Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture

Size: px
Start display at page:

Download "Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture"

Transcription

1 Wideband Channel Tracking for mmwave MIMO System with Hybrid Beamforming Architecture Han Yan, Shailesh Chaudhari, and Prof. Danijela Cabric Dec. 13 th 2017

2 Intro: Tracking in mmw MIMO MMW network features massive arrays Beamforming gain in Tx & Rx to compensate propagation loss Multiplexing gain for throughput boost Reduced interference Vulnerable to beam misalignment BS sector Tx beam Rx beam Fig. BS and UE needs to adaptively change beamformer for reliable communication in mmw MIMO system t 1 t 0 Channel state information (CSI) is crucial in mmw MIMO Channel estimation: training w/o using priori knowledge Widely used in sub-6ghz band High training overhead in mmw Channel tracking: updates CSI w/ priori knowledge Potentially reduce overhead D. Markovic / Slide 2 2

3 Outlines Mobile channel model for algorithm design & evaluation 3GPP narrowband mobile model for above-6ghz band Wideband mmw mobile model CSI tracking algorithm design Propagation angle tracking Compressive sensing based narrow-band channel tracking Proposed wideband channel tracking Performance-complexity study on tracking algorithms SINR and achievable rate Training overhead Computational complexity D. Markovic / Slide 3 3

4 System Model Precoder w m MIMO Channel H Combiner v m DSP DAC ADC DSP mmw BS Tx ULA Post-BF Channel g m Rx ULA 2D narrow band mmw channel model (L paths) mmw UE Symbol Description Symbol Description N R, N T φ, θ Rx/Tx antenna size Angle of arrival (AOA); Angle of departure (AOD) w m, v m Beamformer of m th channel probing in Tx and Rx a R (φ) a T (θ) Spatial response of ULA of specific angle; g m Post-Beamforming channel D. Markovic / Slide 4 4

5 Narrowband Dynamic Channel Model 3GPP spatially-consistent UT mobility modelling [G17] Channel variation H (n) determined by α l (n), θl (n), and φl (n) At t 0 : set BS, UE scatterer location; channel coefficient initialization At t n : update channel coefficient from t n 1 Scatterer Channel coeff. at t n 1 {φ l n 1, τ l n 1, α l (n 1) } φ l 2D moving trajectory BS Location Channel Coefficients updates (Δt = t n -t n 1 ) AOA Gain (from delay) UE Location β Channel coeff. at t n {φ l (n), τl (n), αl (n) } Speed: v[cos(β) sin(β)] T D. Markovic / Slide 5 5

6 Wideband Dynamic Channel Model Modified model for wideband channel R rays within each of L multipath clusters Pulse shaping function p c (t) due to band-limited nature in T/Rx UE 2D moving: channel parameters evolve with similar manner UE rotation: AOA of all rays incremented by v r Δt Scatterer Cluster Channel coeff. at t n 1 {φ l,r n 1, τ l,r n 1, α l,r (n 1) } UE Location Channel coeff. at t n (n 1) (n 1) (n 1) {φ l,r, τl,r, αl,r } D. Markovic / Slide 6 6

7 Wideband Dynamic Channel Model Time & freq. domain WB mobile channel Discrete Time Domain (delay d) Frequency Domain (subcarrier k) Illustration of mobile channel simulation Top: Simulated results of delay profile & AOA versus time t n using proposed model Bottom: Measured results in dense urban environment (at 73 GHz) [WSH+16] [WSH+16] Y. Wang, Z. Shi, L. Huang, Z. Yu, and C. Cao, An Extension of Spatial Channel Model with Spatial Consistency, in Proc. IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp D. Markovic / Slide 7 7

8 Problem Statement w m (n) H f (n) [k] v m (n) DSP DAC ADC DSP mmw BS g m (n) [k] Tx ULA Rx ULA mmw UE Tracking procedure at t n BS sends M beacons with UE measures post-bf channel g m (n) [k] with t n 1 Chan. measurement using W m (n 1) and Vm (n 1) g m (n 1) [k] Update chan. parameters (n 1) (n 1) (n 1) {α l,r, φl,r, τl,r } t n Chan. measurement using W m (n) and Vm (n) gm (n) [k] Update chan. parameters (n) (n) (n) {α l,r, φl,r, τl,r } Tracking objective Given probing beamformer W n and V n, design tracking algorithm to update channel parameters D. Markovic / Slide 8 8

9 Prior-Art: AOA Tracking Tracking via angle refinement Probing beams: narrow beams Neighbor steering angle trial at t n Previous CSI * : θ and φ (n 1) Algorithm: RSS measurement into neighbor angles Fig. UE refines steer angle based on pointing direction from previous time slot Steering angle at t n 1 Adopted in IEEE802.11ad (Beam Refinement Protocol) [NCF+14] Low computational complexity: energy measurement & comparison * Dominant propagation angle is tracked and subscription l is omitted; Can be extension to all angles [NCF+14] Nitsche et al, IEEE ad: directional 60 GHz communication for multi-gigabit-per-second Wi-Fi [Invited Paper], IEEE Commun. Mag., vol. 52, no. 12, p. 132, D. Markovic / Slide 9 9

10 Prior-Art: NB Channel Tracking Compressive narrowband (NB) chan. probing procedure Probing beams: quasi-omni beams Fixed over n Pseudorandom value {±1 ± 1j} in elements of W and V Probe all angles in a compressed manner Previous CSI: መθ l, φ l (n 1) and αl (n 1) Measured post-bf channel Post beamforming noise θ l is assumed to be known and constant; Such constant (Tx gain) is absorbed in α l Adapted from [MRM16] [MRM16] Z. Marzi, D. Ramasamy, and U. Madhow, Compressive Channel Estimation and Tracking for Large Arrays in mm- Wave Picocells, IEEE J. Sel. Topics Signal Process., vol. 10, no. 3, pp , Apr D. Markovic / Slide 10 10

11 Prior-Art: NB Channel Tracking Parameter updating algorithm for NB channel Alternative update estimated path gain α l (n) and AOA φl (n) based on g (n) Gain update step for all l next tracking slot AOA update step for all l Each step can be approximately solved by LS Moderate complexity: pseudo-inverse of a M N t matrix D. Markovic / Slide 11 11

12 WB Channel Tracking Procedure Proposed wideband (WB) channel probing procedure Probing beams: L narrow beams for each of the cluster ഥθ l തφ l (n 1) a T ( ഥθ l ) a R തφ l (n 1) l L l Previous CSI * (n 1) (n 1) (n 1) : θ l,r, φ l,r, τl,r, and αl,r Measured effective channel (1 st probing beam for example) From other multipath cluster & AWGN; Treated as effective noise D. Markovic / Slide 12 12

13 WB Channel Tracking Algorithm Channel coefficients update algorithm Gain Refinement: solve for where and is matrix with other coeff. at t n 1 Delay Refinement: update delay coeff. via where and is the post-bf channel w/ estimated channel coeff at t n 1 Angle Refinement: updates AOA coeff. via where with other coeff. at t n 1 D. Markovic / Slide 13 13

14 Channel Parameter Initialization Tracking requires channel coeff. estimation at t 0 Assuming rough angle estimation ҧ θ 1 and തφ 1 are reached Use a T (θ 1 ) and a R തφ 1 (n 1) for post-bf channel probing g 1 (0) Orthogonal matching pursuit (OMP) based initialization Dictionary The p th column contains freqdomain support due to delay pδτ The post-bf channel probing results g 1 (0) consists of up to R supports Set of selected index T Contains selected τ 1,r items D. Markovic / Slide 14 14

15 Performance Metrics Metric: spectral efficiency (SE) after beamforming Scenario of transmission 1 stream SVD based beamforming w data and v data as primary eigenvector of MIMO channel As SE upper bound for actual hybrid architecture BF w/ NB CSI: same BF for all subcarriers BF w/ WB CSI: unique BF for each sub-carrier t 0 w data [k] v data [k] a t (θ) a r (φ) θ φ H H f [k] k th k th H f [k] H f [k] k th t 0 D. Markovic / Slide 15 15

16 Simulation: SE v.s. Time N T = N R = 16 L R Fig. spectral efficiency over time with CSI from tracking; K N s D. Markovic / Slide 16 16

17 Training Overhead Overhead Interval btw Channel Est. Channel Est. Frame Num. Interval btw Tracking Tracking Frame Num. Re-estimation (w/o Tracking) Prop. Angle Tracking NB Channel Tracking WB Channel Tracking 100 ms 500 ms* 500 ms 500 ms 256** ms 10 ms 4 ms Overhead*** 3.84% 1.67% 2.23% 1.52% * Multipath scatterers may significantly change after moving beyond coherence distance, which is assumed to be 10m (1 s w/ 10m/s speed) ** Advanced channel estimation approach may significantly reduces required channel estimation frames *** A frame length is assumed to be 15μs; Results are conservative since additional higher layer overheads are not considered D. Markovic / Slide 17 17

18 Conclusions & Future Works We have proposed a wideband mmwave mobile channel model Facilitate tracking algorithm evaluating We have proposed a wideband channel tracking algorithm Improved performance over narrowband tracking approach by using lower training overhead Future works Study the impact of probing beamformer in tracking performance Study the overhead & capacity trade-off in channel tracking D. Markovic / Slide 18 18

19 Thanks for your attention! D. Markovic / Slide 19 19

20 References [G17] 3GPP, TR Study on channel model for frequency spectrum above 6 GHz (Release 14), Jul [online available] [M17] 5GPPP, mmmagic project D2.2 Measurement Results and Final mmmagic Channel Models, May [online available] [NCF+14] Nitsche et al, IEEE ad: directional 60 GHz communication for multi-gigabit-per-second Wi-Fi [Invited Paper], IEEE Commun. Mag., vol. 52, no. 12, p. 132, [WSH+16] Y. Wang, Z. Shi, L. Huang, Z. Yu, and C. Cao, An Extension of Spatial Channel Model with Spatial Consistency, in Proc. IEEE 84th Vehicular Technology Conference (VTC-Fall), 2016, pp D. Markovic / Slide 20 20

Tracking Sparse mmwave Channel under Time Varying Multipath Scatterers

Tracking Sparse mmwave Channel under Time Varying Multipath Scatterers Tracking Sparse mmwave Channel under Time Varying Multipath Scatterers (Invited Paper) Veljko Boljanovic, Han Yan, and Danijela Cabric Electrical and Computer Engineering Department, University of California,

More information

Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed?

Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed? Compressed-Sensing Based Multi-User Millimeter Wave Systems: How Many Measurements Are Needed? Ahmed Alkhateeb*, Geert Leus #, and Robert W. Heath Jr.* * Wireless Networking and Communications Group, Department

More information

Auxiliary Beam Pair Enabled AoD Estimation for Large-scale mmwave MIMO Systems

Auxiliary Beam Pair Enabled AoD Estimation for Large-scale mmwave MIMO Systems Auxiliary Beam Pair Enabled AoD Estimation for Large-scale mmwave MIMO Systems Dalin Zhu, Junil Choi and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical and Computer

More information

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks

Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Lectio praecursoria Millimeter-Wave Communication and Mobile Relaying in 5G Cellular Networks Author: Junquan Deng Supervisor: Prof. Olav Tirkkonen Department of Communications and Networking Opponent:

More information

PROGRESSIVE CHANNEL ESTIMATION FOR ULTRA LOW LATENCY MILLIMETER WAVE COMMUNICATIONS

PROGRESSIVE CHANNEL ESTIMATION FOR ULTRA LOW LATENCY MILLIMETER WAVE COMMUNICATIONS PROGRESSIVECHANNELESTIMATIONFOR ULTRA LOWLATENCYMILLIMETER WAVECOMMUNICATIONS Hung YiCheng,Ching ChunLiao,andAn Yeu(Andy)Wu,Fellow,IEEE Graduate Institute of Electronics Engineering, National Taiwan University

More information

MIMO Wireless Communications

MIMO Wireless Communications MIMO Wireless Communications Speaker: Sau-Hsuan Wu Date: 2008 / 07 / 15 Department of Communication Engineering, NCTU Outline 2 2 MIMO wireless channels MIMO transceiver MIMO precoder Outline 3 3 MIMO

More information

Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO

Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO Multi-Aperture Phased Arrays Versus Multi-beam Lens Arrays for Millimeter-Wave Multiuser MIMO Asilomar 2017 October 31, 2017 Akbar M. Sayeed Wireless Communications and Sensing Laboratory Electrical and

More information

2015 The MathWorks, Inc. 1

2015 The MathWorks, Inc. 1 2015 The MathWorks, Inc. 1 What s Behind 5G Wireless Communications? 서기환과장 2015 The MathWorks, Inc. 2 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile

More information

5G Positioning for connected cars

5G Positioning for connected cars 5G Positioning for connected cars (mmw) 5G introduction Mathematical model of 5G-mmW positioning Mutiple aspects of the achievable error Estimation principle June 2018 Summer school on 5G V2X communications

More information

Modeling Mutual Coupling and OFDM System with Computational Electromagnetics

Modeling Mutual Coupling and OFDM System with Computational Electromagnetics Modeling Mutual Coupling and OFDM System with Computational Electromagnetics Nicholas J. Kirsch Drexel University Wireless Systems Laboratory Telecommunication Seminar October 15, 004 Introduction MIMO

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Marc Barberis 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies Release 15: Enhanced Mobile Broadband IoT

More information

Channel Modelling for Beamforming in Cellular Systems

Channel Modelling for Beamforming in Cellular Systems Channel Modelling for Beamforming in Cellular Systems Salman Durrani Department of Engineering, The Australian National University, Canberra. Email: salman.durrani@anu.edu.au DERF June 26 Outline Introduction

More information

Next Generation Mobile Communication. Michael Liao

Next Generation Mobile Communication. Michael Liao Next Generation Mobile Communication Channel State Information (CSI) Acquisition for mmwave MIMO Systems Michael Liao Advisor : Andy Wu Graduate Institute of Electronics Engineering National Taiwan University

More information

NR Physical Layer Design: NR MIMO

NR Physical Layer Design: NR MIMO NR Physical Layer Design: NR MIMO Younsun Kim 3GPP TSG RAN WG1 Vice-Chairman (Samsung) 3GPP 2018 1 Considerations for NR-MIMO Specification Design NR-MIMO Specification Features 3GPP 2018 2 Key Features

More information

Claudio Fiandrino, IMDEA Networks, Madrid, Spain

Claudio Fiandrino, IMDEA Networks, Madrid, Spain 1 Claudio Fiandrino, IMDEA Networks, Madrid, Spain 2 3 Introduction on mm-wave communications Localization system Hybrid beamforming Architectural design and optimizations 4 Inevitable to achieve multi-gbit/s

More information

5G Antenna Design & Network Planning

5G Antenna Design & Network Planning 5G Antenna Design & Network Planning Challenges for 5G 5G Service and Scenario Requirements Massive growth in mobile data demand (1000x capacity) Higher data rates per user (10x) Massive growth of connected

More information

Researches in Broadband Single Carrier Multiple Access Techniques

Researches in Broadband Single Carrier Multiple Access Techniques Researches in Broadband Single Carrier Multiple Access Techniques Workshop on Fundamentals of Wireless Signal Processing for Wireless Systems Tohoku University, Sendai, 2016.02.27 Dr. Hyung G. Myung, Qualcomm

More information

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London

A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System. Arumugam Nallanathan King s College London A Practical Channel Estimation Scheme for Indoor 60GHz Massive MIMO System Arumugam Nallanathan King s College London Performance and Efficiency of 5G Performance Requirements 0.1~1Gbps user rates Tens

More information

5G, WLAN, and LTE Wireless Design with MATLAB

5G, WLAN, and LTE Wireless Design with MATLAB 5G, WLAN, and LTE Wireless Design with MATLAB Marc Barberis Application Engineering Group 2017 The MathWorks, Inc. 1 Agenda The 5G Landscape Designing 5G Systems Generating waveforms Designing baseband

More information

Massive MIMO for the New Radio Overview and Performance

Massive MIMO for the New Radio Overview and Performance Massive MIMO for the New Radio Overview and Performance Dr. Amitabha Ghosh Nokia Bell Labs IEEE 5G Summit June 5 th, 2017 What is Massive MIMO ANTENNA ARRAYS large number (>>8) of controllable antennas

More information

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen

5G System Concept Seminar. RF towards 5G. Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 04.02.2016 @ 5G System Concept Seminar RF towards 5G Researchers: Tommi Tuovinen, Nuutti Tervo & Aarno Pärssinen 5.2.2016 2 Outline 5G challenges for RF Key RF system assumptions Channel SNR and related

More information

Low Complexity Energy Efficiency Analysis in Millimeter Wave Communication Systems

Low Complexity Energy Efficiency Analysis in Millimeter Wave Communication Systems The 217 International Workshop on Service-oriented Optimization of Green Mobile Networks GREENNET Low Complexity Energy Efficiency Analysis in Millimeter Wave Communication Systems Pan Cao and John Thompson

More information

Beamforming for 4.9G/5G Networks

Beamforming for 4.9G/5G Networks Beamforming for 4.9G/5G Networks Exploiting Massive MIMO and Active Antenna Technologies White Paper Contents 1. Executive summary 3 2. Introduction 3 3. Beamforming benefits below 6 GHz 5 4. Field performance

More information

Performance Analysis of Beam Sweeping in Millimeter Wave Assuming Noise and Imperfect Antenna Patterns

Performance Analysis of Beam Sweeping in Millimeter Wave Assuming Noise and Imperfect Antenna Patterns Performance Analysis of Beam Sweeping in Millimeter Wave Assuming Noise and Imperfect Antenna Patterns Vutha Va and Robert W. Heath Jr. Wireless Networking and Communications Group Department of Electrical

More information

Technical Aspects of LTE Part I: OFDM

Technical Aspects of LTE Part I: OFDM Technical Aspects of LTE Part I: OFDM By Mohammad Movahhedian, Ph.D., MIET, MIEEE m.movahhedian@mci.ir ITU regional workshop on Long-Term Evolution 9-11 Dec. 2013 Outline Motivation for LTE LTE Network

More information

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07

WiMAX Summit Testing Requirements for Successful WiMAX Deployments. Fanny Mlinarsky. 28-Feb-07 WiMAX Summit 2007 Testing Requirements for Successful WiMAX Deployments Fanny Mlinarsky 28-Feb-07 Municipal Multipath Environment www.octoscope.com 2 WiMAX IP-Based Architecture * * Commercial off-the-shelf

More information

A Novel Millimeter-Wave Channel Simulator (NYUSIM) and Applications for 5G Wireless Communications

A Novel Millimeter-Wave Channel Simulator (NYUSIM) and Applications for 5G Wireless Communications A Novel Millimeter-Wave Channel Simulator (NYUSIM) and Applications for 5G Wireless Communications Shu Sun, George R. MacCartney, Jr., and Theodore S. Rappaport {ss7152,gmac,tsr}@nyu.edu IEEE International

More information

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc.

5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. 5G NR: Key Features and Enhancements An overview of 5G NR key technical features and enhancements for massive MIMO, mmwave, etc. Yinan Qi Samsung Electronics R&D Institute UK, Staines, Middlesex TW18 4QE,

More information

Forschungszentrum Telekommunikation Wien

Forschungszentrum Telekommunikation Wien Forschungszentrum Telekommunikation Wien OFDMA/SC-FDMA Basics for 3GPP LTE (E-UTRA) T. Zemen April 24, 2008 Outline Part I - OFDMA and SC/FDMA basics Multipath propagation Orthogonal frequency division

More information

A Novel 3D Beamforming Scheme for LTE-Advanced System

A Novel 3D Beamforming Scheme for LTE-Advanced System A Novel 3D Beamforming Scheme for LTE-Advanced System Yu-Shin Cheng 1, Chih-Hsuan Chen 2 Wireless Communications Lab, Chunghwa Telecom Co, Ltd No 99, Dianyan Rd, Yangmei City, Taoyuan County 32601, Taiwan

More information

Exciting Times for mmw Research

Exciting Times for mmw Research Wideband (and Massive) MIMO for Millimeter-Wave Mobile Networks: Recent Results on Theory, Architectures, and Prototypes WCNC 2017 mmw5g Workshop Millimeter Wave-Based Integrated Mobile Communications

More information

Multiple Antenna Processing for WiMAX

Multiple Antenna Processing for WiMAX Multiple Antenna Processing for WiMAX Overview Wireless operators face a myriad of obstacles, but fundamental to the performance of any system are the propagation characteristics that restrict delivery

More information

Hybrid Transceivers for Massive MIMO - Some Recent Results

Hybrid Transceivers for Massive MIMO - Some Recent Results IEEE Globecom, Dec. 2015 for Massive MIMO - Some Recent Results Andreas F. Molisch Wireless Devices and Systems (WiDeS) Group Communication Sciences Institute University of Southern California (USC) 1

More information

Design of mmwave massive MIMO cellular systems

Design of mmwave massive MIMO cellular systems Design of mmwave massive MIMO cellular systems Abbas Kazerouni and Mainak Chowdhury Faculty mentor: Andrea Goldsmith Wireless Systems Lab, Stanford University March 23, 2015 Future cellular networks Higher

More information

Estimating Millimeter Wave Channels Using Out-of-Band Measurements

Estimating Millimeter Wave Channels Using Out-of-Band Measurements Estimating Millimeter Wave Channels Using Out-of-Band Measurements Anum Ali*, Robert W. Heath Jr.*, and Nuria Gonzalez-Prelcic** * Wireless Networking and Communications Group The University of Texas at

More information

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs

Performance Studies on LTE Advanced in the Easy-C Project Andreas Weber, Alcatel Lucent Bell Labs Performance Studies on LTE Advanced in the Easy-C Project 19.06.2008 Andreas Weber, Alcatel Lucent Bell Labs All Rights Reserved Alcatel-Lucent 2007 Agenda 1. Introduction 2. EASY C 3. LTE System Simulator

More information

Performance Evaluation of STBC-OFDM System for Wireless Communication

Performance Evaluation of STBC-OFDM System for Wireless Communication Performance Evaluation of STBC-OFDM System for Wireless Communication Apeksha Deshmukh, Prof. Dr. M. D. Kokate Department of E&TC, K.K.W.I.E.R. College, Nasik, apeksha19may@gmail.com Abstract In this paper

More information

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques

Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques 1 Analysis and Improvements of Linear Multi-user user MIMO Precoding Techniques Bin Song and Martin Haardt Outline 2 Multi-user user MIMO System (main topic in phase I and phase II) critical problem Downlink

More information

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS

SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS SPARSE CHANNEL ESTIMATION BY PILOT ALLOCATION IN MIMO-OFDM SYSTEMS Puneetha R 1, Dr.S.Akhila 2 1 M. Tech in Digital Communication B M S College Of Engineering Karnataka, India 2 Professor Department of

More information

Channel Modelling ETIN10. Directional channel models and Channel sounding

Channel Modelling ETIN10. Directional channel models and Channel sounding Channel Modelling ETIN10 Lecture no: 7 Directional channel models and Channel sounding Ghassan Dahman / Fredrik Tufvesson Department of Electrical and Information Technology Lund University, Sweden 2014-02-17

More information

What s Behind 5G Wireless Communications?

What s Behind 5G Wireless Communications? What s Behind 5G Wireless Communications? Tabrez Khan Application Engineering Group 2015 The MathWorks, Inc. 1 Agenda 5G goals and requirements Modeling and simulating key 5G technologies 5G development

More information

Number of Multipath Clusters in. Indoor MIMO Propagation Environments

Number of Multipath Clusters in. Indoor MIMO Propagation Environments Number of Multipath Clusters in Indoor MIMO Propagation Environments Nicolai Czink, Markus Herdin, Hüseyin Özcelik, Ernst Bonek Abstract: An essential parameter of physical, propagation based MIMO channel

More information

mm-wave communication: ~30-300GHz Recent release of unlicensed mm-wave spectrum

mm-wave communication: ~30-300GHz Recent release of unlicensed mm-wave spectrum 1 2 mm-wave communication: ~30-300GHz Recent release of unlicensed mm-wave spectrum Frequency: 57 66 GHz (4.7 to 5.3mm wavelength) Bandwidth: 7-9 GHz (depending on region) Current Wi-Fi Frequencies: 2.4

More information

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges

Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Non-Orthogonal Multiple Access (NOMA) in 5G Cellular Downlink and Uplink: Achievements and Challenges Presented at: Huazhong University of Science and Technology (HUST), Wuhan, China S.M. Riazul Islam,

More information

Beyond 4G: Millimeter Wave Picocellular Wireless Networks

Beyond 4G: Millimeter Wave Picocellular Wireless Networks Beyond 4G: Millimeter Wave Picocellular Wireless Networks Sundeep Rangan, NYU-Poly Joint work with Ted Rappaport, Elza Erkip, Mustafa Riza Akdeniz, Yuanpeng Liu Sept 21, 2013 NJ ACS, Hoboken, J 1 Outline

More information

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31.

Direction of Arrival Estimation in Smart Antenna for Marine Communication. Deepthy M Vijayan, Sreedevi K Menon /16/$31. International Conference on Communication and Signal Processing, April 6-8, 2016, India Direction of Arrival Estimation in Smart Antenna for Marine Communication Deepthy M Vijayan, Sreedevi K Menon Abstract

More information

Massive MIMO a overview. Chandrasekaran CEWiT

Massive MIMO a overview. Chandrasekaran CEWiT Massive MIMO a overview Chandrasekaran CEWiT Outline Introduction Ways to Achieve higher spectral efficiency Massive MIMO basics Challenges and expectations from Massive MIMO Network MIMO features Summary

More information

Channel Measurements for Evaluating Massive MIMO Precoding

Channel Measurements for Evaluating Massive MIMO Precoding www.inue.uni-stuttgart.de Channel Measurements for Evaluating Massive MIMO Precoding Stephan ten Brink 1 1 Institute of Telecommunications University of Stuttgart Workshop on Smart Antennas Technical University

More information

Comparison of MIMO OFDM System with BPSK and QPSK Modulation

Comparison of MIMO OFDM System with BPSK and QPSK Modulation e t International Journal on Emerging Technologies (Special Issue on NCRIET-2015) 6(2): 188-192(2015) ISSN No. (Print) : 0975-8364 ISSN No. (Online) : 2249-3255 Comparison of MIMO OFDM System with BPSK

More information

Millimeter Wave communication with out-of-band information

Millimeter Wave communication with out-of-band information 1 Millimeter Wave communication with out-of-band information Nuria González-Prelcic, Anum Ali, Vutha Va and Robert W. Heath Jr. arxiv:1703.10638v2 [cs.it] 3 May 2017 Abstract Configuring the antenna arrays

More information

MIMO Systems and Applications

MIMO Systems and Applications MIMO Systems and Applications Mário Marques da Silva marques.silva@ieee.org 1 Outline Introduction System Characterization for MIMO types Space-Time Block Coding (open loop) Selective Transmit Diversity

More information

Wireless Physical Layer Concepts: Part III

Wireless Physical Layer Concepts: Part III Wireless Physical Layer Concepts: Part III Raj Jain Professor of CSE Washington University in Saint Louis Saint Louis, MO 63130 Jain@cse.wustl.edu These slides are available on-line at: http://www.cse.wustl.edu/~jain/cse574-08/

More information

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates?

Outline / Wireless Networks and Applications Lecture 7: Physical Layer OFDM. Frequency-Selective Radio Channel. How Do We Increase Rates? Page 1 Outline 18-452/18-750 Wireless Networks and Applications Lecture 7: Physical Layer OFDM Peter Steenkiste Carnegie Mellon University RF introduction Modulation and multiplexing Channel capacity Antennas

More information

University of Bristol - Explore Bristol Research. Link to published version (if available): /VTCF

University of Bristol - Explore Bristol Research. Link to published version (if available): /VTCF Bian, Y. Q., & Nix, A. R. (2006). Throughput and coverage analysis of a multi-element broadband fixed wireless access (BFWA) system in the presence of co-channel interference. In IEEE 64th Vehicular Technology

More information

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN

Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA. OFDM-Based Radio Access in Downlink. Features of Evolved UTRA and UTRAN Evolved UTRA and UTRAN Investigation on Multiple Antenna Transmission Techniques in Evolved UTRA Evolved UTRA (E-UTRA) and UTRAN represent long-term evolution (LTE) of technology to maintain continuous

More information

1 Interference Cancellation

1 Interference Cancellation Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.829 Fall 2017 Problem Set 1 September 19, 2017 This problem set has 7 questions, each with several parts.

More information

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems

EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems EE360: Lecture 6 Outline MUD/MIMO in Cellular Systems Announcements Project proposals due today Makeup lecture tomorrow Feb 2, 5-6:15, Gates 100 Multiuser Detection in cellular MIMO in Cellular Multiuser

More information

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models

Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Analysis of Massive MIMO With Hardware Impairments and Different Channel Models Fredrik Athley, Giuseppe Durisi 2, Ulf Gustavsson Ericsson Research, Ericsson AB, Gothenburg, Sweden 2 Dept. of Signals and

More information

On the Value of Coherent and Coordinated Multi-point Transmission

On the Value of Coherent and Coordinated Multi-point Transmission On the Value of Coherent and Coordinated Multi-point Transmission Antti Tölli, Harri Pennanen and Petri Komulainen atolli@ee.oulu.fi Centre for Wireless Communications University of Oulu December 4, 2008

More information

Ten Things You Should Know About MIMO

Ten Things You Should Know About MIMO Ten Things You Should Know About MIMO 4G World 2009 presented by: David L. Barner www/agilent.com/find/4gworld Copyright 2009 Agilent Technologies, Inc. The Full Agenda Intro System Operation 1: Cellular

More information

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20

Challenges of 5G mmwave RF Module. Ren-Jr Chen M300/ICL/ITRI 2018/06/20 Challenges of 5G mmwave RF Module Ren-Jr Chen rjchen@itri.org.tw M300/ICL/ITRI 2018/06/20 Agenda 5G Vision and Scenarios mmwave RF module considerations mmwave RF module solution for OAI Conclusion 2 5G

More information

arxiv: v1 [cs.ni] 26 Apr 2017

arxiv: v1 [cs.ni] 26 Apr 2017 Technical Report Millimeter Wave Communication in Vehicular Networks: Coverage and Connectivity Analysis arxiv:75.696v [cs.ni] 26 Apr 27 Marco Giordani Andrea Zanella Michele Zorzi E-mail: {giordani, zanella,

More information

OFDMA Networks. By Mohamad Awad

OFDMA Networks. By Mohamad Awad OFDMA Networks By Mohamad Awad Outline Wireless channel impairments i and their effect on wireless communication Channel modeling Sounding technique OFDM as a solution OFDMA as an improved solution MIMO-OFDMA

More information

Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario

Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario Shu Sun, Hangsong Yan, George R. MacCartney, Jr., and Theodore S. Rappaport {ss7152,hy942,gmac,tsr}@nyu.edu IEEE International

More information

6 Uplink is from the mobile to the base station.

6 Uplink is from the mobile to the base station. It is well known that by using the directional properties of adaptive arrays, the interference from multiple users operating on the same channel as the desired user in a time division multiple access (TDMA)

More information

Channel Modelling ETI 085

Channel Modelling ETI 085 Channel Modelling ETI 085 Lecture no: 7 Directional channel models Channel sounding Why directional channel models? The spatial domain can be used to increase the spectral efficiency i of the system Smart

More information

Millimeter-wave Field Experiments with Many Antenna Configurations for Indoor Multipath Environments

Millimeter-wave Field Experiments with Many Antenna Configurations for Indoor Multipath Environments Millimeter-wave Field Experiments with Many Antenna Configurations for Indoor Multipath Environments Marcus Comiter 1, Michael Crouse 1, H. T. Kung 1, Jenn-Hwan Tarng 2, Zuo-Min Tsai 3, Wei-Ting Wu 2,

More information

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing

Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) CS-539 Mobile Networks and Computing Long Term Evolution (LTE) and 5th Generation Mobile Networks (5G) Long Term Evolution (LTE) What is LTE? LTE is the next generation of Mobile broadband technology Data Rates up to 100Mbps Next level of

More information

Interference management Within 3GPP LTE advanced

Interference management Within 3GPP LTE advanced Interference management Within 3GPP LTE advanced Konstantinos Dimou, PhD Senior Research Engineer, Wireless Access Networks, Ericsson research konstantinos.dimou@ericsson.com 2013-02-20 Outline Introduction

More information

5G Massive MIMO and mmw Design and Test Solution

5G Massive MIMO and mmw Design and Test Solution 5G Massive MIMO and mmw Design and Test Solution Jan. 2017 Philip Chang Senior Project Manager 1 Agenda Communications Page 2 Overview of 5G Technologies 5G Key Radio Technologies mmwave Massive MIMO Keysight

More information

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline

Multiple Antennas. Mats Bengtsson, Björn Ottersten. Basic Transmission Schemes 1 September 8, Presentation Outline Multiple Antennas Capacity and Basic Transmission Schemes Mats Bengtsson, Björn Ottersten Basic Transmission Schemes 1 September 8, 2005 Presentation Outline Channel capacity Some fine details and misconceptions

More information

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes

Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Volume 4, Issue 6, June (016) Study of Performance Evaluation of Quasi Orthogonal Space Time Block Code MIMO-OFDM System in Rician Channel for Different Modulation Schemes Pranil S Mengane D. Y. Patil

More information

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction

Eigenvalues and Eigenvectors in Array Antennas. Optimization of Array Antennas for High Performance. Self-introduction Short Course @ISAP2010 in MACAO Eigenvalues and Eigenvectors in Array Antennas Optimization of Array Antennas for High Performance Nobuyoshi Kikuma Nagoya Institute of Technology, Japan 1 Self-introduction

More information

Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE a Channel Using Wavelet Packet Transform

Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE a Channel Using Wavelet Packet Transform Narrow Band Interference (NBI) Mitigation Technique for TH-PPM UWB Systems in IEEE 82.15.3a Channel Using Wavelet Pacet Transform Brijesh Kumbhani, K. Sanara Sastry, T. Sujit Reddy and Rahesh Singh Kshetrimayum

More information

MIllimeter-wave (mmwave) ( GHz) multipleinput

MIllimeter-wave (mmwave) ( GHz) multipleinput 1 Low RF-Complexity Technologies to Enable Millimeter-Wave MIMO with Large Antenna Array for 5G Wireless Communications Xinyu Gao, Student Member, IEEE, Linglong Dai, Senior Member, IEEE, and Akbar M.

More information

5G Millimeter-Wave and Device-to-Device Integration

5G Millimeter-Wave and Device-to-Device Integration 5G Millimeter-Wave and Device-to-Device Integration By: Niloofar Bahadori Advisors: Dr. B Kelley, Dr. J.C. Kelly Spring 2017 Outline 5G communication Networks Why we need to move to higher frequencies?

More information

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems

System Performance of Cooperative Massive MIMO Downlink 5G Cellular Systems IEEE WAMICON 2016 April 11-13, 2016 Clearwater Beach, FL System Performance of Massive MIMO Downlink 5G Cellular Systems Chao He and Richard D. Gitlin Department of Electrical Engineering University of

More information

FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS. University of California, Irvine, CA Samsung Research America, Dallas, TX

FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS. University of California, Irvine, CA Samsung Research America, Dallas, TX 2014 IEEE International Conference on Acoustic, Speech and Signal Processing (ICASSP) FEASIBILITY STUDY ON FULL-DUPLEX WIRELESS MILLIMETER-WAVE SYSTEMS Liangbin Li Kaushik Josiam Rakesh Taori University

More information

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better

5G New Radio Design. Fall VTC-2017, Panel September 25 th, Expanding the human possibilities of technology to make our lives better 5G New Radio Design Expanding the human possibilities of technology to make our lives better Fall VTC-2017, Panel September 25 th, 2017 Dr. Amitabha Ghosh Head of Small Cell Research, Nokia Fellow, IEEE

More information

Dynamic Frequency Hopping in Cellular Fixed Relay Networks

Dynamic Frequency Hopping in Cellular Fixed Relay Networks Dynamic Frequency Hopping in Cellular Fixed Relay Networks Omer Mubarek, Halim Yanikomeroglu Broadband Communications & Wireless Systems Centre Carleton University, Ottawa, Canada {mubarek, halim}@sce.carleton.ca

More information

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems

Use of Multiple-Antenna Technology in Modern Wireless Communication Systems Use of in Modern Wireless Communication Systems Presenter: Engr. Dr. Noor M. Khan Professor Department of Electrical Engineering, Muhammad Ali Jinnah University, Islamabad Campus, Islamabad, PAKISTAN Ph:

More information

Planning of LTE Radio Networks in WinProp

Planning of LTE Radio Networks in WinProp Planning of LTE Radio Networks in WinProp AWE Communications GmbH Otto-Lilienthal-Str. 36 D-71034 Böblingen mail@awe-communications.com Issue Date Changes V1.0 Nov. 2010 First version of document V2.0

More information

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System

AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System AWGN Channel Performance Analysis of QO-STB Coded MIMO- OFDM System Pranil Mengane 1, Ajitsinh Jadhav 2 12 Department of Electronics & Telecommunication Engg, D.Y. Patil College of Engg & Tech, Kolhapur

More information

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM

DESIGN OF STBC ENCODER AND DECODER FOR 2X1 AND 2X2 MIMO SYSTEM Indian J.Sci.Res. (): 0-05, 05 ISSN: 50-038 (Online) DESIGN OF STBC ENCODER AND DECODER FOR X AND X MIMO SYSTEM VIJAY KUMAR KATGI Assistant Profesor, Department of E&CE, BKIT, Bhalki, India ABSTRACT This

More information

Understanding Advanced Bluetooth Angle Estimation Techniques for Real-Time Locationing

Understanding Advanced Bluetooth Angle Estimation Techniques for Real-Time Locationing Understanding Advanced Bluetooth Angle Estimation Techniques for Real-Time Locationing EMBEDDED WORLD 2018 SAULI LEHTIMAKI, SILICON LABS Understanding Advanced Bluetooth Angle Estimation Techniques for

More information

MIMO Channel Modeling and Capacity Analysis for 5G Millimeter-Wave Wireless Systems

MIMO Channel Modeling and Capacity Analysis for 5G Millimeter-Wave Wireless Systems M. K. Samimi, S. Sun, T. S. Rappaport, MIMO Channel Modeling and Capacity Analysis for 5G Millimeter-Wave Wireless Systems, in the 0 th European Conference on Antennas and Propagation (EuCAP 206), April

More information

Analysis of RF requirements for Active Antenna System

Analysis of RF requirements for Active Antenna System 212 7th International ICST Conference on Communications and Networking in China (CHINACOM) Analysis of RF requirements for Active Antenna System Rong Zhou Department of Wireless Research Huawei Technology

More information

Comparison of Angular Spread for 6 and 60 GHz Based on 3GPP Standard

Comparison of Angular Spread for 6 and 60 GHz Based on 3GPP Standard Comparison of Angular Spread for 6 and 60 GHz Based on 3GPP Standard Jan M. Kelner, Cezary Ziółkowski, and Bogdan Uljasz Institute of Telecommunications, Faculty of Electronics, Military University of

More information

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment

Experimental evaluation of massive MIMO at 20 GHz band in indoor environment This article has been accepted and published on J-STAGE in advance of copyediting. Content is final as presented. IEICE Communications Express, Vol., 1 6 Experimental evaluation of massive MIMO at GHz

More information

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM

PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM PERFORMANCE ANALYSIS OF DOWNLINK MIMO IN 2X2 MOBILE WIMAX SYSTEM N.Prabakaran Research scholar, Department of ETCE, Sathyabama University, Rajiv Gandhi Road, Chennai, Tamilnadu 600119, India prabakar_kn@yahoo.co.in

More information

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation

Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Channel Estimation for Downlink LTE System Based on LAGRANGE Polynomial Interpolation Mallouki Nasreddine,Nsiri Bechir,Walid Hakimiand Mahmoud Ammar University of Tunis El Manar, National Engineering School

More information

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test

M A R C H 2 6, Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies. 5G New Radio Challenges and Redefining Test M A R C H 2 6, 2 0 1 8 Sheri DeTomasi 5G New Radio Solutions Lead Keysight Technologies 1 5G Market Trends 5G New Radio Specification and Implications New Measurement Challenges and Redefining Test Summary

More information

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO

Antennas and Propagation. Chapter 6b: Path Models Rayleigh, Rician Fading, MIMO Antennas and Propagation b: Path Models Rayleigh, Rician Fading, MIMO Introduction From last lecture How do we model H p? Discrete path model (physical, plane waves) Random matrix models (forget H p and

More information

Configurable 5G Air Interface for High Speed Scenario

Configurable 5G Air Interface for High Speed Scenario Configurable 5G Air Interface for High Speed Scenario Petri Luoto, Kari Rikkinen, Pasi Kinnunen, Juha Karjalainen, Kari Pajukoski, Jari Hulkkonen, Matti Latva-aho Centre for Wireless Communications University

More information

Analytical Evaluation of the Cell Spectral Efficiency of a Beamforming Enhanced IEEE m System

Analytical Evaluation of the Cell Spectral Efficiency of a Beamforming Enhanced IEEE m System Analytical Evaluation of the Cell Spectral Efficiency of a Beamforming Enhanced IEEE 802.16m System Benedikt Wolz, Afroditi Kyrligkitsi Communication Networks (ComNets) Research Group Prof. Dr.-Ing. Bernhard

More information

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques

Antennas and Propagation. Chapter 5c: Array Signal Processing and Parametric Estimation Techniques Antennas and Propagation : Array Signal Processing and Parametric Estimation Techniques Introduction Time-domain Signal Processing Fourier spectral analysis Identify important frequency-content of signal

More information

mm Wave Communications J Klutto Milleth CEWiT

mm Wave Communications J Klutto Milleth CEWiT mm Wave Communications J Klutto Milleth CEWiT Technology Options for Future Identification of new spectrum LTE extendable up to 60 GHz mm Wave Communications Handling large bandwidths Full duplexing on

More information

MIMO I: Spatial Diversity

MIMO I: Spatial Diversity MIMO I: Spatial Diversity COS 463: Wireless Networks Lecture 16 Kyle Jamieson [Parts adapted from D. Halperin et al., T. Rappaport] What is MIMO, and why? Multiple-Input, Multiple-Output (MIMO) communications

More information

Modeling and Simulating Large Phased Array Systems

Modeling and Simulating Large Phased Array Systems Modeling and Simulating Large Phased Array Systems Tabrez Khan Senior Application Engineer Application Engineering Group 2015 The MathWorks, Inc. 1 Challenges with Large Array Systems Design & simulation

More information

3G Evolution HSPA and LTE for Mobile Broadband Part II

3G Evolution HSPA and LTE for Mobile Broadband Part II 3G Evolution HSPA and LTE for Mobile Broadband Part II Dr Stefan Parkvall Principal Researcher Ericsson Research stefan.parkvall@ericsson.com Outline Series of three seminars I. Basic principles Channel

More information