DARPA developing Very Low Frequency (VLF) systems to provide GPS like position and timing technologies

Size: px
Start display at page:

Download "DARPA developing Very Low Frequency (VLF) systems to provide GPS like position and timing technologies"

Transcription

1 DARPA developing Very Low Frequency (VLF) systems to provide GPS like position and timing technologies in contested, underwater and underground Environments The GPS system provides critical positioning capabilities to military, civil, and commercial users around the world. However, in many environments in which military operates (inside buildings, in urban canyons, under dense foliage, underwater, and underground) have limited or no GPS access. It can be significantly degraded or unavailable during solar storms. GPS signals are also subject to electronic attacks such as jamming by adversaries. Threats to military GPS have evolved and improved at a rapid pace from a proliferation of smallscale commercial jamming devices that can readily be purchased on ebay to large-scale military anti-access/area-denial (A2/AD) capabilities, said MAJ Christopher Brown, assistant program manager Dismounted PNT within the Assured PNT program. Apart from jamming by adversaries, GPS signals are also subject GPS-spoofing attacks whereby a malicious entity generates a GPS-like signal designed to mislead GPS receivers. To address this problem, DARPA is giving thrust to multiple programs that are exploring innovative technologies and approaches that could eventually provide reliable, highly

2 accurate PNT capabilities when GPS capabilities are degraded or unavailable. DARPA wants to build radio navigation based on VLF radio signals under its Spatial, Temporal and Orientation Information in Contested Environments (STOIC) program. The Defense Advanced Research Projects Agency (DARPA) recently announced the award of Phase II and III of the Spatial, Temporal and Orientation Information in Contested Environments (STOIC) Very Low Frequency (VLF) Positioning System to a team led by Leidos and supported by ENSCO. The US Defense Advanced Research Projects Agency (DARPA) is planning to conduct demonstrations that centre on the possibility of performing position, navigation, and timing (PNT) in GPS-denied or degraded environments using very low frequency (VLF) signals. DARPA s present approach is to monitor the ionosphere between 90 and 500 km above the Earth using VLF receivers and then attempts to track its movement in real-time. By doing so, the agency hopes to get a more precise location than in previous efforts using VLF signals. VLF signals get trapped in the wave guide between the ionosphere and earth, so they just keep propagating; and VLF signals travel extremely far, Tremper said. If you know where [the VLF signal] is being transmitted from you can detect [it at] a very long distance and then establish a range for yourself from where it came from, he explained. Using VLF signals to do positioning is not a new concept, Tremper noted. A comparable method had been employed for the Omega navigation system, which supported PNT requirements before GPS was introduced.

3 Precision timing and synchronization is essential to DoD communications, navigation, reconnaissance, and electronic warfare systems. The requirements for timing precision and stability have grown increasingly demanding as systems have evolved towards higher data rates, increased spectrum congestion, and time-dependent encryption algorithms. This demand will continue to grow over the next decade, particularly due to emerging requirements for precision timing in GPS-denied environments and synchronization between systemof-systems components on distributed platforms, says DARPA. The requirements for timing precision and stability have grown increasingly demanding as DoD systems have evolved towards distributed engagement and surveillance architectures, says DARPA. Militaries are taking two approaches one is integration of GPS with complementary technologies such as chip-scale atomic clocks and small inertial measurement units of the Micro- Electro Mechanical Systems (MEMS). Other approach is developing entirely new PNT technologies. OMEGA was the first truly global-range radio navigation system, operated by the United States in cooperation with six partner nations. It enabled ships and aircraft to determine their position by receiving very low frequency (VLF) radio signals in the range 10 to 14 khz, transmitted by a network of fixed terrestrial radio beacons, using a receiver unit. It became operational around 1971 and was shut down in 1997 in favour of the Global Positioning Satellite system. In Omega they predicted where they thought the ionosphere would be and then used that to determine where their position is, Tremper noted. Under STOIC, we are actually monitoring

4 the ionosphere using VLF receivers and then attempting to account for the movement in the ionosphere in real-time, and then use that so we can update models in real time and drive that position error further down, he added. Omega had deficiencies in accuracy that were on the order of 1 2 km because VLF signals are susceptible to interference by channels that are created when signals reflect continuously between the ionosphere and the Earth, Tremper said. DARPA has also demonstrated that accuracy could be improved with postprocessing techniques. What we are attempting to do is take advantage of that signal that is traveling a long way and range off of it, Tremper said. Spatial, Temporal and Orientation Information in Contested Environments (STOIC) In 2014, DARPA released a Broad Agency Announcement for the STOIC program, inviting private companies to compete. STOIC aims to develop a backup positioning, navigation and timing (PNT) capability. The program is comprised of three technical areas that when integrated have the potential to provide global PNT, including long-range robust reference signals, ultra-stable tactical clocks, and Multi-function tactical data links systems that provide PNT information between cooperative users. The STOIC program seeks to develop PNT systems that provide GPS-independent PNT with GPS-level timing in a contested environment. STOIC comprises three primary elements that when integrated have the potential to provide global PNT

5 independent of GPS: long-range robust reference signals, ultra-stable tactical clocks, and multifunctional systems that provide PNT information between multiples users. In Phase I, TA1 focused on using very low frequency (VLF) radio frequency (RF) signals to provide robust ranging in support of earth-fixed positioning. DARPA has released new BAA is a follow-on to TA1 Phase I for developing the detailed design (Phase II) and real-time demonstration (Phase III) of a VLF positioning system (VPS). Very low RF frequencies are desired for long range communications due to low path attenuation, the atmospheric waveguide properties, and the ability of low frequency magnetic fields to penetrate underground or underwater. Information bandwidth and link propagation characteristics must be included as primary design considerations. DARPA requests responses from individuals and organizations with experience and capabilities in VLF communications, modulation protocols and RF waveform design, RF propagation models for atmospheric, underground and underwater applications, etc The general system architecture is partitioned into three segments analogous to how the GPS architecture is partitioned. The transmission segment comprises new VLF transmit antennas and signal waveforms with improved resistance to jamming as well as the ability to carry navigation data messages. Optical clocks being developed under STOIC TA2 keep the VLF stations synchronized for extended periods of time without depending on

6 GPS. The control segment comprises multiple monitor stations that are networked to a central processing facility. The monitor stations form a wide area network that measure VLF signals from the transmission segment. The central processing facility uses the monitor station data to calibrate measurement models for current conditions and generate system messages that are transferred to users via the transmission segment. The user segment comprises VLF receivers integrated with other navigation sensors (e.g., inertial navigation system, altimeter, etc.) on stationary and moving platforms. One-way range measurements to the VLF transmitters are derived from precise carrier phase measurements with ranging codes and other means to resolve carrier phase ambiguities. DARPA awards During STOIC Phase I, ENSCO worked closely with the prime Leidos and other team members to design a new class of VLF transmitters to be used for global VLF. ENSCO s primary role was the design of navigation signals to achieve DARPA s positioning requirements, and at the same time optimize VLF transmitter performance. ENSCO has made significant investment in the development of RF based PNT technology, said Boris Nejikovsky, ENSCO President. ENSCO PNT expertise helped the team to adjust to evolving customer requirements and successfully complete Phase 1. We are looking forward to working with Leidos on Phases II

7 and III of this exciting DARPA project. The Phase II award is a follow-on to Phase I to develop the detailed design; Phase III is a real-time demonstration of a VLF positioning system. ENSCO s engineering task in Phase II is to further enhance and test adaptive interference mitigation algorithms in post-processing. In Phase III, ENSCO algorithms will be integrated into the DARPA navigation system for real-time demonstrations. Rockwell Collins wins DARPA award under STOIC program Rockwell Collins has been selected to develop technologies DARPA s Spatial, Temporal and Orientation Information in Contested Environments (STOIC) program that aims to reduce warfighter dependence on GPS for modern military operations. Under the terms of the agreement, Rockwell Collins will develop innovative architectures and techniques to enable communication systems that will support time transfer and positioning between moving platforms independent of GPS, with no impact on primary communications functionality. The time-transfer and ranging capabilities we are developing seek to enable distributed platforms to cooperatively locate targets, employ jamming in a surgical fashion, and serve as a backup to GPS for relative navigation, said John Borghese, vice president of the Rockwell Collins Advanced Technology Center. Borghese added that the goal of the STOIC program is to

8 develop positioning, navigation, and timing (PNT) systems that provide GPS-independent PNT, achieving timing that far surpasses GPS levels of performance. The program is comprised of three primary elements that, when integrated, have the potential to provide global PNT independent of GPS, including long-range robust reference signals, ultra-stable tactical clocks, and multifunctional systems that provide PNT information between cooperative users in contested environments. For this third technical element, Rockwell Collins is tasked with developing multifunction communication system solutions that yield DARPA STOIC objective picosecond-accurate time transfer and enable GPS-levels of relative positioning accuracy in contested environments. Rockwell Collins is developing and testing a number of multifunction communication radio systems to provide PNT information while maintaining the basic communication system functions. 1) Two-Way Time Transfer and Ranging (TWTR) with omnidirectional tactical data links. L/S-band data link radios based on the fielded Quint Network Technology (QNT) radio are being used to demonstrate sub-nanosecond or better TWTR performance. Using an existing QNT-200 radio with modified firmware, we have demonstrated <1ns performance, with minimal communications network impact. Innovative signal synthesis and time of arrival (TOA) processing techniques enable this performance. A new QNT radio design is being pursued that would have wider band digital transmit and receive capabilities, enabling further improved TOA processing. The new radio design will also have improved ability to maintain calibration of RF front end delay and phase over frequency.

9 2) 3D relative positioning with directional communication links. A new Ku-band directional communication system, called COMPASS, is being developed to demonstrate full 3D relative positioning while providing high bandwidth, highly secure communications. The COMPASS uses an electronically scanned array (ESA) to make angle of arrival measurements (AoA) from other COMPASS units; coupled with TWTR measurements, this enables 3D relative positioning and orientation transfer. The ESA technology being developed has the promise of being affordable for application on attritable platforms. 3) VLF positioning system receiver. An existing Rockwell Collins strategic VLF communications receiver, the KGR-72, is being adapted to make precision carrier phase measurements from Navy Fixed Submarine Broadcast System (FSBS) stations. These carrier phase measurements, when corrected for Earth- Ionosphere Waveguide (EIW) propagation effects can be used for 2D absolute positioning and timing. Initial test results with the modified VLF receiver have shown the ability of the receiver to support STOIC further development and testing. Future applications of STOIC technology could include a variety of precision relative navigation operations, such as autonomous aerial refueling and cooperative navigation and collision avoidance within unmanned aerial vehicle swarms, said Borghese. It also could support precise time transfer for networking operations in contested environments. Additionally, DARPA recently announced a new program related to PNT called Precise Robust Inertial Guidance for Munitions: Navigation-Grade Inertial Measurement Unit. This PRIGM

10 program addresses the challenge of providing precise PNT for low-cost, -size, -weight and -power consumption platforms, such as smart bombs and guided munitions, in GPS-denied environments. DARPA Electromechanical Transmitters for Very Low Frequency RF (EMT VLF) RFI DARPA is seeking information on the exploitation of electromagnetic mechanical coupling for use in creating radio frequency (RF) transmitters operating at low frequencies ( khz, or ultra low frequency (ULF) and very low frequency (VLF) and below frequency bands). At these frequencies, freespace electromagnetic (EM) field wavelengths are measured in tens of kilometers, resulting in very large transmitter structures when employing conventional antenna approaches. Electrically small antennas are defined as having dimensions much smaller than the EM wavelength, with examples in the literature of antenna sizes as small as 1/10th of the EM wavelength. DARPA is seeking innovation to bring that size below 1/10,000 of the EM wavelength or by at least a factor of 103 smaller than the current state of the art (SOA). Such a tremendous reduction in size is impossible to achieve through traditional antenna design due to extremely low radiation efficiency and very unfavorable impedance matching conditions. A potential path to a successful solution is offered by a mechanically driven antenna where coulomb charge is accelerated mechanically. The moving charge is equivalent to electric current and oscillatory acceleration results in EM

11 emission. Applications of this concept include linear (oscillatory) as well as rotational motion of an electret material or poled ferroelectric. Rotating a ferromagnetic material with permanent magnetic polarization (permanent magnet) also results in coupling to the EM field. RF transmission is achieved by modulating the rotational speed of the permanently polarized or permanently magnetized material. Mechanically actuated electric or magnetic devices promise to produce transmitter antennas whose sizes are orders of magnitude smaller than the free space electromagnetic wavelength of operation and whose field extends far enough to make long distance communication possible. To realize the above concept in a practical transmitter design, DARPA is seeking innovative information in the areas of materials, mechanical actuation, and overall transmitter architectures to address impedance matching, power handling, signal modulation, scalability, and other system level considerations Position, navigation, and timing are as essential as oxygen for our military operators, said DARPA Director AratiPrabhakar. Now we are putting new physics, new devices, and new algorithms on the job so our people and our systems can break free of their reliance on GPS. References and Resources also include:

12 d67f ion-for-pnt

Disruption Opportunity Special Notice DARPA-SN Imaging Through Almost Anything, Anywhere (ITA3)

Disruption Opportunity Special Notice DARPA-SN Imaging Through Almost Anything, Anywhere (ITA3) Disruption Opportunity Special Notice DARPA-SN-17-72 Imaging Through Almost Anything, Anywhere (ITA3) I. Opportunity Description The Defense Advanced Research Projects Agency (DARPA) Defense Sciences Office

More information

Jager UAVs to Locate GPS Interference

Jager UAVs to Locate GPS Interference JIFX 16-1 2-6 November 2015 Camp Roberts, CA Jager UAVs to Locate GPS Interference Stanford GPS Research Laboratory and the Stanford Intelligent Systems Lab Principal Investigator: Sherman Lo, PhD Area

More information

DISTRIBUTED COHERENT RF OPERATIONS

DISTRIBUTED COHERENT RF OPERATIONS DISTRIBUTED COHERENT RF OPERATIONS John A. Kosinski U.S. Army RDECOM CERDEC AMSRD-CER-IW-DT Fort Monmouth, NJ 07703, USA Abstract The concept of distributed coherent RF operations is presented as a driver

More information

Future of New Capabilities

Future of New Capabilities Future of New Capabilities Mr. Dale Ormond, Principal Director for Research, Assistant Secretary of Defense (Research & Engineering) DoD Science and Technology Vision Sustaining U.S. technological superiority,

More information

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit)

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) PE 0603768E COST (In Millions) 2007 2008 2009 2010 2011 2012 2013 Total Program Element (PE) Cost 127.170 124.974 110.572 80.238 83.804 92.713 92.719 GT-01 49.808 44.856 41.125 30.225 29.718 29.718 29.717

More information

PROTECTING GPS/GNSS-RELIANT MILITARY SYSTEMS

PROTECTING GPS/GNSS-RELIANT MILITARY SYSTEMS PROTECTING GPS/GNSS-RELIANT MILITARY SYSTEMS John Fischer VP Advanced R&D Jon Sinden Product Manager, Rugged PNT 6/21/2018 ABOUT OROLIA A world leader in assured positioning, navigation and timing (PNT)

More information

Understanding DARPA - How to be Successful - Peter J. Delfyett CREOL, The College of Optics and Photonics

Understanding DARPA - How to be Successful - Peter J. Delfyett CREOL, The College of Optics and Photonics Understanding DARPA - How to be Successful - Peter J. Delfyett CREOL, The College of Optics and Photonics delfyett@creol.ucf.edu November 6 th, 2013 Student Union, UCF Outline Goal and Motivation Some

More information

WE SPECIALIZE IN MILITARY PNT Research Education Engineering

WE SPECIALIZE IN MILITARY PNT Research Education Engineering Defense-Focused Autonomy & Navigation Anywhere, Anytime, Using Anything WE SPECIALIZE IN MILITARY PNT Research Education Engineering RESEARCH THRUST 1 RESEARCH THRUST 2 RESEARCH THRUST 3 Autonomous & Cooperative

More information

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003.

Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. Proceedings of Al-Azhar Engineering 7 th International Conference Cairo, April 7-10, 2003. MODERNIZATION PLAN OF GPS IN 21 st CENTURY AND ITS IMPACTS ON SURVEYING APPLICATIONS G. M. Dawod Survey Research

More information

The Effect of Radio Frequency Interference on GNSS Signals and Mitigation Techniques Presented by Dr. Tarek Attia

The Effect of Radio Frequency Interference on GNSS Signals and Mitigation Techniques Presented by Dr. Tarek Attia International Conference and Exhibition Melaha2016 GNSS WAY Ahead 25-27 April2016, Cairo, Egypt The Effect of Radio Frequency Interference on GNSS Signals and Mitigation Techniques Presented by Dr. Tarek

More information

Cooperative navigation: outline

Cooperative navigation: outline Positioning and Navigation in GPS-challenged Environments: Cooperative Navigation Concept Dorota A Grejner-Brzezinska, Charles K Toth, Jong-Ki Lee and Xiankun Wang Satellite Positioning and Inertial Navigation

More information

LOCALIZATION WITH GPS UNAVAILABLE

LOCALIZATION WITH GPS UNAVAILABLE LOCALIZATION WITH GPS UNAVAILABLE ARES SWIEE MEETING - ROME, SEPT. 26 2014 TOR VERGATA UNIVERSITY Summary Introduction Technology State of art Application Scenarios vs. Technology Advanced Research in

More information

Wide Area Time distribution Via eloran. NASPI WG Meeting

Wide Area Time distribution Via eloran. NASPI WG Meeting Wide Area Time distribution Via eloran NASPI WG Meeting March 22 2017 This work is supported through a Cooperative Research and Development Agreement (CRADA) with the Department of Homeland Security (DHS)

More information

Satellite Navigation (and positioning)

Satellite Navigation (and positioning) Satellite Navigation (and positioning) Picture: ESA AE4E08 Instructors: Sandra Verhagen, Hans van der Marel, Christian Tiberius Course 2010 2011, lecture 1 Today s topics Course organisation Course contents

More information

Multi-function Phased Array Radars (MPAR)

Multi-function Phased Array Radars (MPAR) Multi-function Phased Array Radars (MPAR) Satyanarayana S, General Manager - RF systems, Mistral Solutions Pvt. Ltd., Bangalore, Karnataka, satyanarayana.s@mistralsolutions.com Abstract In this paper,

More information

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre

3C5 Telecommunications. what do radios look like? mobile phones. Linda Doyle CTVR The Telecommunications Research Centre 3C5 Telecommunications what do radios look like? Linda Doyle CTVR The Telecommunications Research Centre ledoyle@tcd.ie Oriel/Dunlop House 2009 mobile phones talk is cheap.. bluetooth 3G WLAN/802.11 GSM

More information

Chapter 1: Telecommunication Fundamentals

Chapter 1: Telecommunication Fundamentals Chapter 1: Telecommunication Fundamentals Block Diagram of a communication system Noise n(t) m(t) Information (base-band signal) Signal Processing Carrier Circuits s(t) Transmission Medium r(t) Signal

More information

S a t e l l i t e T i m e a n d L o c a t i o n. N o v e m b e r John Fischer VP Advanced R&D

S a t e l l i t e T i m e a n d L o c a t i o n. N o v e m b e r John Fischer VP Advanced R&D STL - S a t e l l i t e T i m e a n d L o c a t i o n N o v e m b e r 2 0 1 7 John Fischer VP Advanced R&D jfischer@orolia.com 11/28/201 1 7 WHY AUGMENT GNSS? Recent UK Study Economic Input to UK of a

More information

Engaging with DARPA. Dr. Stefanie Tompkins. June 9, Distribution Statement A (Approved for Public Release, Distribution Unlimited)

Engaging with DARPA. Dr. Stefanie Tompkins. June 9, Distribution Statement A (Approved for Public Release, Distribution Unlimited) Engaging with DARPA Dr. Stefanie Tompkins June 9, 2016 DARPA s Mission Breakthrough Technologies for National Security Precision Guidance & Navigation Communications/Networking IR Night Vision Stealth

More information

DEFINING THE FUTURE OF SATELLITE SURVEYING WITH TRIMBLE R-TRACK TECHNOLOGY

DEFINING THE FUTURE OF SATELLITE SURVEYING WITH TRIMBLE R-TRACK TECHNOLOGY DEFINING THE FUTURE OF SATELLITE SURVEYING WITH TRIMBLE R-TRACK TECHNOLOGY EDMOND NORSE, GNSS PORTFOLIO MANAGER, TRIMBLE SURVEY DIVISION WESTMINSTER, CO USA ABSTRACT In September 2003 Trimble introduced

More information

Near-Field Electromagnetic Ranging (NFER) Indoor Location

Near-Field Electromagnetic Ranging (NFER) Indoor Location Near-Field Electromagnetic Ranging (NFER) Indoor Location 21 st Test Instrumentation Workshop Thursday May 11, 2017 Hans G. Schantz h.schantz@q-track.com Q-Track Corporation Sheila Jones sheila.jones@navy.mil

More information

MEng Project Proposals: Info-Communications

MEng Project Proposals: Info-Communications Proposed Research Project (1): Chau Lap Pui elpchau@ntu.edu.sg Rain Removal Algorithm for Video with Dynamic Scene Rain removal is a complex task. In rainy videos pixels exhibit small but frequent intensity

More information

Chapter 1 Introduction

Chapter 1 Introduction Wireless Information Transmission System Lab. Chapter 1 Introduction National Sun Yat-sen University Table of Contents Elements of a Digital Communication System Communication Channels and Their Wire-line

More information

Adaptive Array Technology for Navigation in Challenging Signal Environments

Adaptive Array Technology for Navigation in Challenging Signal Environments Adaptive Array Technology for Navigation in Challenging Signal Environments November 15, 2016 Point of Contact: Dr. Gary A. McGraw Technical Fellow Communications & Navigation Systems Advanced Technology

More information

Seeds of Technological Change

Seeds of Technological Change Seeds of Technological Change Stefanie Tompkins Director, Defense Sciences Office Prepared for State University System of Florida Workshop October 8, 2015 Distribution Statement A (Approved for Public

More information

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR

FLY EYE RADAR MINE DETECTION GROUND PENETRATING RADAR ON TETHERED DRONE PASSIVE RADAR FOR SMALL UAS PASSIVE SMALL PROJECTILE TRACKING RADAR PASSIVE RADAR FOR SMALL UAS PLANAR MONOLITHICS INDUSTRIES, INC. East Coast: 7311F GROVE ROAD, FREDERICK, MD 21704 USA PHONE: 301-662-5019 FAX: 301-662-2029 West Coast: 4921 ROBERT J. MATHEWS PARKWAY, SUITE

More information

Air Force Research Laboratory

Air Force Research Laboratory Air Force Research Laboratory AFRL Sensors Directorate Overview 24 July 2012 Integrity Service Excellence Dr Kenneth L Schepler Senior International Focal Point Sensors Directorate Air Force Research Laboratory

More information

Integrating SAASM GPS and Inertial Navigation: What to Know

Integrating SAASM GPS and Inertial Navigation: What to Know Integrating SAASM GPS and Inertial Navigation: What to Know At any moment, a mission could be threatened with potentially severe consequences because of jamming and spoofing aimed at global navigation

More information

Integrated Navigation System

Integrated Navigation System Integrated Navigation System Adhika Lie adhika@aem.umn.edu AEM 5333: Design, Build, Model, Simulate, Test and Fly Small Uninhabited Aerial Vehicles Feb 14, 2013 1 Navigation System Where am I? Position,

More information

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype

Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC Integrated Navigation System Hardware Prototype This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. Implementation and Performance Evaluation of a Fast Relocation Method in a GPS/SINS/CSAC

More information

Dr. Tony Tether Director

Dr. Tony Tether Director Dr. Tony Tether Director 2004 DARPA s Related Research Efforts Position Location in Space (LEO to?) Pulsar (X-Ray) navigation Advanced Communication Protocols Packet-based systems for communication with

More information

Civil GPS Systems and Potential Vulnerabilities

Civil GPS Systems and Potential Vulnerabilities Civil GPS Systems and Potential Vulnerabilities Major David Hoey, 746 th Test Squadron Paul Benshoof, 746 th Test Squadron Distribution A: Approved for public release; distribution unlimited. AAC/PA 09-01-05-348

More information

Heidi Robinson Today, I m going to talk to you about resiliency. Resiliency is not a term that is easily defined nor is it easily achievable. As I con

Heidi Robinson Today, I m going to talk to you about resiliency. Resiliency is not a term that is easily defined nor is it easily achievable. As I con Heidi Robinson Today, I m going to talk to you about resiliency. Resiliency is not a term that is easily defined nor is it easily achievable. As I continue to talk to you today, I will introduce some more

More information

Providing a Resilient Timing and UTC Service Using eloran in the United States. Charles Schue - ION PTTI Monterey, CA

Providing a Resilient Timing and UTC Service Using eloran in the United States. Charles Schue - ION PTTI Monterey, CA Providing a Resilient Timing and UTC Service Using eloran in the United States Charles Schue - ION PTTI Monterey, CA January 27, 2016 Motivation For a Resilient Timing and UTC Service GPS/GNSS Vulnerabilities

More information

GPS TSPI for Ultra High Dynamics. Use of GPS L1/L2/L5 Signals for TSPI UNCLASSIFIED. ITEA Test Instrumentation Workshop, May 15 th 18 th 2012

GPS TSPI for Ultra High Dynamics. Use of GPS L1/L2/L5 Signals for TSPI UNCLASSIFIED. ITEA Test Instrumentation Workshop, May 15 th 18 th 2012 GPS TSPI for Ultra High Dynamics Use of GPS L1/L2/L5 Signals for TSPI ITEA Test Instrumentation Workshop, May 15 th 18 th 2012 For further information please contact Tony Pratt: Alex Macaulay: Nick Cooper:

More information

DoD Research and Engineering

DoD Research and Engineering DoD Research and Engineering Defense Innovation Unit Experimental Townhall Mr. Stephen Welby Assistant Secretary of Defense for Research and Engineering February 18, 2016 Preserving Technological Superiority

More information

Chapter 4 DGPS REQUIREMENTS AND EQUIPMENT SELECTION

Chapter 4 DGPS REQUIREMENTS AND EQUIPMENT SELECTION Chapter 4 DGPS REQUIREMENTS AND EQUIPMENT SELECTION 4.1 INTRODUCTION As discussed in the previous chapters, accurate determination of aircraft position is a strong requirement in several flight test applications

More information

Antenna & Propagation. Basic Radio Wave Propagation

Antenna & Propagation. Basic Radio Wave Propagation For updated version, please click on http://ocw.ump.edu.my Antenna & Propagation Basic Radio Wave Propagation by Nor Hadzfizah Binti Mohd Radi Faculty of Electric & Electronics Engineering hadzfizah@ump.edu.my

More information

Innovation that delivers operational benefit

Innovation that delivers operational benefit DEFENCE & SECURITY Defence and security system developers Rapid evolution of technology poses both an opportunity and a threat for defence and security systems. Today s solutions need to adapt to an everchanging

More information

Real-Time Spectrum Monitoring System Provides Superior Detection And Location Of Suspicious RF Traffic

Real-Time Spectrum Monitoring System Provides Superior Detection And Location Of Suspicious RF Traffic Real-Time Spectrum Monitoring System Provides Superior Detection And Location Of Suspicious RF Traffic By Malcolm Levy, Vice President, Americas, CRFS Inc., California INTRODUCTION TO RF SPECTRUM MONITORING

More information

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO

UNCLASSIFIED R-1 ITEM NOMENCLATURE FY 2013 OCO Exhibit R-2, RDT&E Budget Item Justification: PB 2013 Air Force DATE: February 2012 BA 3: Advanced Development (ATD) COST ($ in Millions) Program Element 75.103 74.009 64.557-64.557 61.690 67.075 54.973

More information

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT

SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT SPACE SPREAD SPECTRUM CHANNEL MEASUREMENT INSTRUMENT Satellite communications, earth observation, navigation and positioning and control stations indracompany.com SSCMI SPREAD SPECTRUM CHANNEL MEASUREMENT

More information

NET SENTRIC SURVEILLANCE BAA Questions and Answers 2 April 2007

NET SENTRIC SURVEILLANCE BAA Questions and Answers 2 April 2007 NET SENTRIC SURVEILLANCE Questions and Answers 2 April 2007 Question #1: Should we consider only active RF sensing (radar) or also passive (for detection/localization of RF sources, or using transmitters

More information

EE Chapter 14 Communication and Navigation Systems

EE Chapter 14 Communication and Navigation Systems EE 2145230 Chapter 14 Communication and Navigation Systems Two way radio communication with air traffic controllers and tower operators is necessary. Aviation electronics or avionics: Avionic systems cover

More information

Keywords. DECCA, OMEGA, VOR, INS, Integrated systems

Keywords. DECCA, OMEGA, VOR, INS, Integrated systems Keywords. DECCA, OMEGA, VOR, INS, Integrated systems 7.4 DECCA Decca is also a position-fixing hyperbolic navigation system which uses continuous waves and phase measurements to determine hyperbolic lines-of

More information

Entity Tracking and Surveillance using the Modified Biometric System, GPS-3

Entity Tracking and Surveillance using the Modified Biometric System, GPS-3 Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 3, Number 9 (2013), pp. 1115-1120 Research India Publications http://www.ripublication.com/aeee.htm Entity Tracking and Surveillance

More information

GUIDED WEAPONS RADAR TESTING

GUIDED WEAPONS RADAR TESTING GUIDED WEAPONS RADAR TESTING by Richard H. Bryan ABSTRACT An overview of non-destructive real-time testing of missiles is discussed in this paper. This testing has become known as hardware-in-the-loop

More information

Special Notice # N R-S002 - Frequently Asked Questions #1

Special Notice # N R-S002 - Frequently Asked Questions #1 Special Notice # N00014-19-R-S002 - Frequently Asked Questions #1 General and Contracting Questions 1. Q: Would you please describe CONOPS more? A: The CONOPS described in the Special Notice and at the

More information

Final Report for AOARD Grant FA Indoor Localization and Positioning through Signal of Opportunities. Date: 14 th June 2013

Final Report for AOARD Grant FA Indoor Localization and Positioning through Signal of Opportunities. Date: 14 th June 2013 Final Report for AOARD Grant FA2386-11-1-4117 Indoor Localization and Positioning through Signal of Opportunities Date: 14 th June 2013 Name of Principal Investigators (PI and Co-PIs): Dr Law Choi Look

More information

UNCLASSIFIED )UNCLASSIFIED

UNCLASSIFIED )UNCLASSIFIED (U) COST: (Dollars in Thousands) PROJECT NUMBER & TITLE FY 2000 ACTUAL FY 2001 ESTIMATE FY 2002 ESTIMATE ** ** 62,141 ** The Science and Technology Program Elements (PEs) were restructured in FY 2002.

More information

Future Dual Systems for Landing. The DGNSS PALS opportunity Marco Donfrancesco Intelligence & Cyber EW Sales & Mktg

Future Dual Systems for Landing. The DGNSS PALS opportunity Marco Donfrancesco Intelligence & Cyber EW Sales & Mktg Future Dual Systems for Landing. The DGNSS PALS opportunity Marco Donfrancesco Intelligence & Cyber EW Sales & Mktg SG-175 DGNSS PALS study The study shall provide technical advice on the data link capabilities

More information

UNCLASSIFIED. UNCLASSIFIED R-1 Line Item #13 Page 1 of 11

UNCLASSIFIED. UNCLASSIFIED R-1 Line Item #13 Page 1 of 11 Exhibit R-2, PB 2010 Air Force RDT&E Budget Item Justification DATE: May 2009 Applied Research COST ($ in Millions) FY 2008 Actual FY 2009 FY 2010 FY 2011 FY 2012 FY 2013 FY 2014 FY 2015 Cost To Complete

More information

DARPA/DSO 101. Dr. Valerie Browning Director Defense Sciences Office. March 2018

DARPA/DSO 101. Dr. Valerie Browning Director Defense Sciences Office. March 2018 DARPA/DSO 101 Dr. Valerie Browning Director Defense Sciences Office March 2018 DARPA s Mission Breakthrough Technologies for National Security Communications/Networking Stealth Precision Guidance & Navigation

More information

Data and Computer Communications Chapter 4 Transmission Media

Data and Computer Communications Chapter 4 Transmission Media Data and Computer Communications Chapter 4 Transmission Media Ninth Edition by William Stallings Data and Computer Communications, Ninth Edition by William Stallings, (c) Pearson Education - Prentice Hall,

More information

Mobile Security Fall 2015

Mobile Security Fall 2015 Mobile Security Fall 2015 Patrick Tague #8: Location Services 1 Class #8 Location services for mobile phones Cellular localization WiFi localization GPS / GNSS 2 Mobile Location Mobile location has become

More information

Stratollites set to provide persistent-image capability

Stratollites set to provide persistent-image capability Stratollites set to provide persistent-image capability [Content preview Subscribe to Jane s Intelligence Review for full article] Persistent remote imaging of a target area is a capability previously

More information

Our Cyber Security History and Future

Our Cyber Security History and Future Our Cyber Security History and Future Trustworthy Cyber Infrastructure for the Power Grid April 3, 2015 Edmund O. Schweitzer III, Ph.D. President, Schweitzer Engineering Laboratories, Inc. Copyright SEL

More information

V2X-Locate Positioning System Whitepaper

V2X-Locate Positioning System Whitepaper V2X-Locate Positioning System Whitepaper November 8, 2017 www.cohdawireless.com 1 Introduction The most important piece of information any autonomous system must know is its position in the world. This

More information

ARCHIVED REPORT. Marine Technology - Archived 7/2005

ARCHIVED REPORT. Marine Technology - Archived 7/2005 Land & Sea-Based Electronics Forecast ARCHIVED REPORT For data and forecasts on current programs please visit www.forecastinternational.com or call +1 203.426.0800 Marine Technology - Archived 7/2005 Outlook

More information

FREQUENCY DECLARATION FOR THE ARGOS-4 SYSTEM. NOAA-WP-40 presents a summary of frequency declarations for the Argos-4 system.

FREQUENCY DECLARATION FOR THE ARGOS-4 SYSTEM. NOAA-WP-40 presents a summary of frequency declarations for the Argos-4 system. Prepared by CNES Agenda Item: I/1 Discussed in WG1 FREQUENCY DECLARATION FOR THE ARGOS-4 SYSTEM NOAA-WP-40 presents a summary of frequency declarations for the Argos-4 system. FREQUENCY DECLARATION FOR

More information

Wide Area Wireless Networked Navigators

Wide Area Wireless Networked Navigators Wide Area Wireless Networked Navigators Dr. Norman Coleman, Ken Lam, George Papanagopoulos, Ketula Patel, and Ricky May US Army Armament Research, Development and Engineering Center Picatinny Arsenal,

More information

Defense Advanced Research Projects Agency (DARPA)

Defense Advanced Research Projects Agency (DARPA) Defense Advanced Research Projects Agency (DARPA) Mr. Jean-Charles (J.C.) Ledé Tactical Technology Office Program Manager Briefing prepared for Kingston Conference on International Security 12 May, 2015

More information

Global Correction Services for GNSS

Global Correction Services for GNSS Global Correction Services for GNSS Hemisphere GNSS Whitepaper September 5, 2015 Overview Since the early days of GPS, new industries emerged while existing industries evolved to use position data in real-time.

More information

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum

PRINCIPLES OF COMMUNICATION SYSTEMS. Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum PRINCIPLES OF COMMUNICATION SYSTEMS Lecture 1- Introduction Elements, Modulation, Demodulation, Frequency Spectrum Topic covered Introduction to subject Elements of Communication system Modulation General

More information

A Hybrid Indoor Tracking System for First Responders

A Hybrid Indoor Tracking System for First Responders A Hybrid Indoor Tracking System for First Responders Precision Indoor Personnel Location and Tracking for Emergency Responders Technology Workshop August 4, 2009 Marc Harlacher Director, Location Solutions

More information

Networked Targeting Technology

Networked Targeting Technology Networked Targeting Technology Stephen Welby Next Generation Time Critical Targeting Future Battlespace Dominance Requires the Ability to Hold Opposing Forces at Risk: At Any Time In Any Weather Fixed,

More information

GNSS VULNERABILITY AND CRITICAL INFRASTRUCTURE

GNSS VULNERABILITY AND CRITICAL INFRASTRUCTURE GNSS VULNERABILITY AND CRITICAL INFRASTRUCTURE NNF CONFERENCE 24 MAY 2012 Brynjar Hansen Senior adviser Norwegian Space Centre Lars Giske Senior adviser Norwegian Space Centre MULTI GNSS EXTERNAL COOPERATION

More information

An Introduction to Airline Communication Types

An Introduction to Airline Communication Types AN INTEL COMPANY An Introduction to Airline Communication Types By Chip Downing, Senior Director, Aerospace & Defense WHEN IT MATTERS, IT RUNS ON WIND RIVER EXECUTIVE SUMMARY Today s global airliners use

More information

NovAtel SPAN and Waypoint GNSS + INS Technology

NovAtel SPAN and Waypoint GNSS + INS Technology NovAtel SPAN and Waypoint GNSS + INS Technology SPAN Technology SPAN provides real-time positioning and attitude determination where traditional GNSS receivers have difficulties; in urban canyons or heavily

More information

Deep Space Communication The further you go, the harder it gets. D. Kanipe, Sept. 2013

Deep Space Communication The further you go, the harder it gets. D. Kanipe, Sept. 2013 Deep Space Communication The further you go, the harder it gets D. Kanipe, Sept. 2013 Deep Space Communication Introduction Obstacles: enormous distances, S/C mass and power limits International Telecommunications

More information

More specifically, I would like to talk about Gallium Nitride and related wide bandgap compound semiconductors.

More specifically, I would like to talk about Gallium Nitride and related wide bandgap compound semiconductors. Good morning everyone, I am Edgar Martinez, Program Manager for the Microsystems Technology Office. Today, it is my pleasure to dedicate the next few minutes talking to you about transformations in future

More information

Covert Tunnel Detection Technologies

Covert Tunnel Detection Technologies 2015 Covert Tunnel Detection Technologies Homeland Security Research Corp. Covert Tunnel Detection Technologies 2015 August 2015 Homeland Security Research Corp. (HSRC) is an international market and technology

More information

Surviving and Operating Through GPS Denial and Deception Attack. Nathan Shults Kiewit Engineering Group Aaron Fansler AMPEX Intelligent Systems

Surviving and Operating Through GPS Denial and Deception Attack. Nathan Shults Kiewit Engineering Group Aaron Fansler AMPEX Intelligent Systems Surviving and Operating Through GPS Denial and Deception Attack Nathan Shults Kiewit Engineering Group Aaron Fansler AMPEX Intelligent Systems How GPS Works GPS Satellite sends exact time (~3 nanoseconds)

More information

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic

t =1 Transmitter #2 Figure 1-1 One Way Ranging Schematic 1.0 Introduction OpenSource GPS is open source software that runs a GPS receiver based on the Zarlink GP2015 / GP2021 front end and digital processing chipset. It is a fully functional GPS receiver which

More information

Broadcast Ionospheric Model Accuracy and the Effect of Neglecting Ionospheric Effects on C/A Code Measurements on a 500 km Baseline

Broadcast Ionospheric Model Accuracy and the Effect of Neglecting Ionospheric Effects on C/A Code Measurements on a 500 km Baseline Broadcast Ionospheric Model Accuracy and the Effect of Neglecting Ionospheric Effects on C/A Code Measurements on a 500 km Baseline Intro By David MacDonald Waypoint Consulting May 2002 The ionosphere

More information

Test and Evaluation of Mitigating Technologies for UAS in GPS Degraded and Denied Environments

Test and Evaluation of Mitigating Technologies for UAS in GPS Degraded and Denied Environments Test and Evaluation of Mitigating Technologies for UAS in GPS Degraded and Denied Environments Timothy Pitt, US Army AMRDEC Greg Reynolds, US Army AMRDEC Will Barnwell, US Army PM UAS Jonathan Jones, Navigation

More information

Lt Col Greg Vansuch. Special Projects Office. DARPATech September 2000

Lt Col Greg Vansuch. Special Projects Office. DARPATech September 2000 Lt Col Greg Vansuch DARPATech 2000 6-8 September 2000 Guidance Technology Programs MEMS INS Gyroscopes 1.0 to 10 /hr Accelerometers 500 mg 10 in 3, 0.8 lbs Global Positioning Experiments Airborne Pseudolite

More information

Range Sensing strategies

Range Sensing strategies Range Sensing strategies Active range sensors Ultrasound Laser range sensor Slides adopted from Siegwart and Nourbakhsh 4.1.6 Range Sensors (time of flight) (1) Large range distance measurement -> called

More information

Unguided Transmission Media

Unguided Transmission Media CS311 Data Communication Unguided Transmission Media by Dr. Manas Khatua Assistant Professor Dept. of CSE IIT Jodhpur E-mail: manaskhatua@iitj.ac.in Web: http://home.iitj.ac.in/~manaskhatua http://manaskhatua.github.io/

More information

CNS - Opportunity for technology convergence

CNS - Opportunity for technology convergence CNS - Opportunity for technology convergence Military CNS Technical Implementation Civil-Military ATM Coordination (CMAC) 24-25 sep 12 Okko F. Bleeker Director European R&D 2012 Rockwell Collins, Inc.

More information

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station

FLCS V2.1. AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station AHRS, Autopilot, Gyro Stabilized Gimbals Control, Ground Control Station The platform provides a high performance basis for electromechanical system control. Originally designed for autonomous aerial vehicle

More information

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD)

Satellite Signals and Communications Principles. Dr. Ugur GUVEN Aerospace Engineer (P.hD) Satellite Signals and Communications Principles Dr. Ugur GUVEN Aerospace Engineer (P.hD) Principle of Satellite Signals In essence, satellite signals are electromagnetic waves that travel from the satellite

More information

A sense of direction: Striving to maintain GPS

A sense of direction: Striving to maintain GPS A sense of direction: Striving to maintain GPS [Content preview Subscribe to Jane s Defence Weekly for full article] The Global Positioning System, or GPS, is one of the most pervasive technologies in

More information

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti

Lecture 1 INTRODUCTION. Dr. Aamer Iqbal Bhatti. Radar Signal Processing 1. Dr. Aamer Iqbal Bhatti Lecture 1 INTRODUCTION 1 Radar Introduction. A brief history. Simplified Radar Block Diagram. Two basic Radar Types. Radar Wave Modulation. 2 RADAR The term radar is an acronym for the phrase RAdio Detection

More information

Weaponizing the Spectrum

Weaponizing the Spectrum Weaponizing the Spectrum Presentation at the NDIA Disruptive Technologies Conference 4 September 2007 by Kalle R. Kontson Alion Science and Technology Phone: 240-646-3620 Email: kkontson@alionscience.com

More information

AFRL. Technology Directorates AFRL

AFRL. Technology Directorates AFRL Sensors Directorate and ATR Overview for Integrated Fusion, Performance Prediction, and Sensor Management for ATE MURI 21 July 2006 Lori Westerkamp Sensor ATR Technology Division Sensors Directorate Air

More information

UNCLASSIFIED R-1 ITEM NOMENCLATURE. FY 2014 FY 2014 OCO ## Total FY 2015 FY 2016 FY 2017 FY 2018

UNCLASSIFIED R-1 ITEM NOMENCLATURE. FY 2014 FY 2014 OCO ## Total FY 2015 FY 2016 FY 2017 FY 2018 Exhibit R-2, RDT&E Budget Item Justification: PB 2014 Office of Secretary Of Defense DATE: April 2013 COST ($ in Millions) All Prior FY 2014 Years FY 2012 FY 2013 # Base FY 2014 FY 2014 OCO ## Total FY

More information

STILET RADIO COMMUNICATION, NAVIGATION AND ELECTRONIC DOCUMENT MANAGEMENT SYSTEM

STILET RADIO COMMUNICATION, NAVIGATION AND ELECTRONIC DOCUMENT MANAGEMENT SYSTEM STILET RADIO COMMUNICATION, NAVIGATION AND ELECTRONIC DOCUMENT MANAGEMENT SYSTEM www.rusprom.su STILET RADIO COMMUNICATION, NAVIGATION AND ELECTRONIC DOCUMENT MANAGEMENT SYSTEM STILET digital radio communication

More information

High Power Microwaves

High Power Microwaves FACT SHEET UNITED STATES AIR FORCE Air Force Research Laboratory, Office of Public Affairs, 3550 Aberdeen Avenue S.E., Kirtland AFB, NM 87117 5776 (505) 846 1911; Fax (505) 846 0423 INTERNET: http://www.de.afrl.af.mil/pa/factsheets/

More information

Modelling GPS Observables for Time Transfer

Modelling GPS Observables for Time Transfer Modelling GPS Observables for Time Transfer Marek Ziebart Department of Geomatic Engineering University College London Presentation structure Overview of GPS Time frames in GPS Introduction to GPS observables

More information

It is well known that GNSS signals

It is well known that GNSS signals GNSS Solutions: Multipath vs. NLOS signals GNSS Solutions is a regular column featuring questions and answers about technical aspects of GNSS. Readers are invited to send their questions to the columnist,

More information

Fraunhofer Institute for High frequency physics and radar techniques FHR. Unsere Kernkompetenzen

Fraunhofer Institute for High frequency physics and radar techniques FHR. Unsere Kernkompetenzen Fraunhofer Institute for High frequency physics and radar techniques FHR Unsere Kernkompetenzen Unsere Kernkompetenzen KEY TECHnology radar 1 2 ABOUT Fraunhofer FHR As one of the largest radar research

More information

Applying Defence-in-depth to counter RF interferences over GNSS

Applying Defence-in-depth to counter RF interferences over GNSS Applying Defence-in-depth to counter RF interferences over GNSS IET 5th Oct. 2011 Xavier Bertinchamps - GSA Objective of this presentation Understand Jamming threat on GNSS Propose a comprehensive strategy

More information

Micro-Technology for Positioning, Navigation and Timing

Micro-Technology for Positioning, Navigation and Timing Micro-Technology for Positioning, Navigation and Timing (µpnt) Dr. Program Manager DARPA/MTO Aggregation Overall goal: Enable self-contained chip-scale inertial navigation Reduce SWaP of existing Inertial

More information

Antenna Engineering Lecture 0: Introduction

Antenna Engineering Lecture 0: Introduction Antenna Engineering Lecture 0: Introduction ELC 405a Fall 2011 Department of Electronics and Communications Engineering Faculty of Engineering Cairo University 2 Outline 1 Why Study Antenna Engineering?

More information

Defense Innovation Day Unmanned Systems

Defense Innovation Day Unmanned Systems Defense Innovation Day Unmanned Systems Dyke Weatherington Principal Director Space, Strategic and Intelligence Systems 4 September 2014 Evolving Environment Tactical Deployment Realities Post 9/11 era

More information

Chapter-15. Communication systems -1 mark Questions

Chapter-15. Communication systems -1 mark Questions Chapter-15 Communication systems -1 mark Questions 1) What are the three main units of a Communication System? 2) What is meant by Bandwidth of transmission? 3) What is a transducer? Give an example. 4)

More information

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield?

Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? Automotive Radar Sensors and Congested Radio Spectrum: An Urban Electronic Battlefield? By Sefa Tanis Share on As automotive radars become more widespread, the heavily occupied RF spectrum will resemble

More information

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit)

RDT&E BUDGET ITEM JUSTIFICATION SHEET (R-2 Exhibit) , R-1 #49 COST (In Millions) FY 2000 FY2001 FY2002 FY2003 FY2004 FY2005 FY2006 FY2007 Cost To Complete Total Cost Total Program Element (PE) Cost 21.845 27.937 41.497 31.896 45.700 57.500 60.200 72.600

More information

UNIT 1 - introduction to GPS

UNIT 1 - introduction to GPS UNIT 1 - introduction to GPS 1. GPS SIGNAL Each GPS satellite transmit two signal for positioning purposes: L1 signal (carrier frequency of 1,575.42 MHz). Modulated onto the L1 carrier are two pseudorandom

More information