relatively uniformly across the entire photonic array. Further, the actual modulator temperature rises about 2 C above the VLSI chip temperature. Given that this effect is predictable, the Si-Ge FK band edge and mux can be engineered and optimized for operation at this elevated temperature. Fig. 4. Transmission of an unpackaged 10-channel modulator + multiplexer array chip normalized to fiber coupling loss; Worst-case isolation is >20dB on adjacent channels spaced at 100GHz. The transmitter assembly was tested at speed. On-chip PRBS generators created digital electrical signals which were applied to each modulator by its respective driver circuit. Figure 5(c) shows the optical eye when one channel is driven at the maximum data-rate of 12Gbps supported by the VLSI chip with 4dBm of input optical power. The measured output extinction ratio is ~4.3dB. Optical and electrical crosstalk between channels is negligible. As shown in Fig. 6, nine channels of the parallel WDM transmitter were simultaneously modulated at 10.25Gbps with open eyes with extinction ratios ranging from 4dB to 5.5dB. The power dissipation per channel is measured by enabling a modulator channel and measuring the on-chip power. A power dissipation of 5.82mW per channel is measured at the bit-rate of 10.25Gbps which takes into account the dynamic power consumed by the driver + modulator (~1.5mW) the absorbed photo-current power of the EA device (~1.5mW) as well as leakage current power, which was significant in this case (~2.5mW). The corresponding modulator energy per bit is ~570fJ/bit including driver circuit at an average photo-current of 0.7mA. We expect this can be reduced to ~300fJ/bit or below with device improvements. The small channel footprint, wide bandwidth, and low capacitance of the GeSi EA modulator and driver array enable a compelling, low-power, high-density silicon-photonic WDM transmitter solution. By scaling the modulator transmitter chip with more channels and operating the silicon driver chip at higher bitrates with 25Gbps and faster driver circuits, we anticipate a potential transceiver array with a total bandwidth on the order of up to 10Tbps (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12293

6 and a power dissipation in the range of 10-20W for ubiquitous photonic communication applications. Fig. 5. (a) Thermal profile of flip-chip assembly when powered ON. Powered modulator array can be seen as a vertical column on the left. (b) Scan of temperature across the assembly showing a temperature difference of ~10 C with peak temperature at EA modulator. (b) Eye diagram of a channel running at 12Gbps with on-chip PRBS data generator. Fig. 6. Test of the integrated multi-wavelength transmitter showing simultaneous modulation on all nine channels at 10.25Gbps. Center wavelength was 1532nm and separation between channels was 1.6nm We also tested a single-channel CMOS-FKE EA modulator with driver circuits at 25Gbps to evaluate transmitter performance with higher-speed drivers for packaging into a 100Gbps transceiver. The high-speed drivers were based on push-pull (inverter) amplifiers integrated in 130nm CMOS SOI and are similar to the circuits reported previously [12]. The output driver stage is illustrated in Fig. 7 and consists of a pair of push-pull drivers that are driven with complementary data signals. Additionally, the two data signals are level-shifted with respect to ground to allow complementary voltage swing across the p-n junction which does not forward bias the junction but also avoids exceeding the voltage swing limitations of the CMOS devices. The size of the push-pull driver transistors is related to the capacitance of the FK modulator and, therefore, can be directly related to the power consumption of the driver circuits. Figure 8 shows the transmitter eye at 25Gbps when integrated with the 130nm CMOS high-speed driver. In this experiment, the driver die was located adjacent the FKE EA modulator and wire-bonded with low-inductance ribbon bonds. The capacitance of the (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12294

7 bondpads on the driver and the modulator can be incorporated into a broadband pi-network with a bandwidth of more than 20GHz. Excluding the off-chip laser power, the transmitter consumed below 70mW per channel (2.8pJ/bit) at 25Gbps including the 25Gbps electrical I/O circuit. This power can be reduced with flip-chip integration of the modulator chip onto the driver die. Fig. 7. Schematic of the 130nm CMOS SOI driver stage. Two push-pull driver stages control the swing across the p-n junction. Fig. 8. Test of a single-channel version of the FK transmitter driven by a 130nm CMOS driver at 25Gbps/lane package: optical output eye at 25Gbps. Acknowledgments The authors gratefully acknowledge Dr. Guoliang Li for RF measurements, Chaoqi Zhang for thermal simulation, Dr. J. Mitchell and C. Stephen of Oracle Labs and J. Malinge formerly of Kotura Inc. for their support of this project. This work was supported in part by DARPA under Agreement HR under the supervision of Dr. J. Shah. The view expressed are those of the authors and do not reflect the official policy of the Dept. of Defense or the U. S. government. Approved for public release; distribution unlimited. (C) 2014 OSA 19 May 2014 Vol. 22, No. 10 DOI: /OE OPTICS EXPRESS 12295

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control

A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control A high-speed, tunable silicon photonic ring modulator integrated with ultra-efficient active wavelength control Xuezhe Zheng, 1 Eric Chang, 2 Philip Amberg, 1 Ivan Shubin, 1 Jon Lexau, 2 Frankie Liu, 2

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 10: Electroabsorption Modulator Transmitters Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements

More information

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides

Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Compact two-mode (de)multiplexer based on symmetric Y-junction and Multimode interference waveguides Yaming Li, Chong Li, Chuanbo Li, Buwen Cheng, * and Chunlai Xue State Key Laboratory on Integrated Optoelectronics,

More information

High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud

High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud High speed silicon-based optoelectronic devices Delphine Marris-Morini Institut d Electronique Fondamentale, Université Paris Sud Data centers Optical telecommunications Environment Interconnects Silicon

More information

Dual-Function Detector Modulator Smart-Pixel Module

Dual-Function Detector Modulator Smart-Pixel Module Dual-Function Detector Modulator Smart-Pixel Module A. V. Krishnamoorthy, T. K. Woodward, K. W. Goossen, J. A. Walker, S. P. Hui, B. Tseng, J. E. Cunningham, W. Y. Jan, F. E. Kiamilev, and D. A. B. Miller

More information

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects

Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects Silicon Photonics Technology Platform To Advance The Development Of Optical Interconnects By Mieke Van Bavel, science editor, imec, Belgium; Joris Van Campenhout, imec, Belgium; Wim Bogaerts, imec s associated

More information

New advances in silicon photonics Delphine Marris-Morini

New advances in silicon photonics Delphine Marris-Morini New advances in silicon photonics Delphine Marris-Morini P. Brindel Alcatel-Lucent Bell Lab, Nozay, France New Advances in silicon photonics D. Marris-Morini, L. Virot*, D. Perez-Galacho, X. Le Roux, D.

More information

Optical Proximity Communication for a Silicon Photonic Macrochip

Optical Proximity Communication for a Silicon Photonic Macrochip Optical Proximity Communication for a Silicon Photonic Macrochip John E. Cunningham, Ivan Shubin, Xuezhe Zheng, Jon Lexau, Ron Ho, Ying Luo, Guoliang Li, Hiren Thacker, J. Yao, K. Raj and Ashok V. Krishnamoorthy

More information

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL

NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL NEXT GENERATION SILICON PHOTONICS FOR COMPUTING AND COMMUNICATION PHILIPPE ABSIL OUTLINE Introduction Platform Overview Device Library Overview What s Next? Conclusion OUTLINE Introduction Platform Overview

More information

GHz-bandwidth optical filters based on highorder silicon ring resonators

GHz-bandwidth optical filters based on highorder silicon ring resonators GHz-bandwidth optical filters based on highorder silicon ring resonators Po Dong, 1* Ning-Ning Feng, 1 Dazeng Feng, 1 Wei Qian, 1 Hong Liang, 1 Daniel C. Lee, 1 B. J. Luff, 1 T. Banwell, 2 A. Agarwal,

More information

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver

A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A 3.9 ns 8.9 mw 4 4 Silicon Photonic Switch Hybrid-Integrated with CMOS Driver A. Rylyakov, C. Schow, B. Lee, W. Green, J. Van Campenhout, M. Yang, F. Doany, S. Assefa, C. Jahnes, J. Kash, Y. Vlasov IBM

More information

50-Gb/s silicon optical modulator with travelingwave

50-Gb/s silicon optical modulator with travelingwave 5-Gb/s silicon optical modulator with travelingwave electrodes Xiaoguang Tu, 1, * Tsung-Yang Liow, 1 Junfeng Song, 1,2 Xianshu Luo, 1 Qing Fang, 1 Mingbin Yu, 1 and Guo-Qiang Lo 1 1 Institute of Microelectronics,

More information

Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides

Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides Vertical p-i-n germanium photodetector with high external responsivity integrated with large core Si waveguides Ning-Ning Feng* 1, Po Dong 1, Dawei Zheng 1, Shirong Liao 1, Hong Liang 1, Roshanak Shafiiha

More information

Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s

Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s Silicon Mod-MUX-Ring transmitter with 4 channels at 40 Gb/s Yang Liu, 1,6,* Ran Ding, 1,6 Yangjin Ma, 1 Yisu Yang, 1 Zhe Xuan, 1 Qi Li, 2 Andy Eu-Jin Lim, 3 Guo-Qiang Lo, 3 Keren Bergman, 2 Tom Baehr-Jones

More information

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product

A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product A silicon avalanche photodetector fabricated with standard CMOS technology with over 1 THz gain-bandwidth product Myung-Jae Lee and Woo-Young Choi* Department of Electrical and Electronic Engineering,

More information

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission

Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission Demonstration of low power penalty of silicon Mach Zehnder modulator in long-haul transmission Huaxiang Yi, 1 Qifeng Long, 1 Wei Tan, 1 Li Li, Xingjun Wang, 1,2 and Zhiping Zhou * 1 State Key Laboratory

More information

Silicon Optical Modulator

Silicon Optical Modulator Silicon Optical Modulator Silicon Optical Photonics Nature Photonics Published online: 30 July 2010 Byung-Min Yu 24 April 2014 High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering

More information

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI

Lecture: Integration of silicon photonics with electronics. Prepared by Jean-Marc FEDELI CEA-LETI Lecture: Integration of silicon photonics with electronics Prepared by Jean-Marc FEDELI CEA-LETI Context The goal is to give optical functionalities to electronics integrated circuit (EIC) The objectives

More information

An Example Design using the Analog Photonics Component Library. 3/21/2017 Benjamin Moss

An Example Design using the Analog Photonics Component Library. 3/21/2017 Benjamin Moss An Example Design using the Analog Photonics Component Library 3/21/2017 Benjamin Moss Component Library Elements Passive Library Elements: Component Current specs 1 Edge Couplers (Si)

More information

Design of an Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter

Design of an Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter Design of an Energy-Efficient Silicon Microring Resonator-Based Photonic Transmitter Cheng Li, Chin-Hui Chen, Binhao Wang, Samuel Palermo, Marco Fiorentino, Raymond Beausoleil HP Laboratories HPL-2014-21

More information

Overview of short-reach optical interconnects: from VCSELs to silicon nanophotonics

Overview of short-reach optical interconnects: from VCSELs to silicon nanophotonics Acknowledgements: J. Cunningham, R. Ho, X. Zheng, J. Lexau, H. Thacker, J. Yao, Y. Luo, G. Li, I. Shubin, F. Liu, D. Patil, K. Raj, and J. Mitchell M. Asghari T. Pinguet Overview

More information

Low-Power, 10-Gbps 1.5-Vpp Differential CMOS Driver for a Silicon Electro-Optic Ring Modulator

Low-Power, 10-Gbps 1.5-Vpp Differential CMOS Driver for a Silicon Electro-Optic Ring Modulator Low-Power, 10-Gbps 1.5-Vpp Differential CMOS Driver for a Silicon Electro-Optic Ring Modulator Michal Rakowski 1,2, Julien Ryckaert 1, Marianna Pantouvaki 1, Hui Yu 3, Wim Bogaerts 3, Kristin de Meyer

More information

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers

Wafer-scale 3D integration of silicon-on-insulator RF amplifiers Wafer-scale integration of silicon-on-insulator RF amplifiers The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15,

JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15, JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 31, NO. 16, AUGUST 15, 2013 2785 Fabrication-Tolerant Four-Channel Wavelength- Division-Multiplexing Filter Based on Collectively Tuned Si Microrings Peter De Heyn,

More information

New silicon photonics technology delivers faster data traffic in data centers

New silicon photonics technology delivers faster data traffic in data centers Edition May 2017 Silicon Photonics, Photonics New silicon photonics technology delivers faster data traffic in data centers New transceiver with 10x higher bandwidth than current transceivers. Today, the

More information

Si CMOS Technical Working Group

Si CMOS Technical Working Group Si CMOS Technical Working Group CTR, Spring 2008 meeting Markets Interconnects TWG Breakouts Reception TWG reports Si CMOS: photonic integration E-P synergy - Integration - Standardization - Cross-market

More information

Electro-Optic Crosstalk in Parallel Silicon Photonic Mach-Zehnder Modulators

Electro-Optic Crosstalk in Parallel Silicon Photonic Mach-Zehnder Modulators > REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1 Electro-Optic Crosstalk in Parallel Silicon Photonic Mach-Zehnder Modulators Lingjun Jiang, Xi Chen, Kwangwoong

More information

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab

Silicon Photonics Photo-Detector Announcement. Mario Paniccia Intel Fellow Director, Photonics Technology Lab Silicon Photonics Photo-Detector Announcement Mario Paniccia Intel Fellow Director, Photonics Technology Lab Agenda Intel s Silicon Photonics Research 40G Modulator Recap 40G Photodetector Announcement

More information

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide

High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide [ APPLIED PHYSICS LETTERS ] High-speed Ge photodetector monolithically integrated with large cross silicon-on-insulator waveguide Dazeng Feng, Shirong Liao, Roshanak Shafiiha. etc Contents 1. Introduction

More information

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland Silicon photonics on 3 and 12 μm thick SOI for optical interconnects Timo Aalto VTT Technical Research Centre of Finland 5th International Symposium for Optical Interconnect in Data Centres in ECOC, Gothenburg,

More information

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016

ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 ECEN689: Special Topics in Optical Interconnects Circuits and Systems Spring 2016 Lecture 1: Introduction Sam Palermo Analog & Mixed-Signal Center Texas A&M University Class Topics System and design issues

More information

Wavelength tracking with thermally controlled silicon resonators

Wavelength tracking with thermally controlled silicon resonators Wavelength tracking with thermally controlled silicon resonators Ciyuan Qiu, Jie Shu, Zheng Li Xuezhi Zhang, and Qianfan Xu* Department of Electrical and Computer Engineering, Rice University, Houston,

More information

Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow

Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Project Overview Innovative ultra-broadband ubiquitous Wireless communications through terahertz transceivers ibrow Mar-2017 Presentation outline Project key facts Motivation Project objectives Project

More information

Opportunities and challenges of silicon photonics based System-In-Package

Opportunities and challenges of silicon photonics based System-In-Package Opportunities and challenges of silicon photonics based System-In-Package ECTC 2014 Panel session : Emerging Technologies and Market Trends of Silicon Photonics Speaker : Stéphane Bernabé (Leti Photonics

More information

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER

CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER CHAPTER 2 POLARIZATION SPLITTER- ROTATOR BASED ON A DOUBLE- ETCHED DIRECTIONAL COUPLER As we discussed in chapter 1, silicon photonics has received much attention in the last decade. The main reason is

More information

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7

ISSCC 2006 / SESSION 13 / OPTICAL COMMUNICATION / 13.7 13.7 A 10Gb/s Photonic Modulator and WDM MUX/DEMUX Integrated with Electronics in 0.13µm SOI CMOS Andrew Huang, Cary Gunn, Guo-Liang Li, Yi Liang, Sina Mirsaidi, Adithyaram Narasimha, Thierry Pinguet Luxtera,

More information

OPTICAL I/O RESEARCH PROGRAM AT IMEC

OPTICAL I/O RESEARCH PROGRAM AT IMEC OPTICAL I/O RESEARCH PROGRAM AT IMEC IMEC CORE CMOS PHILIPPE ABSIL, PROGRAM DIRECTOR JORIS VAN CAMPENHOUT, PROGRAM MANAGER SCALING TRENDS IN CHIP-LEVEL I/O RECENT EXAMPLES OF HIGH-BANDWIDTH I/O Graphics

More information

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap

Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Silicon Photonics Transceivers for Hyper Scale Datacenters: Deployment and Roadmap Peter De Dobbelaere Luxtera Inc. 09/19/2016 Luxtera Proprietary www.luxtera.com Luxtera Company Introduction $100B+ Shift

More information

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland

Silicon photonics with low loss and small polarization dependency. Timo Aalto VTT Technical Research Centre of Finland Silicon photonics with low loss and small polarization dependency Timo Aalto VTT Technical Research Centre of Finland EPIC workshop in Tokyo, 9 th November 2017 VTT Technical Research Center of Finland

More information

A tunable Si CMOS photonic multiplexer/de-multiplexer

A tunable Si CMOS photonic multiplexer/de-multiplexer A tunable Si CMOS photonic multiplexer/de-multiplexer OPTICS EXPRESS Published : 25 Feb 2010 MinJae Jung M.I.C.S Content 1. Introduction 2. CMOS photonic 1x4 Si ring multiplexer Principle of add/drop filter

More information

SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector

SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector SNR characteristics of 850-nm OEIC receiver with a silicon avalanche photodetector Jin-Sung Youn, 1 Myung-Jae Lee, 1 Kang-Yeob Park, 1 Holger Rücker, 2 and Woo-Young Choi 1,* 1 Department of Electrical

More information

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging

IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS 2010 Silicon Photonic Circuits: On-CMOS Integration, Fiber Optical Coupling, and Packaging Christophe Kopp, St ephane Bernab e, Badhise Ben Bakir,

More information

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard

A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard A Fully Integrated 20 Gb/s Optoelectronic Transceiver Implemented in a Standard 0.13 µm CMOS SOI Technology School of Electrical and Electronic Engineering Yonsei University 이슬아 1. Introduction 2. Architecture

More information

The Past, Present, and Future of Silicon Photonics

The Past, Present, and Future of Silicon Photonics The Past, Present, and Future of Silicon Photonics Myung-Jae Lee High-Speed Circuits & Systems Lab. Dept. of Electrical and Electronic Engineering Yonsei University Outline Introduction A glance at history

More information

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver

SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver SP 22.3: A 12mW Wide Dynamic Range CMOS Front-End for a Portable GPS Receiver Arvin R. Shahani, Derek K. Shaeffer, Thomas H. Lee Stanford University, Stanford, CA At submicron channel lengths, CMOS is

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.6 26.6 40Gb/s Amplifier and ESD Protection Circuit in 0.18µm CMOS Technology Sherif Galal, Behzad Razavi University of California, Los Angeles, CA Optical

More information

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon

Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon Ultra-compact, flat-top demultiplexer using anti-reflection contra-directional couplers for CWDM networks on silicon Wei Shi, Han Yun, Charlie Lin, Mark Greenberg, Xu Wang, Yun Wang, Sahba Talebi Fard,

More information

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE

A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE Progress In Electromagnetics Research C, Vol. 16, 161 169, 2010 A COMPACT WIDEBAND MATCHING 0.18-µM CMOS UWB LOW-NOISE AMPLIFIER USING ACTIVE FEED- BACK TECHNIQUE J.-Y. Li, W.-J. Lin, and M.-P. Houng Department

More information

EE 232 Lightwave Devices Optical Interconnects

EE 232 Lightwave Devices Optical Interconnects EE 232 Lightwave Devices Optical Interconnects Sajjad Moazeni Department of Electrical Engineering & Computer Sciences University of California, Berkeley 1 Emergence of Optical Links US IT Map Hyper-Scale

More information

Active Microring Based Tunable Optical Power Splitters

Active Microring Based Tunable Optical Power Splitters Active Microring Based Tunable Optical Power Splitters Eldhose Peter, Arun Thomas*, Anuj Dhawan*, Smruti R Sarangi Computer Science and Engineering, IIT Delhi, *Electronics and Communication Engineering,

More information

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1

ISSCC 2006 / SESSION 10 / mm-wave AND BEYOND / 10.1 10.1 A 77GHz 4-Element Phased Array Receiver with On-Chip Dipole Antennas in Silicon A. Babakhani, X. Guan, A. Komijani, A. Natarajan, A. Hajimiri California Institute of Technology, Pasadena, CA Achieving

More information

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany

Silicon Photonics in Optical Communications. Lars Zimmermann, IHP, Frankfurt (Oder), Germany Silicon Photonics in Optical Communications Lars Zimmermann, IHP, Frankfurt (Oder), Germany Outline IHP who we are Silicon photonics Photonic-electronic integration IHP photonic technology Conclusions

More information

Resonant normal-incidence separate-absorptioncharge-multiplication. photodiodes

Resonant normal-incidence separate-absorptioncharge-multiplication. photodiodes Resonant normal-incidence separate-absorptioncharge-multiplication Ge/Si avalanche photodiodes Daoxin Dai 1*, Hui-Wen Chen 1, John E. Bowers 1 Yimin Kang 2, Mike Morse 2, Mario J. Paniccia 2 1 University

More information

InP-based Waveguide Photodetector with Integrated Photon Multiplication

InP-based Waveguide Photodetector with Integrated Photon Multiplication InP-based Waveguide Photodetector with Integrated Photon Multiplication D.Pasquariello,J.Piprek,D.Lasaosa,andJ.E.Bowers Electrical and Computer Engineering Department University of California, Santa Barbara,

More information

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators

Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Semiconductor Optical Communication Components and Devices Lecture 39: Optical Modulators Prof. Utpal Das Professor, Department of Electrical Engineering, Laser Technology Program, Indian Institute of

More information

Hitless tunable WDM transmitter using Si photonic crystal optical modulators

Hitless tunable WDM transmitter using Si photonic crystal optical modulators Hitless tunable WDM transmitter using Si photonic crystal optical modulators Hiroyuki Ito, Yosuke Terada, Norihiro Ishikura, and Toshihiko Baba * Department of Electrical and Computer Engineering, Yokohama

More information

Polarization insensitive Ge-rich silicon germanium waveguides for optical interconnects on silicon

Polarization insensitive Ge-rich silicon germanium waveguides for optical interconnects on silicon Polarization insensitive Ge-rich silicon germanium waveguides for optical interconnects on silicon V Vakarin, Papichaya Chaisakul, Jacopo Frigerio, Andrea Ballabio, Joan Manel Ramírez, Xavier Le Roux,

More information

Silicon microring modulator for 40 Gb/s NRZ- OOK metro networks in O-band

Silicon microring modulator for 40 Gb/s NRZ- OOK metro networks in O-band Silicon microring modulator for 4 Gb/s NRZ- OOK metro networks in O-band Zhe Xuan, 1,* Yangjin Ma, 1,2 Yang Liu, 2 Ran Ding, 2 Yunchu Li, 1 Noam Ophir, 2 Andy Eu- Jin Lim, 3 Guo-Qiang Lo, 3 Peter Magill,

More information

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect

Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Silicon Carrier-Depletion-Based Mach-Zehnder and Ring Modulators with Different Doping Patterns for Telecommunication and Optical Interconnect Hui Yu, Marianna Pantouvaki*, Joris Van Campenhout*, Katarzyna

More information

- no emitters/amplifiers available. - complex process - no CMOS-compatible

- no emitters/amplifiers available. - complex process - no CMOS-compatible Advantages of photonic integrated circuits (PICs) in Microwave Photonics (MWP): compactness low-power consumption, stability flexibility possibility of aggregating optics and electronics functionalities

More information

Device Requirements for Optical Interconnects to Silicon Chips

Device Requirements for Optical Interconnects to Silicon Chips To be published in Proc. IEEE Special Issue on Silicon Photonics, 2009 Device Requirements for Optical Interconnects to Silicon Chips David A. B. Miller, Fellow, IEEE Abstract We examine the current performance

More information

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers

High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers Journal of Physics: Conference Series High-speed silicon-based microring modulators and electro-optical switches integrated with grating couplers To cite this article: Xi Xiao et al 2011 J. Phys.: Conf.

More information

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012

Si Photonics Technology Platform for High Speed Optical Interconnect. Peter De Dobbelaere 9/17/2012 Si Photonics Technology Platform for High Speed Optical Interconnect Peter De Dobbelaere 9/17/2012 ECOC 2012 - Luxtera Proprietary www.luxtera.com Overview Luxtera: Introduction Silicon Photonics: Introduction

More information

Silicon photonics: Optical modulation in silicon platform

Silicon photonics: Optical modulation in silicon platform Silicon Photonics Silicon-based micro and nanophotonic devices Silicon photonics: Optical modulation in silicon platform, Institut d Electronique Fondamentale, CNRS UMR 8622, Université Paris Sud, 91405

More information

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions

Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Electronic-Photonic ICs for Low Cost and Scalable Datacenter Solutions Christoph Theiss, Director Packaging Christoph.Theiss@sicoya.com 1 SEMICON Europe 2016, October 27 2016 Sicoya Overview Spin-off from

More information

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique

S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique S-band gain-clamped grating-based erbiumdoped fiber amplifier by forward optical feedback technique Chien-Hung Yeh 1, *, Ming-Ching Lin 3, Ting-Tsan Huang 2, Kuei-Chu Hsu 2 Cheng-Hao Ko 2, and Sien Chi

More information

on-chip Design for LAr Front-end Readout

on-chip Design for LAr Front-end Readout Silicon-on on-sapphire (SOS) Technology and the Link-on on-chip Design for LAr Front-end Readout Ping Gui, Jingbo Ye, Ryszard Stroynowski Department of Electrical Engineering Physics Department Southern

More information

Proceedings Integrated SiGe Detectors for Si Photonic Sensor Platforms

Proceedings Integrated SiGe Detectors for Si Photonic Sensor Platforms Proceedings Integrated SiGe Detectors for Si Photonic Sensor Platforms Grégory Pandraud 1, *, Silvana Milosavljevic 1, Amir Sammak 2, Matteo Cherchi 3, Aleksandar Jovic 4 and Pasqualina Sarro 4 1 Else

More information

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index.

Index. Cambridge University Press Silicon Photonics Design Lukas Chrostowski and Michael Hochberg. Index. absorption, 69 active tuning, 234 alignment, 394 396 apodization, 164 applications, 7 automated optical probe station, 389 397 avalanche detector, 268 back reflection, 164 band structures, 30 bandwidth

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN620: Network Theory Broadband Circuit Design Fall 2014 Lecture 19: High-Speed Transmitters Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Exam 3 is on Friday Dec 5 Focus

More information

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation

Low Thermal Resistance Flip-Chip Bonding of 850nm 2-D VCSEL Arrays Capable of 10 Gbit/s/ch Operation Low Thermal Resistance Flip-Chip Bonding of 85nm -D VCSEL Arrays Capable of 1 Gbit/s/ch Operation Hendrik Roscher In 3, our well established technology of flip-chip mounted -D 85 nm backside-emitting VCSEL

More information

for optical communication system

for optical communication system High speed Ge waveguide detector for optical communication system Xingjun Wang, Zhijuan Tu and Zhiping Zhou State Key Laboratory of Advanced Optical Communication Systems and Networks, School of Electronics

More information

Design of a Low Noise Amplifier using 0.18µm CMOS technology

Design of a Low Noise Amplifier using 0.18µm CMOS technology The International Journal Of Engineering And Science (IJES) Volume 4 Issue 6 Pages PP.11-16 June - 2015 ISSN (e): 2319 1813 ISSN (p): 2319 1805 Design of a Low Noise Amplifier using 0.18µm CMOS technology

More information

Presentation Overview

Presentation Overview Low-cost WDM Transceiver Technology for 10-Gigabit Ethernet and Beyond Brian E. Lemoff, Lisa A. Buckman, Andrew J. Schmit, and David W. Dolfi Agilent Laboratories Hot Interconnects 2000 Stanford, CA August

More information

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging

Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging Silicon Photonics: A Platform for Integration, Wafer Level Assembly and Packaging M. Asghari Kotura Inc April 27 Contents: Who is Kotura Choice of waveguide technology Challenges and merits of Si photonics

More information

MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS

MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS 1 MODELING AND EVALUATION OF CHIP-TO-CHIP SCALE SILICON PHOTONIC NETWORKS Robert Hendry, Dessislava Nikolova, Sébastien Rumley, Keren Bergman Columbia University HOTI 2014 2 Chip-to-chip optical networks

More information

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology

Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Low-power 2.5 Gbps VCSEL driver in 0.5 µm CMOS technology Bindu Madhavan and A. F. J. Levi Department of Electrical Engineering University of Southern California Los Angeles, California 90089-1111 Indexing

More information

IBM T. J. Watson Research Center IBM Corporation

IBM T. J. Watson Research Center IBM Corporation Broadband Silicon Photonic Switch Integrated with CMOS Drive Electronics B. G. Lee, J. Van Campenhout, A. V. Rylyakov, C. L. Schow, W. M. J. Green, S. Assefa, M. Yang, F. E. Doany, C. V. Jahnes, R. A.

More information

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4

ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 ISSCC 2004 / SESSION 26 / OPTICAL AND FAST I/O / 26.4 26.4 40Gb/s CMOS Distributed Amplifier for Fiber-Optic Communication Systems H. Shigematsu 1, M. Sato 1, T. Hirose 1, F. Brewer 2, M. Rodwell 2 1 Fujitsu,

More information

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns

TU3B-1. An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns TU3B-1 Student Paper Finalist An 81 GHz, 470 mw, 1.1 mm 2 InP HBT Power Amplifier with 4:1 Series Power Combining using Sub-quarter-wavelength Baluns H. Park 1, S. Daneshgar 1, J. C. Rode 1, Z. Griffith

More information

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory

MICRO RING MODULATOR. Dae-hyun Kwon. High-speed circuits and Systems Laboratory MICRO RING MODULATOR Dae-hyun Kwon High-speed circuits and Systems Laboratory Paper preview Title of the paper Low Vpp, ultralow-energy, compact, high-speed silicon electro-optic modulator Publication

More information

High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability

High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability High-speed free-space based reconfigurable card-to-card optical interconnects with broadcast capability Ke Wang, 1,2,* Ampalavanapillai Nirmalathas, 1,2 Christina Lim, 2 Efstratios Skafidas, 1,2 and Kamal

More information

Heinrich-Hertz-Institut Berlin

Heinrich-Hertz-Institut Berlin NOVEMBER 24-26, ECOLE POLYTECHNIQUE, PALAISEAU OPTICAL COUPLING OF SOI WAVEGUIDES AND III-V PHOTODETECTORS Ludwig Moerl Heinrich-Hertz-Institut Berlin Photonic Components Dept. Institute for Telecommunications,,

More information

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation

A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation WA 17.6: A Variable-Frequency Parallel I/O Interface with Adaptive Power Supply Regulation Gu-Yeon Wei, Jaeha Kim, Dean Liu, Stefanos Sidiropoulos 1, Mark Horowitz 1 Computer Systems Laboratory, Stanford

More information

Envisioning the Future of Optoelectronic Interconnects:

Envisioning the Future of Optoelectronic Interconnects: Envisioning the Future of Optoelectronic Interconnects: The Production Economics of InP and Si Platforms for 100G Ethernet LAN Transceivers Shan Liu Dr. Erica Fuchs Prof. Randolph Kirchain MIT Microphotonics

More information

Photo-Electronic Crossbar Switching Network for Multiprocessor Systems

Photo-Electronic Crossbar Switching Network for Multiprocessor Systems Photo-Electronic Crossbar Switching Network for Multiprocessor Systems Atsushi Iwata, 1 Takeshi Doi, 1 Makoto Nagata, 1 Shin Yokoyama 2 and Masataka Hirose 1,2 1 Department of Physical Electronics Engineering

More information

High-power flip-chip mounted photodiode array

High-power flip-chip mounted photodiode array High-power flip-chip mounted photodiode array Allen S. Cross, * Qiugui Zhou, Andreas Beling, Yang Fu, and Joe C. Campbell Department of Electrical and Computer Engineering, University of Virginia, 351

More information

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers

Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers Heterogeneously Integrated Microwave Signal Generators with Narrow- Linewidth Lasers John E. Bowers, Jared Hulme, Tin Komljenovic, Mike Davenport and Chong Zhang Department of Electrical and Computer Engineering

More information

Challenges for On-chip Optical Interconnect

Challenges for On-chip Optical Interconnect Initial Results of Prototyping a 3-D Integrated Intra-Chip Free-Space Optical Interconnect Berkehan Ciftcioglu, Rebecca Berman, Jian Zhang, Zach Darling, Alok Garg, Jianyun Hu, Manish Jain, Peng Liu, Ioannis

More information

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers

Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers Wavelength and bandwidth-tunable silicon comb filter based on Sagnac loop mirrors with Mach- Zehnder interferometer couplers Xinhong Jiang, 1 Jiayang Wu, 1 Yuxing Yang, 1 Ting Pan, 1 Junming Mao, 1 Boyu

More information

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing.

Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing. Edith Cowan University Research Online ECU Publications Pre. 2011 2010 Adaptive multi/demultiplexers for optical signals with arbitrary wavelength spacing. Feng Xiao Edith Cowan University Kamal Alameh

More information

MA4AGSW2. AlGaAs SP2T PIN Diode Switch. MA4AGSW2 Layout. Features. Description. Absolute Maximum Ratings TA = +25 C (Unless otherwise specified)

MA4AGSW2. AlGaAs SP2T PIN Diode Switch. MA4AGSW2 Layout. Features. Description. Absolute Maximum Ratings TA = +25 C (Unless otherwise specified) AlGaAs SP2T PIN Diode Switch Features Ultra Broad Bandwidth: 5 MHz to 5 GHz Functional bandwidth : 5 MHz to 7 GHz.7 db Insertion Loss, 33 db Isolation at 5 GHz Low Current consumption: -1 ma for Low Loss

More information

Binary phase-shift keying by coupling modulation of microrings

Binary phase-shift keying by coupling modulation of microrings Binary phase-shift keying by coupling modulation of microrings Wesley D. Sacher, 1, William M. J. Green,,4 Douglas M. Gill, Solomon Assefa, Tymon Barwicz, Marwan Khater, Edward Kiewra, Carol Reinholm,

More information

40 Gb/s silicon photonics modulator for TE and TM polarisations

40 Gb/s silicon photonics modulator for TE and TM polarisations 40 Gb/s silicon photonics modulator for TE and TM polarisations F. Y. Gardes,* D. J. Thomson, N. G. Emerson and G. T. Reed Advanced Technology Institute, University of Surrey Guildford, Surrey, GU2 7XH,

More information

Opto-VLSI-based reconfigurable photonic RF filter

Opto-VLSI-based reconfigurable photonic RF filter Research Online ECU Publications 29 Opto-VLSI-based reconfigurable photonic RF filter Feng Xiao Mingya Shen Budi Juswardy Kamal Alameh This article was originally published as: Xiao, F., Shen, M., Juswardy,

More information

Hybrid vertical-cavity laser integration on silicon

Hybrid vertical-cavity laser integration on silicon Invited Paper Hybrid vertical-cavity laser integration on Emanuel P. Haglund* a, Sulakshna Kumari b,c, Johan S. Gustavsson a, Erik Haglund a, Gunther Roelkens b,c, Roel G. Baets b,c, and Anders Larsson

More information

Specification for 100GBASE-DR4. Piers Dawe

Specification for 100GBASE-DR4. Piers Dawe Specification for 100GBASE-DR4 Piers Dawe IEEE P802.3bm, July 2013, Geneva IEEE P802.3bm, July 2013, Geneva Specification for 100GBASE-DR4 1 Supporters Arlon Martin Kotura IEEE P802.3bm, July 2013, Geneva

More information

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit

Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Hybrid Integration Technology of Silicon Optical Waveguide and Electronic Circuit Daisuke Shimura Kyoko Kotani Hiroyuki Takahashi Hideaki Okayama Hiroki Yaegashi Due to the proliferation of broadband services

More information

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms

Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms Variable splitting ratio 2 2 MMI couplers using multimode waveguide holograms Shuo-Yen Tseng, Canek Fuentes-Hernandez, Daniel Owens, and Bernard Kippelen Center for Organic Photonics and Electronics, School

More information

Near/Mid-Infrared Heterogeneous Si Photonics

Near/Mid-Infrared Heterogeneous Si Photonics PHOTONICS RESEARCH GROUP Near/Mid-Infrared Heterogeneous Si Photonics Zhechao Wang, PhD Photonics Research Group Ghent University / imec, Belgium ICSI-9, Montreal PHOTONICS RESEARCH GROUP 1 Outline Ge-on-Si

More information